Indexation et recherche de similarités avec des descripteurs structurés par coupes d'images sur des graphes

par Yi Ren

Thèse de doctorat en Informatique

Sous la direction de Jenny Benois Pineau et de Aurélie Bugeau.

Soutenue le 20-11-2014

à Bordeaux , dans le cadre de École doctorale de mathématiques et informatique (Talence, Gironde) , en partenariat avec Université de Bordeaux I (1970-2013) (Etablissement d'accueil) et de Laboratoire bordelais de recherche en informatique (laboratoire) .

Le président du jury était Luc Brun.

Le jury était composé de Pascal Desbarats, Alan Hanjalic.

Les rapporteurs étaient Bernard Merialdo, Philippe-Henri Gosselin.


  • Résumé

    Dans cette thèse, nous nous intéressons à la recherche d’images similaires avec des descripteurs structurés par découpages d’images sur les graphes.Nous proposons une nouvelle approche appelée “bag-of-bags of words” (BBoW) pour la recherche d’images par le contenu (CBIR). Il s’agit d’une extension du modèle classique dit sac-de-mots (bag of words - BoW). Dans notre approche, une image est représentée par un graphe placé sur une grille régulière de pixels d’image. Les poids sur les arêtes dépendent de caractéristiques locales de couleur et texture. Le graphe est découpé en un nombre fixe de régions qui constituent une partition irrégulière de l’image. Enfin, chaque partition est représentée par sa propre signature suivant le même schéma que le BoW. Une image est donc décrite par un ensemble de signatures qui sont ensuite combinées pour la recherche d’images similaires dans une base de données. Contrairement aux méthodes existantes telles que Spatial Pyramid Matching (SPM), le modèle BBoW proposé ne repose pas sur l’hypothèse que des parties similaires d’une scène apparaissent toujours au même endroit dans des images d’une même catégorie. L’extension de cette méthode ` a une approche multi-échelle, appelée Irregular Pyramid Matching (IPM), est ´ également décrite. Les résultats montrent la qualité de notre approche lorsque les partitions obtenues sont stables au sein d’une même catégorie d’images. Une analyse statistique est menée pour définir concrètement la notion de partition stable.Nous donnons nos résultats sur des bases de données pour la reconnaissance d’objets, d’indexation et de recherche d’images par le contenu afin de montrer le caractère général de nos contributions

  • Titre traduit

    Indexing and Searching for Similarities of Images with Structural Descriptors via Graph-cuttings Methods


  • Résumé

    Image representation is a fundamental question for several computer vision tasks. The contributions discussed in this thesis extend the basic bag-of-words representations for the tasks of object recognition and image retrieval.In the present thesis, we are interested in image description by structural graph descriptors. We propose a model, named bag-of-bags of words (BBoW), to address the problems of object recognition (for object search by similarity), and especially Content-Based Image Retrieval (CBIR) from image databases. The proposed BBoW model, is an approach based on irregular pyramid partitions over the image. An image is first represented as a connected graph of local features on a regular grid of pixels. Irregular partitions (subgraphs) of the image are further built by using graph partitioning methods. Each subgraph in the partition is then represented by its own signature. The BBoW model with the aid of graphs, extends the classical bag-of-words (BoW) model by embedding color homogeneity and limited spatial information through irregular partitions of an image. Compared to existing methods for image retrieval, such as Spatial Pyramid Matching (SPM), the BBoW model does not assume that similar parts of a scene always appear at the same location in images of the same category. The extension of the proposed model to pyramid gives rise to a method we named irregular pyramid matching (IPM).The experiments demonstrate the strength of our approach for image retrieval when the partitions are stable across an image category. The statistical analysisof subgraphs is fulfilled in the thesis. To validate our contributions, we report results on three related computer vision datasets for object recognition, (localized)content-based image retrieval and image indexing. The experimental results in a database of 13,044 general-purposed images demonstrate the efficiency and effectiveness of the proposed BBoW framework.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.