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Notations importantes

On liste ici les notations de quantités, d’opérateurs, de fonctions ou d’espaces importants
utilisés dans cette thése.

Les éléments notés en gras représentent des vecteurs ou des matrices.

De maniére générale, c ou, ¢(...) désigne une constante strictement positive. Sa valeur peut
changer d’une ligne a 'autre. Les paramétres qui n’influent pas sur sa valeur sont en général
précisés. Cela permet d’éviter de multiplier les notations de constantes (I’alphabet latin n’a
que 26 lettres et le grec que 24!).
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Objet Définition ou explications

N Densité du plasma (grandeur adimensionnée).

r Moment du plasma (grandeur adimensionnée).

n Reésistivité paralléle (en pratique, n < 1).

on Potentiel électrique.

€ Parameétre de pénalisation (en général, ¢ < 1).

X Ou X1, X2 Fonctions caractéristiques des zones pénalisées.

Q Un domaine ouvert (ayant des propriétés différentes suivant les cha-
pitres et section du manuscrit).

Qr Qp =] — Tp, T[xQ (chapitre 3) ou Qp =|0,T[x (chapitre 4).

Vu, Vy Dérivées partielles par rapport a u ou v (respectivement).

\Y% Gradient par rapport aux variables ¢, x.

C () Fonctions de classe C* & support compact.

Constante strictement positive. Sa valeur peut changer d’une ligne a
l'autre. Les paramétres qui n’influent pas sur sa valeur sont en général
précisés.

H (Qr) = {® € L*(Qr),Va € N4 |a| <m = To® € L*(Qr)}
H™Qr) = {® € [Qr),¥8 € NVa € NLA+ o] < m —
05T ® € L2(0r) |

L*(Qr) = {®: Qr = RY, [ (®(t,%), D(t,x))dtdx}

L’ensemble des matrices carrées de taille N x .

La normale sortante unitaire de €.

Temps (variable).

Dérivées tangentielles (par rapport a la frontiére du domaine originel).
WL2(0,T;V,H) = {f € L*(0,T;V),0.f € L?>(0,T;V*)} (voir annexe
A)

Produit scalaire associé a I'espace X, ou X = RP L2(Q7), V...
Produit  scalaire associé & lespace X, ou X =
RP L2(Qr), V, HE, (), H™(Q71)....

Moyenne de ¢ sur son ensemble de définition €.




Chapitre 1

Introduction

1.1 Quelques éléments sur le projet ITER

Le projet de réacteur a fusion ITER a pour but de valider expérimentalement la possibilité
d’utiliser la fusion nucléaire comme source d’énergie électrique.

Il s’agit ici de faire une bréve présentation des principes généraux de la fusion nucléaire
et des modéles physiques étudiés.

Il convient tout d’abord de rappeler que le plasma est considéré comme le 4°™¢ état de la
matiére : c’est un mélange d’électrons et de protons. Pour créer cet état, il faut arracher tout
ou partie des électrons des atomes auxquels ils sont habituellement liés. L’arrachage de ces
électrons nécessite de I’énergie qui peut étre fournie :

— Par un champ électrique trés intense (comme pour les éclairs par exemple).

Par un bombardement par des photons (champ électromagnétique) ou par des particules
(c’est le cas de la magnétosphére, ou du plasma interstellaire).

Par un apport de chaleur trés élevé, ce qui implique des températures trés élevées
(> 10000K).

C’est ce dernier cas qui nous intéresse dans cette thése. On se concentre sur les plasmas
utilisés en vue de réaliser réaction de fusion nucléaire.

1.2 La fusion nucléaire

La fusion nucléaire est une réaction ou deux atomes légers (par exemple, de deutérium
et de tritium) fusionnent pour former un atome plus lourd (comme I’hélium) en libérant
éventuellement des particules et de 1’énergie. La fusion du deutérium et du tritium est la
plus facile a réaliser, notamment grace & une barriére énergétique plus faible. Cette derniére
réaction est représentée par I’équation ci-dessous

DT —2He (3.5 MeV) +{n (14.1 MeV).

L’énergie nécessaire pour vaincre la barriére énergétique liée & la répulsion électrostatique est
de T'ordre de 10 & 100 keV. Cela correspond a des températures de I'ordre de 10% & 10° K, ce
qui rend ’état plasma inévitable pour la fusion nucléaire. Par contre, la réaction dégage une
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énergie de 17,6 MeV. En comparaison, la réaction de fission de 'uranium 235 dégage une
énergie de l'ordre de 200 MeV, mais le noyau est alors trés lourd : environ 235w (unités de
masse atomique unifiée) pour 'uranium 235 (sans compter la masse du neutron déclenchant
la réaction de fission) contre environ 2u et 3u pour le deutérium et le tritium. Ainsi, pour
une méme masse de combustible, la réaction de fusion nucléaire dégagera environ quatre fois
plus d’énergie que la fission.

L’objectif du projet ITER est la production d’énergie & I'échelle industrielle : ’espoir serait
d’avoir un jour des centrales & fusion nucléaire qui seraient plus avantageuses que les centrales
a fission actuelles. 11 se pose alors la question de la rentabilité énergétique de la réaction, c’est
a dire ’énergie produite par la fusion comparée a I’énergie dépensée pour chauffer le plasma
et maintenir son confinement magnétique. En réalisant un bilan énergétique, on peut justifier
le critére de Lawson : pour que la réaction de fusion nucléaire produise plus de 40 fois I’énergie
dépensée pour la générer, il faut que nd;7p > 2.7-102! m=3.keV.s~ 1. Ici, n désigne la densité du
plasma, 6; sa température ionique et 7g le temps de confinement de 1’énergie. Pour améliorer
les conditions de la réaction de fusion, la température ionique est portée a 0; ~ 30 keV. Deux
techniques sont concurrentes pour essayer d’utiliser la réaction de fusion comme une source
d’énergie : la fusion par confinement magnétique et la fusion par confinement inertiel, décrites
ci-apres.
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Fusion par confinement magnétique :

10

Fusion par confinement inertiel :

Dans cette configuration, on opte pour
une faible densité de plasma n ~ 10?0 m=3
un temps de confinement 7r long, de
I'ordre de la seconde. Les réacteurs les plus
utilisés pour la fusion par confinement ma-
gnétique sont de type tokamak. Les toka-
maks sont des machines dont la forme res-
semble & un tore. La réaction de fusion se
fait dans la région au ceceur du tore ou le
plasma. y est confiné par de forts champs
magnétiques.

Les tokamaks, sous réserve d’un refroidis-
sement adapté peuvent fonctionner pen-
dant des temps longs, de lordre de
quelques secondes & quelques minutes
(6min30s pour TORE SUPRA, mais
sans réaction de fusion). On espére ainsi
pouvoir un jour les faire tourner en
continu pour les rendre adaptés a la pro-
duction d’énergie. Les principaux toka-
maks capables de réaliser la réaction de fu-
sion nucléaire sont JET au Royaume Uni
et JT-60 au Japon.

La technologie développée pour ce type
de réacteur n’est pas directement trans-
posable a la création d’armes nucléaires.

Bobines magnétiqgues Bohines
poloidales magnétiques
toraidales

Bobine magnétique centrale

Schéma de principe d’un tokamak.
Source : [2]

On choisit ici une densité de plasma n =~
1031 m=3 élevée et un temps de confine-
ment trés court 75 ~ 1071 s. La com-
pression et le chauffage des micro-billes de
deutérium-tritium est généralement faite a
partir d’impulsions laser (réfléchies sur les
parois intérieures de la capsule contenant
la micro-bille de réactif).

Cette technologie sert notamment & la re-
cherche sur les armes thermonucléaires,
mais des recherches sont aussi réalisées
dans le domaine de la production d’éner-
gie. Les installations les plus connues ex-
plorant cette technique de fusion sont le
laser Mégajoule a Bordeaux et National
Ignition Facility (NIF) aux USA.

Photo d’une capsule contenant la
micro-bille de deutérium-tritium pour la
fusion inertielle par laser. Source : NIF

au LLnL, voir sa galerie photo [1].

F cn
des f

Schéma de fonction d’une capsule pour la
fusion inertielle. Source : [3]

10 mm

Container en or qui agit comme un four
Microbalion contenant le mélange DT sclidifié (300ua)
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1.3 Modéles de plasma

Trois grandes catégories de modéles de plasma existent :

1. Les modéles particulaires qui reviennent a appliquer le principe fondamental de la dy-
namique a chaque particule. Ainsi si on considére un plasma composé de N particules,
de position x; (j € {1,...,N}), de charge ¢; et de masse m;, on a :

2
Vj e {1,...,N},mj%(t) =g <E+ % x B) :
ot E et B désignent respectivement le champ électrique et le champ magnétique au
point x;. L'effet de la pesanteur terrestre est considéré comme négligeable, comparé aux
interactions électromagnétiques. Ce modéle est en apparence trés simple, le seul souci est
que N peut étre trés grand : dans un tokamak, la densité de plasma est typiquement de
Iordre de 10?° particules par m3, et le volume de I'ordre de plusieurs m?. Or a chaque
intervalle de temps on a 6N composantes a calculer (position et vitesse de chaque
particule). Cela rend en pratique les simulations numériques quasiment impossibles.

2. Les modéles cinétiques considérent le comportement de la fonction de distribution
fs(t,x,v) des particules de plasma situées en x, & l'instant ¢ et ayant une vitesse v
pour l'espéce s. Cette représentation permet de passer d'un espace des phases de di-
mension 6N a un espace des phases de dimension 6. Dans un modéle cinétique, le terme
de collision 0 f|.on prend en compte les effets dus aux chocs des particules entre elles.
On aboutit alors & I’équation de Boltzmann :

atfs +v-Vx+ E(E"‘V X B) : vas = at.ﬂcoll'

S

On peut donc considérer que dans un schéma numérique calculant fs, a chaque pas
de temps, il faut résoudre un probléme dans un espace des phases a 6 dimensions (3
pour la position et 3 pour la vitesse). Cela est abordable pour des simulations sur des
intervalles de temps court, de 'ordre de la milliseconde, notamment grace aux super-
calculateurs actuels. Dans le cas des plasmas de fusion par confinement magnétique, il
est raisonnable de faire ’approximation gyrocinétique qui permet de réduire ’espace des
phases & 5 dimensions : c’est cette approximation qui a été faite dans le cadre du code
de simulation GYSELA. Afin de donner un ordre de grandeur, le code GYSELA a été
utilisé en 2010 sur un domaine d’un quart de tore de dimension comparable & ITER :
8192 processeurs ont fonctionné pendant environ 31 jours pour calculer le comportement
du plasma durant 1ms [4, 5].

3. La derniere grande famille de modeles est ’ensemble des modéles fluides : le plasma
est représenté comme un simple gaz (ou mélange de gaz). C’est 'approximation la plus
grossiére, mais aussi la seule ol des simulations en temps longs, de 'ordre de la seconde,
sont raisonnables. Le lien entre 'approche fluide et ’approche cinétique est réalisé en
exprimant les différents moments de f; (selon v) :

La densité de particules :

ns(t,x) = fs(t,x,v)dv
R3
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— Le flux de particules :
ngUg :/ vfs(t,x,v)dv
R3

(us désigne alors la vitesse de fluide pour l'espéce s).
Le tenseur de pression :

I, =P, = ms/ v R v fs(t,x,v)dv
R3
— Le tenseur de pression isotrope :
_ _ 2
ps = ngTs = my /3 |v — us|*fs(t, x, v)dv
R

- Le flux d’énergie :
1
P = mg/ vIv|2fs(t, x, v)dv
2" s

En moyennant ’équation de Boltzmann du modéle cinétique, on va retrouver les équa-
tions de conservation de la densité, de la quantité de mouvement et de 1’énergie, moyen-
nant l'utilisation d’équations supplémentaires pour fermer le systéme. Les avantages de
la modélisation fluides sont que ’espace des phases est réduit & 3 dimensions et que les
méthodes numeériques classiquement utilisées pour le calcul d’écoulement de fluides sont
transposables (volumes finis, éléments finis...).

