Calibration Bayésienne d'un modèle d'étude d'écosystème prairial : outils et applications à l'échelle de l'Europe

par Haythem Ben Touhami

Thèse de doctorat en Informatique

Sous la direction de Gianni Bellocchi.

Le président du jury était David R. C. Hill.

Le jury était composé de Nicolas Viovy, Marco Acutis, Vincent Barra, David Makowski.

Les rapporteurs étaient Nicolas Viovy, Marco Acutis.


  • Résumé

    Les prairies représentent 45% de la surface agricole en France et 40% en Europe, ce qui montre qu’il s’agit d’un secteur important particulièrement dans un contexte de changement climatique où les prairies contribuent d’un côté aux émissions de gaz à effet de serre et en sont impactées de l’autre côté. L’enjeu de cette thèse a été de contribuer à l’évaluation des incertitudes dans les sorties de modèles de simulation de prairies (et utilisés dans les études d’impact aux changements climatiques) dépendant du paramétrage du modèle. Nous avons fait appel aux méthodes de la statistique Bayésienne, basées sur le théorème de Bayes, afin de calibrer les paramètres d’un modèle référent et améliorer ainsi ses résultats en réduisant l’incertitude liée à ses paramètres et, par conséquent, à ses sorties. Notre démarche s’est basée essentiellement sur l’utilisation du modèle d’écosystème prairial PaSim, déjà utilisé dans plusieurs projets européens pour simuler l’impact des changements climatiques sur les prairies. L’originalité de notre travail de thèse a été d’adapter la méthode Bayésienne à un modèle d’écosystème complexe comme PaSim (appliqué dans un contexte de climat altéré et à l’échelle du territoire européen) et de montrer ses avantages potentiels dans la réduction d’incertitudes et l’amélioration des résultats, en combinant notamment méthodes statistiques (technique Bayésienne et analyse de sensibilité avec la méthode de Morris) et outils informatiques (couplage code R-PaSim et utilisation d’un cluster de calcul). Cela nous a conduit à produire d’abord un nouveau paramétrage pour des sites prairiaux soumis à des conditions de sécheresse, et ensuite à un paramétrage commun pour les prairies européennes. Nous avons également fourni un outil informatique de calibration générique pouvant être réutilisé avec d’autres modèles et sur d’autres sites. Enfin, nous avons évalué la performance du modèle calibré par le biais de la technique Bayésienne sur des sites de validation, et dont les résultats ont confirmé l’efficacité de cette technique pour la réduction d’incertitude et l’amélioration de la fiabilité des sorties.

  • Titre traduit

    no title available


  • Résumé

    Grasslands cover 45% of the agricultural area in France and 40% in Europe. Grassland ecosystems have a central role in the climate change context, not only because they are impacted by climate changes but also because grasslands contribute to greenhouse gas emissions. The aim of this thesis was to contribute to the assessment of uncertainties in the outputs of grassland simulation models, which are used in impact studies, with focus on model parameterization. In particular, we used the Bayesian statistical method, based on Bayes’ theorem, to calibrate the parameters of a reference model, and thus improve performance by reducing the uncertainty in the parameters and, consequently, in the outputs provided by models. Our approach is essentially based on the use of the grassland ecosystem model PaSim (Pasture Simulation model) already applied in a variety of international projects to simulate the impact of climate changes on grassland systems. The originality of this thesis was to adapt the Bayesian method to a complex ecosystem model such as PaSim (applied in the context of altered climate and across the European territory) and show its potential benefits in reducing uncertainty and improving the quality of model outputs. This was obtained by combining statistical methods (Bayesian techniques and sensitivity analysis with the method of Morris) and computing tools (R code -PaSim coupling and use of cluster computing resources). We have first produced a new parameterization for grassland sites under drought conditions, and then a common parameterization for European grasslands. We have also provided a generic software tool for calibration for reuse with other models and sites. Finally, we have evaluated the performance of the calibrated model through the Bayesian technique against data from validation sites. The results have confirmed the efficiency of this technique for reducing uncertainty and improving the reliability of simulation outputs.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.