Planification et affectation de ressources dans les réseaux de soin : analogie avec le problème du bin packing, proposition de méthodes approchées

par Nathalie Klement

Thèse de doctorat en Informatique

Sous la direction de Michel Gourgand.

Soutenue le 04-12-2014

à Clermont-Ferrand 2 , dans le cadre de École doctorale des sciences pour l'ingénieur (Clermont-Ferrand) , en partenariat avec Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (équipe de recherche) et de (LIMOS) Laboratoire d'Informatique- de Modélisation et d'optimisation des Systèmes (laboratoire) .

Le président du jury était Alain Quilliot.

Le jury était composé de Michel Gourgand, Nathalie Grangeon, Virginie Fortineau.

Les rapporteurs étaient Aziz Moukrim, Samir Lamouri.


  • Résumé

    Les travaux de thèse présentés s’intéressent à l’optimisation des systèmes hospitaliers. Une solution existante est la mutualisation de ressources au sein d’un même territoire. Cela peut passer par différentes formes de coopération dont la Communauté Hospitalière de Territoire. Différents problèmes sont définis en fonction du niveau de décision : stratégique, tactique ou opérationnel ; et du niveau de modélisation : macroscopique, mesoscopique et microscopique. Des problèmes de dimensionnement, de planification et d’ordonnancement peuvent être considérés. Nous définissons notamment le problème de planification d’activités avec affectation de ressources. Plusieurs cas sont dissociés : soit les ressources humaines sont à capacité infinie, soit elles sont à capacité limitée et leur affectation sur site est une donnée, soit elles sont à capacité limitée et leur affectation sur site est une variable. Ces problèmes sont spécifiés et formalisés mathématiquement. Tous ces problèmes sont comparés à un problème de bin packing : le problème du bin packing de base pour le problème où les ressources humaines sont à capacité infinie, le problème du bin packing avec interdépendances dans les deux autres cas. Le problème du bin packing avec incompatibilités est ainsi défini. De nombreuses méthodes de résolution ont déjà été proposées pour le problème du bin packing. Nous faisons plusieurs propositions dont un couplage hiérarchique entre une heuristique et une métaheuristique. Des métaheuristiques basées individu et une métaheuristique basée population, l’optimisation par essaim particulaire, sont utilisées. Cette proposition nécessite un nouveau codage inspiré des problèmes de permutation d’ordonnancement. Cette méthode donne de très bons résultats sur les instances du problème du bin packing. Elle est simple à appliquer : elle couple des méthodes déjà connues. Grâce au couplage proposé, les nouvelles contraintes à considérer nécessitent d’être intégrées uniquement au niveau de l’heuristique. Le fonctionnement de la métaheuristique reste le même. Ainsi, notre méthode est facilement adaptable au problème de planification d’activités avec affectation de ressources. Pour les instances de grande taille, le solveur utilisé comme référence ne donne qu’un intervalle de solutions. Les résultats de notre méthode sont une fois encore très prometteurs : les solutions obtenues sont meilleures que la borne supérieure retournée par le solveur. Il est envisageable d’adapter notre méthode sur d’autres problèmes plus complexes par intégration dans l’heuristique des nouvelles contraintes à considérer. Il serait notamment intéressant de tester ces méthodes sur de réelles instances hospitalières afin d’évaluer leur portée.

  • Titre traduit

    Planning and resources assignment in healthcare networks : analogy with the bin packing problem, proposition of approximate methods


  • Résumé

    The presented work is about optimization of the hospital system. An existing solution is the pooling of resources within the same territory. This may involve different forms of cooperation between several hospitals. Various problems are defined at the decision level : strategic, tactical or operational ; and at the modeling level : macroscopic, mesoscopic and microscopic. Problems of sizing, planning and scheduling may be considered. We define the problem of activities planning with resource allocation. Several cases are dissociated : either human resources are under infinite capacity, or they are under limited capacity and their assignment on a place is given, or they are under limited capacity and their assignment is a variable. These problems are specified and mathematically formalized. All thes problems are compared to a bin packing problem : the classical problem of bin packing is used for the problem where human resources are under infinite capacity, the bin packing problem with interdependencies is used in the two other cases. The bin packing problem with incompatibilities is defined. Many resolution methods have been proposed for the bin packing problem. We make several propositions including a hierarchical coupling between heuristic and metaheuristic. Single based metaheuristics and a population based metaheuristic, the particle swarm optimization, are used. This proposition requires a new encoding inspired by permutation problems. This method gives very good results to solve instances of the bin packing problem. It is easy to apply : it combines already known methods. With the proposed coupling, the new constraints to be considered need to be integrated only on the heuristic level. The running of the metaheuristic is the same. Thus, our method is easily adaptable to the problem of activities planning with resource allocation. For big instances, the solver used as a reference returns only an interval of solutions. The results of our method are once again very promising : the obtained solutions are better than the upper limit returned by the solver. It is possible to adapt our method on more complex issues through integration into the heuristic of the new constraints to consider. It would be particularly interesting to test these methods on real hospital authorities to assess their significance.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.