Au ceeur du tokamak, le plasma est dit peu collisionnel, au sens ou les interactions entre
les ions sont peu fréquentes. Dans ce domaine, les modéles cinétiques sont nécessaires. Au
contraire, le plasma proche de la paroi, plus froid, est fortement collisionnel. Le comportement
du plasma, est alors plus proche d’un fluide.

Dans tout ce travail, on considérera des modéles fluides du plasma.

1.4 La géométrie du bord d’un tokamak

Le travail de la présente thése s’inscrit dans le cadre du projet ANR ESPOIR dont le but
est de développer des codes de calcul pour le plasma proche de la paroi du tokamak. 11 est
alors nécessaire d’aborder la géométrie de cette région.

Le confinement magnétique du plasma n’est jamais parfait et une partie du plasma est
en contact avec la paroi du limiteur. Ce contact avec la paroi va poser différents problémes
comme :

— La détérioration de la paroi notamment lié aux températures élevées du plasma de bord

(de 'ordre de 10* K).
— L’altération de la pureté du plasma avec 'arrivée de particules issues de la paroi qui est
essentiellement composée de carbone, de tungsténe ou de béryllium.
Le pompage du plasma par recombinaison au niveau de la paroi.
Pour protéger la paroi du plasma, il a été notamment choisi d’ouvrir les lignes de champ
magnétique proches du bord. En effet, on rappelle que le plasma est essentiellement transporté
le long des lignes de champ magnétique. Cela crée alors deux régions, une proche du cceur du
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DSMF

Surface magnétique fermée

scrape-off layer Surface magnétique ouverte

Limiteur

F1GURE 1.1 — Schéma de la zone proche de la paroi d’'un tokamak en configuration limiteur.
DSMF = Derniére Surface Magnétique Fermée. La scrape-off layer est la région se situant
entre la derniére surface magnétique fermée (DSMF) et la paroi.

tokamak ou les lignes de champ magnétique sont fermées et une limitrophe avec la paroi ot
les lignes de champ magnétique sont ouvertes, c’est la scrape-off layer.
Deux méthodes existent pour ouvrir les lignes de champ magnétique au niveau de la
scrape-off layer :
La premiére est la plus simple, elle consiste a placer un obstacle, appelé le limiteur, qui
va interrompre les lignes de champ magnétique et absorber 1’énergie du plasma. Dans
le cas de TORE SUPRA, qui utilise cette configuration, le limiteur plancher (le plus
gros) est refroidi par de ’eau sous pression.
— La deuxiéme, qui est la configuration divertor, modifie la configuration magnétique du
tokamak. Cette configuration est plus complexe et permet d’améliorer le confinement
de I’énergie dans le coeur du tokamak (au delad d’un certain seuil de puissance) tout en
diminuant les effets des impuretés dans le plasma de bord. C’est cette géométrie qui a
été retenue pour le projet ITER.
Nous allons donc commencer par décrire la configuration limiteur, présentée dans la figure
1.1.

La figure 1.2 montre l'intérieur du tokamak TORE SUPRA & l’arrét et en fonctionnement.
Le fort dégagement de lumiére au niveau du limiteur indique une température d’au moins
plusieurs milliers de kelvins. Dans la région centrale on ne voit rien car la lumiére émise
par le plasma chaud (=~ 10® — 10° K) correspond essentiellement aux rayons X voire aux
rayons gamma (il est aisé de retrouver ces ordres de grandeur en utilisant les propriétés d'un
corps noir). Ces ordres de grandeur évalués grossiérement permettent de comprendre que le
confinement magnétique ne suffit pas a éviter les interactions plasma-limiteur. On notera que
dans TORE SUPRA, d’autres limiteurs, sont mis en place comme les limiteurs poloidaux et
les limiteurs d’antenne qui visent & protéger des instruments.
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FIGURE 1.2 — A gauche : Photo de l'intérieur de TORE SUPRA (a I'arrét). Le limiteur est le
"trottoir" en bas de la photo. A droite : Image prise par une caméra CCD (dans le visible)
de TORE SUPRA en fonctionnement. Un fort dégagement de lumiére est généré au niveau
du limiteur. Source des deux images : IRFM [2]

La configuration divertor, dans la figure 1.3, est sensiblement différente. On note entre
autres I'apparition du point x ot les lignes de champ magnétique semblent se croiser.

Il apparait surprenant, en premiére approche, de s’intéresser & une configuration différente
de celle retenue pour le projet ITER. Il faut en fait comprendre que les outils mathématiques
développés pour cette structure s’adapteront a la configuration divertor avec point x. On
notera tout de méme que dans les deux cas il y a des obstacles qui interrompent les lignes
de champ magnétique. De plus, les deux configurations comportent une zone ou les lignes de
champ sont ouvertes, la scrape-off layer.

Différents modeéles fluides ont été établis pour le plasma de bord dans un tokamak (2D ou
3D), voir par exemple [24], SolEdge2D [60], Tokam-3D [60, 61]... On présentera ici rapidement
le modéle utilisé dans Tokam-3D. La géométrie considérée est décrite dans la figure 1.4. On
rappelle que 'on se place dans la configuration limiteur.

Les principales grandeurs adimensionnées des équations considérées sont :

— N : la densité du plasma (des électrons). A savoir qu’en dehors d’une fine couche au
voisinage du limiteur (la gaine), le plasma est quasi-neutre, c’est a dire que la densité
des électrons est approximativement égale a la densité des ions (chargés positivement)
multiplié par le nombre de charge.

— M, :la vélocité des ions dans la direction paralléle.

— M : le nombre de Mach du plasma (c’est a dire, & une constante multiplicative prés, sa
vitesse). Utilisé uniquement dans le chapitre 2. M = My/2M

- I' = NM : le moment du plasma (c’est a dire, sa quantité de mouvement dans la
direction paralléle).

— W : la vorticité du plasma.

Jy @ le courant électrique dans la direction parallele, associé a la résistivité parallele 7).
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Scrape-off layer Surface magnétique fermée

DSMF

Surface magnétique ouverte

Point x

Divertor

FIGURE 1.3 — Schéma de la configuration divertor, retenue pour ITER. La scrape-off layer est
toujours la région se situant entre la derniére surface magnétique fermée (DSMF) et la paroi.
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Limiteur —

F1GURE 1.4 — Schéma du systéme de coordonnées toriques utilisé dans TOKAM-3D. r est le
rayon mineur, ¢ est 'angle toroidal et ¥ correspond a ’angle poloidal.
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— ¢y : le potentiel électrique.

— Dp, Dr, Dy : des coefficients de diffusion.

— b : vecteur paralléle 4 la direction du champ magnétique. Dans les coordonnées toriques
décrites dans la figure 1.4, b s’écrit :

0
b = €B ’
1
oll €g = m < 1. q(r) étant, ici, le facteur de sécurité, lié & I’enroulement des lignes

de champ magnétique autour de 1’axe vertical.
B : amplitude du champ magnétique.
— Z : nombre de charge des ions (en pratique on prendra Z = 1).
Nous donnons ici les équations utilisées dans le code Tokam-3D [60, 61], sous forme adi-
mensionnées, pour un domaine en 3D :

NM, — J,

1 1
ON + BV = +jgv%xVNWb=B<FNV%+VNP“Qp>b

+V, - (DyV.N)+ Sy

1 VN
8tMv + MvV”Mv + E (v¢77 X VMU) . b + (1 + Z)% + VJ_ . (DMUVJ_MU) + SMU
1 B¥_ J, B3 1

+ V.- (DwV_ W)
nNJy =V N — NV,
V2 In(N)
2 1

W=V, + L,
o V|| = b-V représente le gradient dans la direction paralléle aux lignes de champ magnétique
et V) = V-V, le gradient dans la direction perpendiculaire. Ces équations s’appliquent a un
plasma isotherme, ot on a supposé que les valeurs des températures ioniques et électroniques
étaient toutes les deux de 1. La vorticité W est une quantité qui vient du bilan de conservation,
sous I’hypothése d’un plasma quasi-neutre.

Les conditions aux limites & considérer sont les suivantes :

— Au niveau de U'interface avec la zone de coeur (1 = rpin) -

o-N =0
I1/]\[ - Mcentre
oW =0

Orcby = 0.
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— Au niveau de la paroi (r = rpe.) :

O-N =0
I'/N = Mpur
oW =0
Or¢y = 0.
Au niveau du limiteur, en 75, <7 < Tpee, ¥ = =5 — % :
M, = +v2
Y6y = T In(N) = nNV2 (1 - et =)
W =0 ol ¥ = angle poloidal.
— Au niveau du limiteur, en 7y, <7 < g, ¥ = =5 + %9 :

M, =—V?2
Y6y = T In(N) +nNV2 (1 - et 0)
09W = 0.

Dans toute la suite, on négligera les termes liés & la courbure. Les modéles jouets étudiés
seront en 1D ou en 2D, sauf pour le chapitre 2 qui donne un résultat théorique valable pour
n’importe quelle dimension (finie) d’espace.

Au niveau de la téte du limiteur (r = 7y, € [—(7 + 69)/2, (=7 + 09)/2]), le choix
des conditions aux limites & considérer fait encore débat parmi les physiciens. Il apparait
que dans la réalité, cette zone ot la paroi du limiteur est exactement paralléle aux lignes de
champ magnétique est de surface nulle. Cela pourrait étre pris en compte par une téte de
limiteur arrondie. Ce choix complique la géométrie du probléme sans apporter d’intérét pour
les difficultés que 'on va étudier par la suite. On choisira donc un limiteur dont la téte est
plate et, pour le potentiel électrique, on imposera des conditions aux limites similaires & celles
imposées au niveau de I'interface avec la paroi (r = ryaz).

Dans ce manuscrit, on n’étudiera que les équations pour le transport de N, T" (chapitre 2)
et pour le potentiel électrique ¢, (chapitre 4).

Plusieurs simplifications seront faites dans la suite des calculs.

Notamment, les effets liés & la courbure seront négligés : x représentera ’abscisse curviligne
le long d’une ligne de champ magnétique et y correspondra & la direction radiale. On peut
lier y et le rayon mineur r par la relation y = rypqe — 7.

Les géométries utilisées ainsi que les systémes d’équations étudiés paraitront simplistes
car il a été choisi de développer et tester les méthodes proposées sur des modéles jouets.
L’intérét du travail de recherche réside dans 1’analyse théorique et numérique des propriétés
mathématiques des méthodes proposées. L’application de ces méthodes a des configurations
réalistes a été laissée a d’autres équipes de recherche impliquée dans le projet ANR ESPOIR,
notamment aux membres du M2P2 et du CEA de Cadarache (Service d'Interactions Plasma-
Paroi).
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1.5 Généralités sur les conditions aux limites étudiées dans les
chapitres 2 et 4

Dans cette section, nous allons briévement expliquer 'origine physique des conditions aux
limites qui seront étudiées par la suite. Dans la modélisation des nombreux phénoménes de
type écoulement d’un fluide on remarque qu’il est souvent assez aisé de déterminer ce qu’il se
passe & l'intérieur du domaine physique. Ainsi de nombreux modéles ont déja été proposeés.
En revanche, la modélisation de ce qu’il se passe a la frontiére du domaine de calcul est
souvent plus délicate. Dans la thése de Tamain [60], il est expliqué comment sont obtenues
les conditions aux limites grice & des arguments physiques.

Concernant le nombre de Mach M = T'/N, il est précisé que plusieurs parties apparaissent :

— La pré-gaine, qui est une zone de la scrape-off layer qui est loin de 'interface plasma

limiteur.

— La gaine qui est une couche & l'interface plasma-limiteur dont 1’épaisseur est de ’ordre

de 10~5m.

Pour la condition & la limite V¢, = V| In(N) & nN+V2 (1 —eAr=%1) au bord du limiteur,
on observe une différence de potentiel électrique entre le limiteur et la limite gaine/pré-gaine
lorsque la paroi n’est traversée par aucun courant, cette différence sera notée A. Pour le
courant électrique, nous avons une condition de courant d’entrée/sortie du limiteur. Cette
condition aux limites de type Fourier non linéaire est préférable & la condition de Dirichlet
¢y = A dans la direction paralleéle aux lignes de champ. En effet, cette derniere condition,
moins réaliste, n’est pas adaptée aux simulations de turbulence.

Dans la partie sur I’étude du modéle 2D pour le potentiel électrique (chapitre 4), il apparait
aussi des conditions sur le haut du limiteur o1t les lignes de champ magnétique semblent étre
paralléles & la frontiére haute du limiteur. Or, dans la réalité, les lignes de champ magnétique,
de par leur courbure, ne sont presque jamais exactement paralléles & la partie haute du
limiteur. Néanmoins le fait de négliger cette courbure permet d’avoir une configuration simple,
c’est a dire avec domaine et obstacle rectangulaire. Nous allons donc nous placer dans ce cadre
confortable. Il a été mis en évidence dans [45] que des conditions aux limites de type Neumann
homogeéne sur le haut du limiteur permet d’obtenir un systéme bien posé, moyennant des
conditions aux limites adaptées sur les autres parois.

1.6 Les méthodes de type domaines fictifs

Dans cette section, nous allons présenter briévement certaines méthodes de type domaines
fictifs. Il ne s’agit pas de donner une description détaillée de chacune d’entre elles mais seule-
ment de donner en quelques phrases les principales idées utilisées.

Les méthodes de domaines fictifs sont adaptées a des domaines originels dont la forme est
complexe ou variable avec le temps. L’idée générale de ce type de méthode consiste a inclure
le domaine originel § C R? dans un domaine plus grand QF de forme simple. Tl faut alors
étendre les équations définies sur Q a QFf. L’objectif étant de bien retrouver les conditions
aux limites recherchées au bord de 2. Contrairement aux méthodes classiques, les méthodes
de domaines fictifs peuvent étre appliquées a des maillages dont la forme ne dépend pas du
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F1GURE 1.5 — Un exemple de domaine avec son domaine fictif

domaine originel. L’avantage est que ’on fait ’économie de l'usage d’un mailleur et que ’on
peut facilement traiter le cas de frontiéres qui évoluent dans le temps.

La premiére utilisation d’une méthode de type de domaines fictifs remonte au travaux de
Hyman [36]. Le nom de méthodes de domaines fictifs (fictious domain method) a été introduit
par Saul’ev [57].

Les premiéres méthodes de frontiére immergée ont été introduite par Peskin, en 1972 [48],
afin de modéliser le coeur humain et les flux sanguins. Etant donné la forme complexe du
domaine de calcul et son évolution temporelle, on comprend l'intérét d’éviter d’avoir a faire
un maillage adapté a l'interface & chaque pas de temps.

Pour présenter briévement ces méthodes, nous allons considérer un probléme continu sous
la forme générale :

Pu=f dans €2
O(uyn) =0 sur IN.

L’inconnue est u: Q ¢ R — RPD.

1.6.1 Les méthodes sur le probléme continu

Dans cette situation, on modifie directement le probléme continu pour forcer la condition
a la limite de I'obstacle.

L’intérét est que la méthode est indépendante du schéma numérique utilisé. Outre la
liberté sur le choix du schéma numérique, on peut alors établir les estimations d’erreur en
restant dans le cadre du probléme continu. Un autre intérét est que dans certaines situations,
la méthode peut avoir un sens physique : par exemple considérer I’obstacle comme un milieu
faiblement poreux et utiliser la loi de Darcy [11, 43].
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1.6.1.1 Meéthodes d’interface fine ou méthode d’interface diffuse

L’idée de ces méthodes est de forcer la condition a la limite au niveau de la frontiére.
C’est le type de méthode mis en place par Peskin [48, 49|, initialement pour la simulation
d’écoulements sanguins au niveau du coeur humain. Dans ce probléme, la position de la
frontiére du domaine originel évolue dans le temps.

On suppose que 'inconnue u représente ici la vitesse du fluide. On modélise ici ’écoule-
ment par des équations de Navier Stokes incompressibles adimensionnées. Vp représente ici
le gradient de pression.

On a ainsi un systéme d’équations couplé dont les inconnues sont la vitesse du fluide u et
la position des différents points de la frontiére X :

ou+ (u-V)u—Au+Vp=£f+f, dans Q
V-u=0

fy(t,x) = /89F(t,x) d(]|lx — X(t)[|2) do (X(t)) sur 09

0X(0) = [ u(t.30) 8% = X (1)) dx.

ou ¢ est la mesure de Dirac, f, correspond au terme de force lié¢ au bord. Le terme de force F
est donné par une loi d’élasticité de type Hooke sur la frontiére 0f).

On utilise alors deux maillages, un pour la frontiére et un maillage cartésien sur lequel
est représenté le domaine fluide. Le maillage de la frontiére est donné par des points Xy,
kEed{l,.. K}

En pratique, dans [48], la mesure de Dirac §(||x — X(¢)||2) est approché par une fonction
continue dont le support est inclus dans les cellules proches de la frontiére : on parle de
méthode de frontiere diffuse, voir aussi les travaux de Ramiére et al. [52].

1.6.1.2 Meéthodes de pénalisation volumique

Pu. + %é(ug) =f dans Q.

Ol © est une fonction RP — RP choisie de maniére & bien représenter les conditions aux
limites en 9. En général, on choisit ® de maniére a ce que, notamment, @ (upn) = 0 si et
seulement si (':)(ug‘ag) = 0. x est la fonction caractéristique de I'obstacle, c’est a dire qu’elle
vaut 1 dans QF\ Q et 0 dans Q. ¢ désigne le paramétre de pénalisation, en pratique, on prend
ek 1.

Il est aisé de comprendre formellement comment la pénalisation arrive & imposer les condi-
tions aux limites : On admet que les termes Pu. et f, sont bornés indépendamment de e.
Alors, %(:)(ug) doit aussi étre borné indépendamment de . Donc, dans I'obstacle QF \ Q, on
x = 1, on s’attend a ce que (:)(ue) tende vers 0 quand € — 0. Par continuité on doit donc se
rapprocher de la vraie condition a la limite ®(upq) = 0 pour £ < 1. Bien évidemment, cette
explication n’est en aucun cas une démonstration rigoureuse.

Les avantages de ces méthodes apparaissent alors :
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— Possibilité d’utiliser des maillages simples, cartésiens, non adaptés a la frontiére du
domaine de calcul. Une programmation facile & mettre en place.
— Utilisation possible de solveurs rapides, méthodes pseudo spectrales par exemple [37],
ou de méthodes multigrilles dans le domaine étendu QF.
L’inconvénient de ces méthodes est I'ajout d’une erreur de pénalisation qu’il faut contréler. Le
lecteur soucieux d’avoir une introduction aux aspects théoriques et numériques des méthodes
de pénalisation volumique & travers le cas d’école de I’équation de propagation d’onde pourra
regarder les travaux de Paccou et al. [46]. L’avantage de la méthode de pénalisation est la
facilité de sa programmation. Outre ’ajout d’une erreur de pénalisation éventuelle, un des
inconvénients de cette méthode est la résolution d’ordre 1 en espace sans adaptation locale
du maillage. Pour récupérer ’ordre 2 en espace, il faut en général faire appel & une méthode
de type cut-cell ou ghost-cell (présentées ci-dessous), voir par exemple [56].
Angot a proposé plusieurs méthodes de domaines fictifs avec ou sans condition de saut
dans le cadre de problémes elliptiques avec des conditions de type Dirichlet, Neumann ou
encore Fourier [8]. Il s’agit, selon les cas de pénalisations volumiques ou surfaciques.

1.6.2 Les méthodes sur le probléme discret

D’autres méthodes s’appliquent directement & partir de la discrétisation utilisée. Nous en
présenterons ici deux : les méthodes ghost-cell et cut-cell.

1.6.2.1 Meéthode de type ghost-cell

Cette méthode est en apparence assez naturelle. Elle consiste & ajouter des cellules dites
ghost-cells, c’est & dire des inconnues au voisinage de la frontiére 0f) et & les utiliser pour
prolonger le schéma numérique utilisé a l'interface. Les valeurs des inconnues dans les ghost-
cells sont déterminées a partir d’une interpolation (le plus souvent linéaire ou quadratique),
en utilisant les conditions aux limites.

Cette méthode ne nécessite pas de reformuler les équations du modéle, ni de modifier le
maillage.

Pour plus de détails, on pourra se reporter a 'article de Tseng et Ferziger [62].

1.6.2.2 Meéthode de type cut-cell

Conservation des flux. Les méthodes de type cut-cell, sont particuliérement adaptées aux
lois de conservation. D’out l'intérét de les utiliser avec des schémas de type volumes finis.
L’idée consiste a considérer initialement maillage cartésien, puis & couper en deux les cellules
traversées par 'interface 9€), comme cela est représenté sur la figure 1.6. La coupure de chaque
cellule se fait selon une approximation linéaire de la frontiére 0€2. Le prix & payer pour cette
méthode est d’accepter d’avoir des cellules de forme trapézoidale le long de la frontiére 02
et d’adapter le schéma au niveau de ces cellules. Par contre I’adaptation du maillage ne se
fait qu’au voisinage de la frontiére 0€). 1l est ensuite possible d’implémenter directement les
conditions aux limites sur les cellules tronquées. Pour une introduction accessible, on pourra
regarder les travaux de Johansen et Cotella [39] qui présente la méthode Cartesian grid
embedded boundary method.
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O\ Q

FIGURE 1.6 — Un exemple de domaine avec son domaine fictif pour une méthode de type
cut-cell.

Par contre, la méthode cut-cell permet d’avoir des schémas conservatifs, ce qui rend 1'uti-
lisation avec un schéma volumes finis particuliérement intéressante.
Ces méthodes permettent alors de retrouver une convergence au maillage spatial d’ordre

1.6.3 Mise en évidence de la présence de couche limite pour une méthode
de pénalisation

Les méthodes de pénalisation peuvent générer une couche limite & 'interface domaine
originel /domaine fictif, qui se trouve souvent du coté de la zone pénalisée. La couche limite
provient en général d’une incompatibilité entre les équations dans le domaine originel €2 et
le probléme limite dans la zone pénalisée QFQ (probléme de perturbation singuliére). Les
chapitres 2 et 3 sont dédiés a la recherche de couche limite due aux méthodes de pénalisation
utilisées. Il est donc important de lister briévement les moyens de recherche de couche limite
qui sont & notre disposition. Le principe de chaque méthode consiste & estimer I’erreur due &
la pénalisation et étudier son comportement asymptotique quand ¢ tend vers 0.

Pour T’étude des couches limites, sur le plan théorique, il est possible de :

— Faire un calcul explicite (pour un probléme simple) [15, 40, 46]. En pratique, cette
technique n’est envisageable que pour des problémes trés simples, par exemple, pour un
probléme elliptique ou hyperbolique 1D linéaire. Par ce biais 14 il est aussi possible de
mesurer ’épaisseur de la couche limite.

— Faire des estimations de 'erreur due a la pénalisation, comme cela a été fait dans les
travaux de Angot et al. [11].

— Etudier un développement asymptotique de type BKW, pour ensuite faire une estima-
tion de l'erreur. C’est ce qui a été fait pour des problémes d’écoulement incompressible
visqueux [22| ou pour des systémes hyperboliques, voir les travaux de Fornet [30] et de
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Kheriji [41]. En général, une couche limite est caractérisée par la présence de variables
en x/c* dans les termes du développement asymptotique. Ainsi la construction d’un
développement asymptotique sans la présence de telles variables est généralement un
signe de ’absence de couche limite, méme si une estimation d’erreur rigoureuse a partir
du développement asymptotique ad hoc reste encore a faire.

Sur le plan numérique, le but est de rechercher les manifestations des couches limites
que 'on trouve sur le probléme continu. La méthode consiste & étudier 'erreur due & la
pénalisation : ¢’est & dire que ’'on résout le systéme d’équations aux dérivées partielles pénalisé
avec notre schéma numeérique préféré (idéalement d’ordre 2 ou plus, si on veut étudier I'erreur
H*'). Puis on évalue |[Wpume — Wimite|| pour une norme L? ou H' ou H2... L'erreur de
discrétisation doit étre négligeable devant ’erreur due & la pénalisation d’oil I'intérét d’avoir
un schéma d’ordre élevé. De plus, la couche limite ayant une faible épaisseur caractéristique,
généralement tendant vers 0 quand ¢ — 0 [40, 43|, il est nécessaire d’avoir un maillage
suffisamment fin pour avoir plusieurs points dans la couche limite. On pourra trouver des
exemples de mise en oeuvre dans les travaux de Paccou et al. [46] et de Liu et Vasilyev [43].

1.7 La problématique de la thése

Dans cette thése on traite deux problématiques liées au plasma de bord et notamment
& la prise en compte des conditions aux limites. Premiérement, il s’agit de proposer des
méthodes de pénalisation volumique pour des modéles hyperboliques. Le but étant de trouver
une méthode de pénalisation ne générant pas de couche limite & I'interface plasma-limiteur. Il
convient de noter que la littérature de méthodes de pénalisation volumique pour des problémes
hyperboliques quasilinéaires n’est pas trés abondante. Dans un travail de Kheriji [41], on
trouve un premier résultat de méthode de pénalisation générant une couche limite. Dans le
cas semilinéaire, une méthode de pénalisation sans couche limite a été proposée par Fornet
et Gueés [30].

Le deuxiéme probléme concerne le modeéle du potentiel électrique. La faible résistivité
paralléle  du plasma méne & un probléme fortement anisotrope dont la condition a la limite
au niveau du limiteur tend formellement vers une condition de Neumann et rend le systéme
sous déterminé. Pour le traitement de problémes fortement anisotropes, des schémas de type
Asymptotic-Preserving (AP) ont été proposés |26, 27]. L’étude de ces méthodes a été réalisée
sur des problémes elliptiques linéaires. Le travail réalisé dans ce manuscrit a consisté & adap-
ter ces méthodes & des modéles non-linéaires 1D et 2D du potentiel électrique et d’étudier
théoriquement et numériquement leur comportement quand la résistivité paralléle n tend vers
0.

1.8 Reésumé des résultats obtenus

Les travaux réalisés dans cette thése concernent trois thémes faisant chacun ’objet d'un
chapitre. Tout d’abord, dans le chapitre 2, on s’intéresse a un systéme hyperbolique modélisant
la densité du plasma N et sa quantité de mouvement I' dans un domaine spatial a une dimen-
sion. Plusieurs méthodes de pénalisation sont testées numériquement sur ce modeéle simple.
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FIGURE 1.7 — Représentation du domaine 1D contenant le plasma de bord. x correspond a
une abscisse curviligne le long d’une ligne de champ magnétique. L’aspect périodique vient
du fait que sans le limiteur, la ligne de champ magnétique formerait une boucle fermée.

L’une d’entre elles permet d’éviter ’apparition de couches limites a 'interface plasma-limiteur.
Cette derniére pénalisation apparait relativement naturelle et s’étend & des systémes hyper-
boliques, plus généraux y compris dans le cadre d’un espace multi-dimensionnel. Le chapitre 3
est consacré a la preuve rigoureuse de ce résultat, pour un systéme hyperbolique non-linéaire
avec un bord non caractéristique et des conditions aux limites maximales dissipatives. Pour le
4¢me ot dernier chapitre, on se focalise sur le probléme du potentiel électrique. Le traitement
de ce probléme nécessite la mise en place de méthodes préservant "asymptotique et permet
de faire quelques essais sur la pénalisation de conditions de type Robin non-linéaires.

1.8.1 Résumé du chapitre 2

Dans ce chapitre, on se concentre sur 'exemple d'un systéme hyperbolique modélisant
la densité N et la quantité de mouvement I' du plasma. Le nombre de Mach du plasma est
donné par la grandeur M =T'/N. La figure 1.7 présente le domaine de calcul considéré.

Le systéme hyperbolique & résoudre s’écrit :

ON + 0,I' = Sy dans | — 0.4,0.4]

N
M(.,04)=1-¢
M(.,—0.4) = —1+¢,

F2
o' +0, | —+N| =S
L+ < + > r (1.1)

ol £ est une constante strictement positive proche de 0, qui permet de nous assurer que le
systéme (1.1) est bien posé. Trois méthodes de pénalisation volumique ont été testées dans
ce travail. Premiérement les tests numériques pour une méthode introduite par Isoardi et
al. |37] font apparaitre un pic a proximité de Uinterface plasma-limiteur, quand le maillage
est suffisamment raffiné par rapport au paramétre de pénalisation . La seconde méthode
de pénalisation étudiée impose de maniére naturelle M ~ +(1 — &) ainsi que la condition
N = 0 par pénalisation des deux champs. Ce dernier choix vient du fait que le limiteur est un
obstacle solide qui ne contient pas de plasma. On observe alors la formation de couches limites
qui ralentissent la convergence de la solution du probléme pénalisé (et donc approchée) vers
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Zone pénalisée |Domaine originel
d d
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Ficure 1.8 Schéma du domaine spatial

la solution du probléme limite. L’étude de ce systéme donne un cas d’école d’observation de
couche limite par une étude de convergence. La troisiéme pénalisation étudiée est la suivante :

N + 0,I' = Sy dans ]0, 0.5[

r? r 1.2
atF—i-agc(—FN)-i—X(—N):Sp, 12
N e\l1—n

ot le domaine de calcul est ]0,0.5], le plasma correspondant a la zone |0,0.4] (on a pris que
la moitié du domaine de la figure 1.7). x est la fonction caractéristique du limiteur qui est le
domaine [0.4,0.5[. Cette pénalisation, outre sa simplicité, a 'avantage de ne pas présenter de
couche limite & 'interface plasma-limiteur. Ce résultat a été pressenti avec un développement
asymptotique formel en € et confirmé par des tests numériques.

On a ensuite étendu cette méthode de pénalisation au domaine | — 0.5, 0.5[ entier, c’est a
dire avec deux bords pour le limiteur et des conditions aux limites périodiques en x = —0.5
et x = 0.5. La contrainte étant d’éviter tout transfert d’information d’un bord & 'autre du
limiteur. Pour cela, il suffit de multiplier le terme de transport par une fonction réguliére «
qui s’annule dans une région au centre du limiteur et qui vaut 1 dans le plasma.

1.8.2 Résumé du chapitre 3

Le chapitre 3 vise & étendre et montrer rigoureusement les résultats sur la méthode de
pénalisation sans couche limite présentée dans le chapitre 1.1. Le domaine originel est le
demi-espace Ri et présenté dans la figure 1.8.

On s’intéresse alors & un systéme hyperbolique non linéaire symétrisable, d’inconnue u :
| — Ty, T[xRL — RP :

d
dpu(t,x) + > A, Ju(t, x))d;u(t,x) = f(a(t,x),u(t,x)) (t,x) €] —Tp, T[xRL
=
©(a(t,x',0),u(t,x,0)) = 0 (t,X) €] = Tp, T[xR*!
U|t<0 = 0

(1.3)
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Les coefficients de ce systeme A; (j € {1,...,d}), , © sont supposés de classe Co(RP" x
RP). La fonction a est H>®(] — Ty, T[xR%) et a valeurs dans RP', elle peut notamment
représenter les différents paramétres physiques du modéle considéré. On suppose que a est
dans H®(]—Tp, T[xRZ) et reste dans un voisinage suffisamment petit de 0 noté Y € RP". On
admet de plus que la fonction © utilisée pour les conditions aux limites vérifie les hypothéses
suivantes : (y,U) € RD" x RP, V4O (y,U) a un rang constant noté p. De plus, pour tout
y € RP" ©(y,0) = 0.
Le caractére symétrisable du systéme se traduit ici par 'existence d’un symétriseur S(y, U)

tel que, quelque soit (y, U) € RP" x RP :

S(y,U) est symétrique et définie positive, uniformément en (y,U) quand U est dans

un voisinage U C R de 0 et quand y est dans un voisinage ) de 0. Cela signifie qu’il

existe € > 0 tel que, pour tout (y,U) € Y x U, et pour tout W € RP,

(S(y, U)W. W) >¢|[W|?,

ou (,) et ||.|| désignent respectivement le produit scalaire et la norme euclidienne sur
RP.

— Pour tout j € {1,...,d}, S(y, U)A;(y, U) est symétrique.

On suppose par ailleurs que le probléme est non caractéristique, ce qui signifie que pour
tout (y,U) € RP" x RP | 1a matrice Agy(y, U) est inversible.

Enfin, les conditions aux limites sont supposées étre maximales strictement dissipatives,
c’est a dire : Pour tout y € ), §'il existe U € RP tel que O(y,U) = 0, alors la forme
quadratique vérifie les propriétés suivantes :

37 > 0,Vy € RP' YW € ker V,O(y,0), (S(y, U)Ay(y, UW, W) < —71|| W|2.

— dimker V,,©(y, 0) est maximale pour la propriété ci-dessus.

On réalise ensuite le changement d’inconnue u = H(a, v) , o la fonction H est choisie
de maniére a ce que la condition a la limite @(a(t,x’,0),u(t,x’,0)) = 0 soit équivalente a la
condition Pv(¢,x’,0) = 0, ou P est la matrice de projection orthogonale sur le sous espace
vectoriel R? x {0}P~P (écrite dans la base canonique de RP).

Pour alléger les notations, on considére que la dépendance des paramétres en la fonction
a est implicite.

Le résultat principal est alors le suivant :

Théoréme 1.8.1

On suppose que les hypothéses décrites dans cette section pour le probléeme (1.3) sont
vérifiées.

Il existe un temps fini T > 0 et €9 > 0 tels que, pour tout € €]0,&q], le probléme
pénalisé

d
e Y& oy + XM e =) (00 € - BTERS
i=1 :

u€|t<0 = 07

ou

M) u. = (S(us)) ™ (VB (H (u)") PH (),
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admet une unique solution u. € HY(] — Ty, T[xRL) N WL°(] — Ty, T[xR?) qui est
réguliére de chaque coté de Uinterface x4 = 0 : u.py,~0 € H™(] — To, T[xRi) et Ugpy, <0 €
H>®(] — Ty, T[xR%).

Quelque soit s > 0, Perreur de pénalisation satisfait I’estimation suivante, quand €
tend vers O :

Jue — uHHS(]—TO,T[xRi) =0(e).

A notre connaissance, c’est le premier résultat théorique d’absence de couche limite pour
une approximation par pénalisation d'un probléme aux limites hyperbolique quasilinéaire.

Pour prouver ce théoréme, on reformule d’abord le systéme (1.4) pour I'inconnue v, telle
que u. = H(a, v.). On considére ensuite un développement asymptotique pour construire une
approximation de la solution v, du probléme pénalisé de la forme v, = Zﬁio e™V™. On fait
ensuite des estimations sur la solution du probléme pénalisé reformulé en ’écrivant sous la
forme v, = v, + ew. La difficulté générée par le caractére non linéaire du probléme est alors

traitée par un schéma itératif de type Picard.

1.8.3 Résumé du chapitre 4

Aprés avoir réalisé les travaux sur les méthodes de pénalisation pour des systémes hyper-
boliques linéaires, les chercheurs du CEA/IRFM impliqués dans I’ANR ESPOIR ont proposé
un autre probléme : Le traitement des équations liées au potentiel électrique ¢ en bord de
tokamak.

Pour traiter ce probléme au mieux, nous avons choisi de nous placer dans un cadre ma-
thématique o I'existence et l'unicité de la solution ont déja été prouvées [45]. Le domaine
considéré est présenté dans la figure 1.9. Le modéle adimensionné étudié est alors le suivant :

- 8,583(;577 — Tllaiqﬁn + V@ﬁgﬁn =S dans ]0,T[xQ

OyOnlt=0 = OyPini dans €
Bybyisyy =0 et Oydm, =0 sur J0, T[xX L5
Drbfot, =1 (1 - eA*%\z:*L) sur |0, T[x {—L}x]0, [
Ontrgjems, = = (1= =Pt ) sur 0, T[x{L}x]0, 1|

condition de périodicité de ¢y, sur |0, T'[x{—0.5,0.5} x]I, 1],

ol v correspond & la viscosité ionique perpendiculaire et A désigne le potentiel de référence a
I'intérieur du limiteur. Le paramétre n correspond & la résistivité du plasma dans la direction
paralléle aux lignes de champ magnétiques. En pratique, 7 est trés faible (de I'ordre de 107).
Cela induit une forte anisotropie dans le probléme d’évolution : Quand 7 tend vers 0, le
probléme (1.5) devient mal posé car sous-déterminé.

Cela peut déja se constater en se restreignant & une version 1D et linéarisée du probléme
ne considérant que la direction paralléle z. C’est pour cela que 'on va d’abord étudier ce cas
simple pour se concentrer ensuite sur une version non linéaire du probléme 1D. Cela permettra
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d’introduire certaines méthodes de type asymptotic-preserving qui sont notamment utilisées
pour les équations régissant les plasmas.

Sur le probléme 1D, on fera également des essais de méthode de pénalisation en reprenant
'idées proposée par Bensiali et al. [15] : elle consiste simplement & ajouter la condition a
la limite dans I’équation en la multipliant par un coefficient de la forme X; y désignant la
fonction caractéristique d’une partie du limiteur et e correspondant toujours au parameétre de
pénalisation. Les résultats numériques obtenus par cette méthode de pénalisation semblent
encourageants mais restent a étre prouvés rigoureusement dans le cadre non linéaire.

Pour le probléme 2D (1.5), une autre méthode de type asymptotic-preserving est proposée.
Elle est basée sur la décomposition micro-macro décrite dans un article de Degond et al. pour
un probléme elliptique linéaire anisotrope |27|. La méthode consiste a poser ¢, = p, + ngy
avec Ozpy = 0 et gy,—_r, = 0. L'idée étant ensuite de ne pas chercher le couple (p,, ¢,;) mais
de calculer (¢, qy).

On commence par donner les définitions des espaces que ’on va utiliser par la suite :

Définition 1.8.1

On définit les espaces de Hilbert suivants :
V= {f € H'(Q), 35]” € L*(Q), f périodique sur {—0.5,0.5}x]1,1[,0, f = 0 sur Z”}
avec pour produit scalaire :

!
(f,v)yv = / O f Ozv dydx + / agf (951) dydx + 2/ Jia=L Vjz=1, dY.

Q Q 0

— L’ensemble des éléments de V' a dérivée par rapport a x (direction paralléle) nulle :
Vo = {f € Hl(Q),agf € L*(Q),0,f = 0 dans Q,0,f =0 sur Z”}.
On Ile munit du produit scalaire :
l
(oo = [ 02 ofvdude+2 [ fomy v,y do

- H={feL*Q),0,f € L*(Q)} avec son produit scalaire (pour € > 0) :

<f,v>H:e/ﬂfvdydl‘—i-/ﬂayfayvdydx.

— L’ensemble des éléments de H a dérivée par rapport a x (direction paralléle) nulle :
Hy = {f € HY(Q),0,f € L*(Q),0,f = 0 dans Q}, muni du produit scalaire (pour
€e>0):

<f,v>H0ze/vadyda:—i—/Qayfayvdyde’.

- Q={feL?Q),0.f € L*(Q), fiu=_r, = 0 sur |0,1[}, muni du produit scalaire :

<f7U>Q = /anf Oy¥ dyda:
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On remarque que Vo — Hp — Vj forme un triplet d’évolution (voir la définition dans
l'annexe A).

On définit aussi :
Définition 1.8.2

L’espace A est I'espace des fonctions ¢ telles que :
— ¢ € L*(0,T;V).
— 9yp € L*(0,T; L*(Q)).
- 0,0 € 12 (0.T3{f € H(),82f € L3(Q), fis, = 0}).
d2¢ € L>(0,T; L*(Q)).
~ 09 € L*(0,T; V).
0y0rp € L*°(0,T; L*()).
L’espace A | est 'espace des fonctions ¢ telles que :
- ¢ € L*0,T; V).
— Oy € L>(0,T; L*(Q)).
0, € L2 <O,T; {f € H\(Q),02f € L*(9),0,f = 0 dans Q, fi5; = 0}).
~ 02 € L>(0,T; L*(92)).
Op € L2(0,T; V).
— 0y0rp € L>(0,T; L*(12)).

On fait alors les hypothéses suivantes :
Hypothése 1.8.1

1. S, 8yS, 855, 8t5, 835 S LQ(QT) et HSHL‘”(QT) < CS et HS\t:THLOO(Q) < Cs avec CS a
définir.

2. ¢ini € HY(Q).

3. ¢ini est indépendant de x, c’est a dire 0y Pin; = 0.

1
4. /Sltzo dydzx = / afj@‘m dyd:c+2/ (1—eA*¢i”“I:L> dy.
Q Q 0

Les deux derniéres hypothéses sont des conditions de compatibilité de la condition initiale.
Pour le modéle 2D, on démontre alors le théoréme de convergence suivant :

Théoréme 1.8.2
Sous I’hypothése 1.8.1, le probléme : trouver (¢y, q,) € A x L*(0,T,Q) tel que
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(Ve e HY(J0,T),Yv € V N H2(Q),Yw € Q,

T T
/ Oybyje—1 Oyv dydx&(T) — / / Oybyjt—1 Oyv dydx & dt + / / Oy Oxv dydx Edt
Q 0 Q 0 Q

T T 4l
+ 1// / 35% ajv dydz & dt + / / (1 - eA_‘%\w:—L) Vjp——r, dy § dt
o Jo o Jo

T fl
+ / / (1 — eA*‘z”ﬂz:L) Vjp=r dy§ dt = / OyPini Oyv dydz £(0)
0o Jo Q

T
+/ /Svdydm{dt
0 Q

T T
77/ / Oy Opw dydx § dt = / / Op @y Opw dydz & dt
0 Jo 0 JQ

admet une unique solution. De plus, on a la convergence faible de ¢, et g, : o
dn—d0 et g —q dans LQ(QT)
Ot (¢o,q0) € A x L*(0,T,Q) est I'unique solution faible de
Yv eV,
jt/ﬂﬁy% dyv dydx + /anqo Ov dydx + v /Q 65(150 8511 dydx .

l
+ 2/ (1 —exp(A —¢p)) vdy = / Svdydx
0 Q
Oy @ojt=0 = OyPini-

Enfin, on a Pestimation d’erreur suivante :

Pn — dollLro,7;2(0)) < c(Qr, @0, S, A) /1.

Des tests numériques en 2D ont également été réalisés pour vérifier la convergence du
probléme faible (1.6) quand 7 tend vers 0. On observe que la matrice utilisée pour la ré-
solution de chaque pas de temps, dans le schéma numeérique, a un conditionnement bornée
indépendamment de 7.
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FIGURE 1.9 — Représentation en deux dimensions de la zone contenant le plasma de bord.
L’axe = correspond & une abscisse curviligne le long d’une ligne de champ magnétique (de
direction b). I’axe y correspond & la direction radiale.



Chapitre 2

Pénalisation pour un probléme
hyperbolique non linéaire 1D
modélisant la densité et le moment du
plasma de bord

Ce chapitre étudie le probléme de la pénalisation du systéme hyperbolique modélisant la
densité N et la quantité de mouvement I, le long d’une ligne de champ magnétique (voir, par
exemple, [37, 60]). Une premiére méthode de pénalisation a été introduite par Isoardi et al. [37]
avec des résultats encourageants. Mais I’étude numérique est incompléte et le fait que le flux
soit coupé a l'intérieur du limiteur pourrait générer une mesure de Dirac proche de 'interface
plasma-limiteur. Dans ce chapitre, aprés une étude numérique de la pénalisation proposée par
Isoardi et al., on modifie les conditions aux limites du systéme N, I' pour s’assurer qu’il soit
bien posé. On étudie ensuite une seconde méthode de pénalisation afin de montrer comment
se manifeste une couche limite. Dans la derniére section, on propose une troisiéme méthode

de pénalité incompléte qui ne génére pas un tel phénoméne. Par la suite, on notera M = N
le nombre de Mach.
Ce chapitre reprend les travaux d’un article publié Journal of Computational Physics [10].
Le systéme de lois de conservation 1D, pour la densité du plasma N et pour le flux (ou

moment) I' est le suivant :
O¢N 4+ 0, I' = Sy dans | — L, L|

r
Ol + 0y <N+N> =5r

(2.1)

Ici, le domaine contenant le plasma correspond a = €| — L, L], voir la figure 2.1. Le bord
correspond a l'interface avec le limiteur, un obstacle matériel placé dans la scrape-off layer

32
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et destiné & protéger les autres parties de la paroi du tokamak. Dans les membres de droite,
Sy et Sp sont des termes sources fixés. On remarque que le systéme (2.1) correspond aux
équations d’Euler isentropique avec une loi de pression linéaire. La premiére équation de (2.1)
correspond a la conservation de la quantité de matiére tandis que la seconde représente la
conservation du moment.

Pour une fonction suffisamment réguliére, on peut réécrire (2.1) sous forme non conserva-
tive :

at<¥>+ 0r2 1F 890(?):(?;) (t,z) eRIx]— L, L[ (22)

Les valeurs propres de la matrice

0 1
1—M? 2M

sont Ay = M — 1 et Ay = M + 1. Ainsi, comme A; < Ao, le systéme est strictement
hyperbolique.
Les conditions aux limites : On rappelle que selon des considérations physiques, la scrape-
off layer est séparée en deux régions ayant des régimes bien différents :
— Une région éloignée du limiteur, la pré-gaine, ou le plasma est neutre et o la valeur
absolue du nombre de Mach |M| = |I'/N| est inférieure a 1.
— Une fine couche a l'interface plasma-limiteur, dont I'épaisseur est de I'ordre de la lon-
gueur de Debye, soit 10~%m, oil le plasma est électriquement chargé. Dans cette région,
le nombre de Mach vérifie | M| > 1, plus précisément, ona M >lenx~ Let M < —1
en x ~ —L.
A premiére vue, il serait naturel d’imposer les conditions aux limites M = 1 en x = L et
M = —1en x = —L, comme c’est le cas dans (2.1), puisque d’aprés la physique, M = +1 a
proximité de l'obstacle (critére de Bohm). C’est ce qui a été choisi par Isoardi et al. dans [37].
Mais, dans ce cas, comme les valeurs propres sont Ay = M — 1 et A, = M + 1, on en déduit,
qu’a Pinterface plasma-limiteur, une des valeurs propres est nulle (c’est a dire que la frontiére
est caractéristique) et l'autre correspond & une onde sortante (que ce soit en x = L ou en
x = —L). Ainsi, le probléme (2.1) ne satisfait pas les conditions pour appliquer les théorémes
usuels assurant 1'existence et 'unicité de la solution d’un probléme hyperbolique : le nombre
de conditions & chaque bord (= 1) n’est pas égal au nombre d’ondes rentrantes (= 0).
Afin de travailler avec un systéme hyperbolique bien posé, dans les parties 2.2.2 et 2.3, nous
avons légérement modifié les conditions aux limites du probléme (2.1) : on impose M =1—¢

enz =Let M =—-14+&en o= —Lou > 0 est une constante fixée, proche de 0. Le
probléme bien posé s’écrit alors :
N + 0, I' =Sy dans | — L, L|

r
Ol + 0y <N+N> =57

M(,L)=1-¢
M(,—L)=—-1+¢.

(2.3)
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F1GURE 2.1 — Schéma de la scrape-off layer, proche de la paroi du tokamak. L’abscisse cor-
respond aux coordonnées curvilignes le long d’une ligne de champ magnétique.

2.1 Présentation du schéma volumes finis utilisé

Plusieurs schémas volumes finis ont été testés pour résoudre le probléme hyperbolique
(2.3), voir [12]. On ne présente ici que celui qui a été retenu.

2.1.1 Le schéma volumes finis utilisé

Pour rechercher une éventuelle couche limite générée par les méthodes de pénalisations
étudiées dans la suite, deux points doivent étre vérifiés :

1. Le maillage doit étre suffisamment fin de maniére & avoir plusieurs cellules dans la couche
limite éventuelle, afin que le schéma puisse résoudre correctement I’équation dans cette
zone.

2. L’erreur de discrétisation doit étre plus faible que 'erreur due & la pénalisation afin de
pouvoir mesurer la convergence en fonction du parameétre de pénalisation. Pour cela on
choisit de considérer un schéma d’ordre 2.

Le schéma retenu est un schéma de type VF Roe avec variables non conservatives (VF
Roe ncv), présenté par Buffard, Gallouét, Hérard [20]. L’ordre 2 est atteint en utilisant des
limiteurs de pente de type minmod et une discrétisation en temps de type RK2 TVD.

On va donner ici une bréve présentation du schéma VF Roe ncv [20]. On considére un
systéme hyperbolique sous forme conservative :

Opu+ 0,f(u) =0
v+ 0:E(w) (2.4)
u‘t:O = Uyp.
L’espace est discrétisé selon avec un maillage (7;) uniforme (v,,1 — 2, 1 = Axz), voir
2 2

la figure 2.2. L’intervalle |z, 1,2, 1[ représente une cellule du schéma volumes finis (aussi
2 2

appelée volume de controle), désignée par la suite comme étant la cellule 4, son centre est
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FIGURE 2.2 — Représentation du maillage utilisé.

noté x;. Dans cette partie, on ne s’intéresse pas au traitement des conditions aux limites au
bord du domaine de calcul.
La suite (ui+l) approche la valeur moyenne de la solution du chaque cellule, c’est a dire que
2

uH%(t) A f}xi_%mﬁ%[u(t,x) dz. On intégre alors I’équation (2.4) sur l'intervalle ]xifé,xH%[ :

o /}x r u(., z)dz + f(u("xi-i-%)) —f(u(,z;_1))=0

2

(2.5)

On introduit alors la notion de flux F(u;, u;11) =~ f(u(.,z,,1)). Le flux F est supposé étre
2

consistant, c’est & dire que pour tout v € R¥, F(v,v) = f(v). On peut alors écrire le systéme
discrétisé en espace :
o + F(u;, ui41) — F(u—1,u;) =0

u,(0) —/ uy(z) de. (2.6)
]xi_%:xi+%[

Pour le calcul de F, on utilise le schéma VF Roe avec variables non conservatives (VF
Roe ncv) proposé par Buffard et al.. La méthode consiste & approcher la valeur de la solution
de (2.4) a l'interface entre les cellules i et i + 1, c’est & dire en Tipls puis & injecter cette
approximation dans la fonction f pour avoir le flux numérique F(u;,u;41). Pour calculer
la solution approchée de (2.4) en Ti 1, on va considérer le probléme de Riemann linéarisé
suivant, aprés avoir fait un changement d’inconnue de maniére a faciliter la résolution du
systéme :

y = w(u) changement d’inconnue : w C!-diffécomorphisme

Aly) = (Vw ()" VE(w  (y)) VW (y)

1
= 5 (w(ui) + w(ui))
Trouver y tel que :

Oy + A(y)awy =0

w(u) siz <z 1
y(0,2) = . ’
w(uit1) si x> Tip1

<

La méthode VF Roe ncv choisit alors comme flux F(u;,ui41) = f(w(y(07,z,,1)).
2
Ce flux est conservatif, par contre ce schéma n’est pas entropique. C’est pourquoi, dans les
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endroits ot la condition d’entropie pourrait ne pas étre respectée, on remplace le flux par un
flux de type Rusanov : c’est une correction entropique de type Rusanov.

Le schéma ainsi obtenu est d’ordre 1, or, pour rechercher une couche limite éventuelle il est
nécessaire que U'erreur de discrétisation soit faible comparée a l'erreur due a la pénalisation : on
considére donc une extension de ce schéma a 'ordre 2, obtenue grace a une reconstruction de
type MUSCL (Monotone Upwind Scheme for Conservation Laws, voir [63]) avec des limiteurs
de pente de type minmod. La méthode de reconstruction de type MUSCL permet d’avoir une
méthode d’ordre 2 en réutilisant la fonction flux numérique F du schéma VF Roe ncv.

La fonction minmod est définie de la maniére suivante :

1
Y(a,b) € R? minmod(a, b) = §(sign(a) + sign(b)) min(|al, |b]).

Si a et b sont des vecteurs, on applique la définition ci-dessus composante par composante.
On définit ensuite les quantités suivantes :

vt € R, (ui)2(t) = minmod (UiH(t;x_ “i(t)7 u;(t) —6;@'1(75)> '

On donne alors les reconstructions de u au bord des cellules 7 et 7+ 1 :

w1 (1) = wi(t) + 7(uz)x(t)

ox

U1, () = w1 (t) = 5 (Wir1)o(t).

Finalement, la discrétisation spatiale avec la reconstruction MUSCL s’écrit :

1
dyu; + 5t (F (uH%,l’ ui+%,r> —F (uif%,lv up%,r» .

Bien évidemment, si on veut tirer profit de la discrétisation spatiale d’ordre 2, il est nécessaire
d’utiliser un schéma en temps d’ordre 2, au moins : on choisira le schéma de Heun, aussi appelé

RK2.
2.1.2 Application a notre probléme :

Maintenant, on va appliquer le schéma VF Roe au probléme hyperbolique initial rappelé

ici :
r
N 0
r — 4+ N 0
N +
N(0,z) \ [ No(z)
r'o,z) )\ To(x) /-
Les reconstructions de N par la méthode de type MUSCL est définie par

ox ox

Ny = NP+ (NP et NP = NJ' = (V7). (2.7)
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ou
NIy — NI' NI'— N
(N :minmod( ”1596 O e 1>.

FZZ, 'Y, sont définis de la méme maniére.
Pour le changement d’inconnue w, on fait le choix naturel de considérer les variables non
conservatives N et M =T'/N.
Les reconstructions pour le nombre de Mach M sont définies & partir des reconstructions

obtenues pour N et I':
e r

1 1
n B 1+§7l n . i+35,r
Mi-‘r%,l = N” et M’i-ﬁ-%,?” = N” . (28)
it1,0 it

Les flux numériques f]’\Lf il et f{le sont calculés de la maniére suivante :
A3 13

Si la correction entropique n’est pas nécessaire :

n n n
( Nyi+3 ) _F (( Ni—&-%,l ) ( Ni—i—%,r ))
n - Fn ) n
T+l i+l it3.r
[ +
F?+l(tn’mi+%) (2.9)

2

NI VAL + n + _ An + Ned + 4 ‘
o NH%(tn,xH%) et I’H%(tn,xH%) = Mi_'_%(tn,$i+%)Ni+%(tn,l’i+%) sont évalués en
résolvant le probléme de Riemann linéarisé ci-dessous (¢ est une valeur strictement
plus grande que t,) :

" PO M) (N V) Niia
2
) + Ly -y ) .
(0
~\ 0

43,1 i+35,r
~ n n
Ny (b, @) N1 i
i+1\"n _ it3, : ) i+, . '
~ = sl < xiaq et Sl > xiaq.
( M7 (t, ) My " M "
\ 29

1
7,+§,T'

n n

1
z+§,r

Si la correction entropique est nécessaire, c¢’est a dire si MZ" -1<0<L M:—H -1

+%,l 37
n n 1 n n n n
(et Mz‘+%,l # Mi+%,7«) ou si Mz‘+%,l +1<0< MH%’T +1 (et Mz’+%,l # Mi+%7r), le flux
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numérique est remplacé par un flux de Rusanov :

n n n
F,H—% F l Fz—&-i,r

n n
Fi—i—%,l +Fi+

S [CIN ) o
=3 Iy it+i.r |
N7 + Nn2 +Nn _|_N" +gr
H—é,l H—g,"‘
1 n n Nizz’ _Nﬁé’l
+ 3 (max {|Mi+%,l" |Mi+%ﬂ"‘}+1> e, -,
ity ity

Au final, la version d’ordre 2 du schéma complet, c’est a dire avec la discrétisation spatiale
et temporelle, s’écrit :

NI = N S (= T ) SR

S L (‘;t (s — f2iy) +otSE,

1 ot ot
N?“=:<A¢”+Aw>—2&y(ﬁ£+ ~ TN R fﬁF;> = (S + SwEh

n+l _ 1,n n ot 1,n n ot n+l
L (F +I7) — 26:1;<f1",i+ f“ 1+fpl+ fp’i%>+2(51—‘z +Sri )
ou 'exposant 1,n représente ’étape intermédiaire du schéma de Heun.

Dans cette section, on ne s’intéresse pas au traitement des conditions aux limites, cela
sera abordé dans la suite du chapitre. Nous avons choisi d’utiliser un pas de temps adaptatif

ot
dt en utilisant une condition de type CFL : max;{|M"| + 1}6— =0.8.
x

2.2 Les premiers essais de pénalisation

2.2.1 Une premiére méthode de pénalisation

Une premiére méthode de pénalisation pour le systéme (2.1) a été développée par Isoardi
et al. [37]. Cette méthode est basée sur des considérations physiques telles quune densité
nulle de plasma dans le limiteur et une condition basée du le critére de Bohm au bord. On
note y la fonction caractéristique du limiteur, c’est & dire que x(z) = 1 dans le limiteur et
x(z) = 0 ailleurs. € représente le parameétre de pénalisation et a une valeur proche de 0.

N + 0,T + %N = (1—x)Sw

2.11
@r+u—ma<w 210

~ + N) + %(r ~ NM) = (1 — x)Sr.
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Formellement, a I'intérieur du limiteur, on s’attend & avoir tous les termes de I’équation bornés

indépendamment de €, notamment KN et K(F — NMj). Comme 0 < ¢ < 1, cela imposerait,

a l'intérieur du limiteur, N = 0, et 1§ R~ N]\jo. Ici, on rappelle que My vaut 1 en x = L et —1
enx = —L.

On constate que, dans ’équation sur la quantité de mouvement, le flux a été coupé a
I'intérieur du limiteur, ce qui peut poser des problémes du point de vue mathématique. En
effet, le sens du terme

(1— )8, (1; + N> . (2.12)

n’est pas clair car il peut impliquer de faire le produit d’'une mesure par une fonction dis-
continue, ce qui n’est pas défini au sens des distributions. Bien évidemment, on n’exclut pas
qu’un autre sens puisse étre attribué a ce produit. Les tests numériques ont montré qu’avec
un maillage suffisamment fin, on observe la formation d’un pic sur le nombre de Mach M
dés les premiers instants situé & l'interface plasma-limiteur, voir la figure 2.4. Ce pic peut
étre vu comme une mesure de Dirac et confirmerait les difficultés & donner un sens au terme
(2.12). Pour l'interprétation de cette singularité, il se pourrait que le systéme admette des
solutions généralisées dans I'esprit de Bouchut-James [18] (voir aussi Poupaud-Rascle [50] ou
Fornet-Gues [29]) comme des solutions mesures, qui peuvent éventuellement faire apparaitre
des mesures de Dirac a l'interface. Cette solution généralisée pourrait ensuite étre sélectionnée
par le schéma numérique utilisé. Les tests numériques ont été réalisés en choisissant les termes
sources Sy et St de maniére a ce que les fonctions suivantes soient solution de (2.1) dans la
zone correspondant au plasma :

N(t,z) =exp <(11(;_(1tlil))

e —z?
I'(t,xz) = sin (ﬁ) exp <016(t+1)> .

La solution exacte est ainsi réguliére et n’a pas de singularité a l'interface plasma-limiteur.
On a fait une étude de convergence au maillage en faisant fixant e = 1073. On constate alors
qu’un pic se forme trés rapidement & proximité de 'interface. On remarque aussi que, plus le
maillage est fin, plus le pic apparait tot et plus il est proche de Uinterface. Les valeurs de | M|
pour ce pics atteignent rapidement des valeurs de I'ordre de 10% causant ainsi des problémes
de stabilité du schéma a cause de la condition CFL.

Le deuxiéme probleme de cette méthode de pénalisation est le fait qu’au bord du domaine
plasma, on a M(+L) = £1. En effet, cela fait qu’a l'interface plasma-limiteur on n’a aucun
champ rentrant. Ainsi les conditions (suffisantes) des théorémes usuels nous garantissant
I’existence et I'unicité de la solution de (2.1) ne sont pas satisfaites.

2.2.2 Pénalisation des deux champs

Cette section présente une autre pénalisation qui génére des couches limites. Cette section
a alors plusieurs buts :
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N(—=x)=N(x)
F(_X)K_F(X)

limiteur

0 04 05 X

FIGURE 2.3 Représentation du domaine de calcul z € [0,0.5]. La zone o se situe le plasma
correspond a z € [0, L], avec L = 0.4.

Un but plutot pédagogique : montrer les effets d’une couche limite en étudiant la conver-
gence quand le paramétre de pénalisation € tend vers 0.
— Etudier le comportement d’une méthode qui a été utilisée pour un modéle plus complet
prenant en compte les transferts d’énergie, voir [47].
Cette méthode de pénalisation impose non seulement M =~ My mais aussi N ~ 0 dans le
limiteur. Cette derniére condition permet de prendre en compte ’absence de plasma dans le
limiteur. On rappelle que le critére de Bohm vient du raccordement continu de deux physiques
différentes, [60] :
— Celle de la pré-gaine ou on a |M| < 1.
Celle de la gaine ou |M| > 1.
Afin d’avoir de chaque c6té un champ rentrant, on choisit d’imposer comme condition aux
limites M(t,+L) =1—&et M(t,—L) =41 —¢& , avec 0 < £ < 1. Le systéme hyperbolique a
résoudre est alors (2.3). Ici on teste la pénalisation naturelle suivante :

N + 0,T + %N = (1—x)Sw
) (2.13)

aT + 0, (I;V + N> + %(F ~ NM) = (1 - x)Sr,
sur le domaine de calcul décrit dans la figure 2.3. On pose My =1 — €.

La différence de (2.13) avec (2.11) est que 'on a retiré le terme en (1 — ) qui posait
probléme. Ce probléme a donc une unique solution réguliére jusqu’a un certain temps T,
pour des données initiales compatibles, voir par exemple [55] et le théoréme 11.1 du livre de
Benzoni-Serre [16].

Pour le test numérique de la convergence de la pénalisation, on essaie d’imposer les solu-
tions manufacturées suivantes :

2 2

N(t,z) = exp (01(;?—1—1)) ['(t,z) = Mpsin (%) exp <016_(tx—i—1)> . (2.14)

Ainsi les termes Sy et St sont choisis de maniére a ce que les fonctions ci-dessus vérifient les
équations du systéme hyperbolique (2.3).
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M versus x

A O e e ++
T

T T T T T T T T T T T T T
0.390 0.395 0.400 0.405 0.410
X

M versus x

4

:WFHFFFFH#—H—%W%H—H%H—HH—H—FH—F&H;;H +

P e L b e

T T T
0.390 0.395 0.400 0.405 0.410
X

M versus x

+

T T T T T T T T T T i 4 4 ¥ f 4 4 ¥ ¥
0.390 0.395 0.400 0.405 0.410

FIGURE 2.4 M en fonction de x avec ¢ = 1073, avec trois maillages différents (respectivement
1280, 2560 et 10240 volumes de controle) en utilisant la pénalisation proposés par Isoardi et al.
[37]. Les calculs sont arrétés quand maxeqy,.. sy ([M]']) > 10, ce qui correspond aux instants
suivants : ¢ = 0.008822, ¢t = 0.004107 et t = 0.0015834. Le domaine de calcul correspond &
[0,0.5] et L = 0.4 (interface plasma-limiteur). Une condition de symétrie a été imposée en
x = 0 (voir la figure 2.3).
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q - O
0.5+ K 0.5+
0 T T T T T T T T T T T T T T T 0.0 L R E I B N B N B N R N L —
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
x x
(a) En gras : N(1,z), En gris : I'(1,z), En noir : (b) En gras : N(1,z), En gris : I'(1,z), En noir :

M(1,z),e =0.1 M(1,z),e =10"°

Fiqure 2.5  Tracé de N, I' et M en fonction de x & t = 1 avec la méthode de pénalisation
des deux champs en prenant ¢ = 0.1 (courbe de gauche) et ¢ = 1075 (courbe de droite).
Les lignes continues représentent les solutions approchées et les pointillés correspondent a la
solution de référence (¢ = 10720). Le limiteur est la zone x € [0.4,0.5]. Le pas du maillage en
espace est 6x = 107°.

Le tracé des solutions numériques sur la figure 2.5 montre que les solutions limites ob-
tenues, quand ¢ tend vers 0, ne sont pas celles imposées dans (2.14) mais est proche de 1
au niveau de l'interface plasma-limiteur (bien que My = 1 — £ = 0.9). On observe le méme
résultat pour £ = 0.01. Ghendrih et al. [31] expliquent ce phénomeéne comme une conséquence
de la contrainte N ~ 0 dans le limiteur. Au final, on ne connait pas la solution limite exacte
(quand € — 0) de (2.13). Pour les tests numériques la solution de référence est celle donnée
par le schéma pour ¢ = 10720,

L’étude de convergence quand € tend vers 0 permet de mettre en évidence une couche
limite, capturée par le schéma numérique quand le pas en espace est suffisamment petit. Le
schéma, volumes finis d’ordre 2 finis utilisé pour la résolution de ce probléme est donné par
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o B

B K —
P

Li-error for N and dN/dx

epsilon

(a) Erreur L' pour N dans le plasma (+), N
dans le limiteur (x), 8, N dans le plasma (o) et
0N dans le limiteur (x)

Li-error for Gamma and dGamma/dx

epsilon

(c) Erreur L' pour I dans le plasma (+), I" dans
le limiteur (x), 8,1 dans le plasma (o) et 9,T'
dans le limiteur ()

L2-error for N and dN/dx

epsilon

(b) Erreur L? pour N dans le plasma (+), N
dans le limiteur (x), 8, N dans le plasma (o) et
0z N dans le limiteur (x)

L2-error for Gamma and dGamma/dx

epsilon

(d) Erreur L? pour I dans le plasma (+), I dans
le limiteur (x), 8,I" dans le plasma (o) et 9,
dans le limiteur (x)

FIGURE 2.6 — Erreurs pour N, 9N, I' en 9,I" en norme L' et L? avec la pénalisation
des deux champs, cf. (2.13). Les lignes en pointillés représentent respectivement les courbes

1 1

e72,e74,el/% /2 et e. Le pas du maillage en espace est dz = 102,
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les équations suivantes :

ot
N.l’” _ NZn - or ( ]T\LM.J,.% - f]?\lhl_%) +(5tSJT\LM,

' 142y
ot Y
n __ _ n _ n X n
i — H ox ( i+ fr,w%) + 5t€ Mo + 0t 5S¢
1
1+ 6t—
eN;”
L in ot 1n 1n ot it
Nn-‘rli 7(Ni +N2-n)_% fN,i‘l‘%_fN,i—%—i_fKT,iJr%_ ]:L,’Z;% +5( ]T\Lfyi—‘rSN’i )
L an ot 1,n 1n % 5t -
ot — §<Fi - 20 (fra”é B fFvi*% + fﬁzﬁr% B fch,i*% + &EMO . 9 (St +Sri)
i = - ’
1+ &W

ou les flux numériques f ., f{', 1 sont calculés a partir des formules (2.7)-(2.10). L’expo-
b 2 b

2
sant 1,n correspond a l’étape intermédiaire du schéma de Heun. Pour améliorer la stabilité

du schéma, les termes pénalisés sont traités de maniére implicite.

L’étude numérique présentée ci-dessous consiste a rechercher des symptémes des couches
limites apparaissant sur le probléme continu (2.13). Il est ainsi nécessaire d’avoir une approxi-
mation numérique suffisamment précise pour éviter autant que possible la présence d’artefacts
dus a la discrétisation.

La couche limite se traduit par un taux de convergence non optimal quand le paramétre de
pénalisation ¢ tend vers 0. Habituellement la taille de la couche limite décroit quand € tends
vers 0. La figure 2.7 indique une décroissance de la taille de la couche limite en O(e) pour
N. Ainsi, quand la couche limite est trop petite, comparée a la taille du maillage, c’est & dire
quand il y y trop peu de cellules dans la couche limite pour la résoudre, le schéma numeérique
ne capture pas la couche limite et la vitesse de convergence semble étre optimale. En présence
d’une couche limite, I’étude de la convergence en ¢ (a dz fixe) fait d’abord apparaitre un
taux de convergence non optimal puis la décroissance de I'erreur de pénalisation redevient en
O(e) quand la couche limite est trop fine pour étre capturée par le schéma. De plus, comme
M = 1 a l'interface plasma-limiteur, il n’y a presque pas d’onde allant du limiteur vers le
plasma, ce qui explique pourquoi les erreurs dans le plasma (c¢f. la figure 2.6) semblent étre
indépendantes du parameétre de pénalisation €.

Dans la figure 2.6, on remarque que :

— Pour la norme L' dans le limiteur, la vitesse de convergence est en O(e).

— Pour les normes L' et L? dans le plasma (pour N,T,d,N,d,I), les erreurs restent

presque constantes, comme expliqué plus haut.

Les erreurs de 9, N et 0,I" en norme L? augmentent quand e diminue jusqu’a € ~ 1072,
Quand ¢ devient plus petit que 1072, on retrouve la convergence en O(e).

Pour ¢ > 107°, lerreur en norme L? est en O(/€) avant de revenir & O(g) quand
e <1075,
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size

epsilon

FIGURE 2.7 — Estimation de I’épaisseur de de la couche limite en fonction du parameétre de
pénalisation e. L’épaisseur a été calculée avec la relation x5, — 0.4 ot Jp; = max{|N* — 0] <
0.01|N70|} et I le numéro de la cellule, dans le plasma, qui est en contact avec l'interface
plasma-limiteur. En fait, zj,, est la valeur de la coordonnée curviligne (z) ott N atteint 99%
de la valeur qui lui est imposée a l'intérieur de la zone pénalisée (0 pour la pénalisation
considérée dans le paragraphe 2.2.2). Cette définition de la taille de la couche limite a été
faite par analogie avec le cas d'un flux laminaire autour d'une lame plane (voir par exemple
la page 30 de [58]). Les lignes en pointillés représentent respectivement les courbes gl/4 gl/2
et €. Le pas en espace est dz = 1075.
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Les résultats obtenus pour les deux méthodes pénalisation de cette section permettent d’en
montrer les inconvénients. La premiére méthode décrite par Isoardi fait apparaitre un pic sur
le nombre de Mach M, quand le maillage est suffisamment fin par rapport au paramétre
de pénalisation. La seconde méthode pénalisant présentée dans cette sous-section crée une
couche limite au niveau de l'interface plasma-limiteur.

2.3 Une méthode de pénalisation optimale pour les conditions
aux limites modifiées

Nous allons maintenant décrire une méthode de pénalisation pour le probléme (2.3) ne
générant pas de couche limite & U'interface plasma-limiteur. Pour transformer (2.3) en un
probléme avec des conditions aux limites de Dirichlet, on effectue le changement de variable
décrit ci-dessous :

a(t,x) = In (N (¢, x))

. ~ I'(t,x)
ot x) = ) ~ Mo

Ainsi le systéme hyperbolique (2.3) devient :

oyt + (Mo + 0)0,t 4+ 0,0 = Sy
Oy + Dait + (Mo + )0, = S5
Condition & la limite : 9(.,L) =0

Conditions initiales : @(0,.) et ©(0,.) sont connus.

dans R} x] — oo, L[ (2.15)

Le fait d’avoir une condition au bord de type Dirichlet homogéne nous permet d’utiliser une
méthode développée dans le cas semi-linéaire par Fornet et Gués [30]. Bien que le systéme
(2.15) soit quasilinéaire, et non pas semilinéaire, la méthode peut étre étendue a ce probléme.
Une des particularités intéressante de cette pénalisation est ’absence de couche limite &
I'intérieur du limiteur.

Pour la partie théorique, le domaine x €]0, L[ a été remplacé par x €] —oo, L[. Cela permet
d’éviter ’avoir & prendre en compte une condition & la limite en x = 0, ce bord n’étant pas
I’objet de notre étude puisqu’il ne s’agit pas d’une interface plasma-limiteur.

On suppose désormais que My = 1 — £ avec £ €]0, 1[. La région contenant le plasma est
x < L et le limiteur correspond & z > L. x correspond toujours a la fonction caractéristique
du limiteur. Le systéme pénalisé s’écrit alors :

Ot + (Mo + )0y + 0,0 = Sg

By + Byt + (Mo + 9)0y + XLM —=S;  dansRf xR (2.16)
€ Mo

4(0,.) et (0, .) sont donnés.
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En revenant aux variables conservatives, le probléme pénalisé s’écrit :

2 x [ T dans R} x R (2.17)
o'+ 0, | =+ N Zl—-—-N| =5
(AN <N+ >+€<MO ) r

Comme N > 0, le systéme (2.16) est équivalent a (2.16) pour des solutions lipschitziennes.

2.3.1 Développement asymptotique en ¢

Nous allons ici montrer qu’un développement asymptotique d’une solution réguliére peut
étre construit jusqu’a n’importe quel ordre et sans termes de couche limite. Pour cela, on va
chercher des solutions de (2.16) de la forme :

S eUn(ta) siz<I
VE> 0,z R, dc(t,z)~{ T
Ze"U”’+(t,m) siz>L

+oo
ZE"V"7_(t, x) siz<L

0e(t, ) ~ -
Zs”V”*(t, x) six > L.

On suppose que :
— La condition initiale est réguliére et compatible en x = 0.
My €]0,1] ne dépend pas de (¢, x).
~ V(t,x) € RY x R, (My + VO*E(t,2))? < 1.
Vn e N, U (,L)=U""(,L) et V» (.,,L) =V™*(,L).
— Les termes sources S; et S; ne dépendent pas de 4 et TF.
La premiére et la quatriéme hypothése ne sont pas essentielles : on pourrait éventuellement
considérer que My varie continument en restant toujours en dehors d’un voisinage de 0.
La troisiéme hypothése indique que la continuité de @, et ¥, est aussi reportée sur chaque
terme du développement asymptotique.
En injectant les développements de @, et U, dans le probléme pénalisé (2.16), on obtient :

+oo +oo +oo

> enount —i—MOZs”@ UM+ VY Fo, U E + Zena vt =g,
n=0 n=0 n=0 k=0 n=0

+oo “+o0o +oo +00 +oo

Z Enatvn,i + Z gnaxUn,i + MO Z gnaxvn,i + Z Envn,i Z gkaka,i
n=0 n=0 n=0 n=0 k=0

nvni
Zn 05 — S{;.
My
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En réarrangeant les termes, on a :

+00 n

Y e (@U”’i + Mpd, U™ + 3 VEEa, U axvnvi) = S; (2.18)
n=0 k=0

1 v0 & + + LN b kot whLE

- n n, ., mn, M0, n, +9, n—k, ) = S;.
2t €<6tV + QU™E + Mpd, Ve + ) VEE, v X S

n=0 k=0
(2.19)

On va construire U™*, V™* en étudiant les équations données par chaque puissance de €
dans les équations (2.18) et (2.19).

Termes en ¢!

Siz > L:On aalors Vo (z) =0 (pour tout = > L).

On considére ensuile hypothése de récurrence : (H") : Vk < n, (UM% VF%) sont bien
définies sur |0, T[xR et V™ 1+ est bien définie sur |0, T[x]L, +oo|, pour une certaine valeur
T > 0 indépendante de n.

Initialisation (H°) : On regarde les termes en £V

Pour z < L (x(x) =0) :

A partir des équations (2.18) et (2.19), on obtient :

U™ + Moo, U~ + Vo9, U +9,V0™ = 5; dans R} x] — oo, L[
VO™ +0,U% + Mpd, VO~ + V%9,V = §;
VO=(,,L) = VO>T(,L) = 0 (par continuité).

Comme la frontiére plasma-limiteur est non caractéristique et que la condition a la limites
est maximale dissipative, le systéme est bien posé et posséde une unique solution réguliére
jusqu’a un temps T suffisamment petit, pour des conditions initiales compatibles, voir ’article
de Rauch [55] ou le théoréme 11.1 du livre de Benzoni-Serre |16]. La définition des conditions
aux limites maximales strictement dissipatives est donnée dans le chapitre 3 de cette thése et
peut aussi étre trouvée dans le chapitre 3 de [16]. On peut donc construire U%~ et VO~ sur
10, T[x] — o0, L.

Maintenant, considérons le cas x > L (x(z) =1) :

En prenant en compte le fait que V(¢,z) € R* x R}, VO (¢t,2) =0, on a :

HUOT + Mod, U = S5 dans ]0, T[x] L, +oc] (2.20)
U0’+(-,L) _ UO,*("L) (221)
0,4 Vit
o _g VI 2.22
0, U s A (2.22)

Le probléme hyperbolique linéaire (2.20)-(2.21) est bien posé (comme My > 0, il y a un
champ rentrant pour une condition a la limite), donc U%* et V1F sont bien définis sur
10, T[x]L, +oo].

Etape de récurrence (H"™ 1) = (H")) :
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On admet H" !, grace aux termes en " des équations (2.18) et (2.19), on obtient :
n
atUn,:t + Moc‘)xU”’i + ka,:taxUn—k,:l: + axvn,:t -0
k=0

OV™E + 0, U™ + Mod, Ve + ) VEEY VR -
k=0

Siz <L (x(x) =0): On a alors, d’apres (2.18) et (2.19) :

U™ 4+ Moo, U™~ +ka O, U k= L 9, V™ =0
k=0

V™ + 0, U™ + My, V™™ + Z vEk=-g, vk = 0.

En ne gardant que les termes d’ordre n dans le membre de gauche, on obtient :
V™ = Zv’f AU dans ]0, T[x] — oo, L|

OV + UM 4 (Mo +VOT) VT = ka L VR

U™ (0,.) et V»7(0,.) sont connus

VT (, L) = V™T(., L) (dapres (H"!) est la continuité en = L).
(2.23)

Comme ce systéme est & nouveau & bord non caractéristique et a une condition a la limite
maximale dissipative, on en déduit qu’il est bien posé. De plus, comme le systéme (2.23) est
linéaire, les solutions sont définies sur I'intervalle de temps ]0, T'[ donné précédemment, pour
des données initiales compatibles [16, 55]. Donc U™~ et V™~ existent et sont uniques.

Pour z > L (x(z) =1) :

Dans ce domaine, V%+ =0 et V™% sont connus. A partir des équations (2.18) et (2.19),
on obtient :

QU™ + Moo, U™+ Vo, U ht 4 9, vt =0
k=1
n—1
atvn;&- + 8$Un’+ + M08$Vn’+ + Z Vk;&-awvn—k,-&- +
k=1

LA+

= 0.
My
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Donc U™™ est I'unique solution du probléme hyperbolique linéaire bien posé suivant :

U™t + Mod, U™t = = " VhFo, U bt — 9, V™t dans |0, T[x]L, +oo
k=1

U™7(0,.) est connu

U™t (.,L)=U"™" (., L) par continuité.

On calcule ensuite V5 grace a la relation :

n—1
VLt = M, (@V”’* + 0, U™ + M0, Vi 4+ V’“v+azvn—kv+> :
k=1

La propriété (H™) est donc vérifiee. C’est a dire que 1'on peut construire un développement
asymptotique de la solution jusqu’a n’importe quel ordre n.

A ce moment, on a construit un développement de Taylor en € sans couche limite. En effet,
I’absence de couche limite peut en général déja étre pressentie en construisant une solution
a partir d’un développement asymptotique en € ot on n’a pas besoin de faire intervenir des
variables du type x/e®. Le fait de réussir cette construction suggere fortement ’absence de
couche limite pour (2.17), mais ce n’est pas une preuve compléte.

Le chapitre 3 a pour objet de montrer rigoureusement que la méthode de pénalisation
appliquée ici (dans un cas plus général) ne génére pas de couche limite au voisinage de
I'interface plasma-limiteur.

Dans ce cas particulier, en remplacant la condition initiale par des solutions réguliéres
définies dans le passé (¢t < 0), on peut affirmer que le probléme pénalisé (2.17) admet une
unique solution N, I'. La proposition 2.3.1 énoncée ci-dessous est démontrée pour un probléme
plus général dans le chapitre 3.
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Proposition 2.3.1

Le probléme pénalisé

I? x (T

Nii<o et I'y<o sont connus et solution réguliére

dans | — Ty, T[xR (2.24)

de I'équation ci-dessus,
admet une unique solution N,I'. De plus, on a ’'estimation d’erreur suivante :
0,—
Vs €N, [[N = N""|lgs(=10,1[x]—o0,L)) = O()
0.—
1T =T s -1, 7[x] 00,1 = O(E),

otr (N%=,T%7) est solution de

HNY +9,I% = NO—5;
ro.-—*
A" + 8, <N0’_ + NO"> = N%"S; + T 5;
FO,f(. 0) dans] — T07T[><] — OO,L[
]\70’_7(-:0) =My surxz=0
Nﬁzo = Ny« et P%’;O = I'|4<o sont connus.

(2.25)

La différence entre les systémes pénalisé s (2.17) et (2.24) est le remplacement de la condition
initiale par 'hypothése de solution réguliere dans le passé | — Tp, 0[. Cela permet d’éviter les
problémes liés & la compatibilité de la condition initiale avec la condition a la limite. D’un
point de vue physique, cela signifie que le plasma existait déja pour ¢ < 0 et ne fait que
continuer & évoluer pour t > 0.

Dans la suite du chapitre, on étudie numériquement les propriétés de cette méthode de
pénalisation.

2.3.2 Tests numériques pour un limiteur & un seul coté

A partir de lexpression (2.17), il est facile d’utiliser le schéma volumes finis développé
dans la section 2.1 pour en calculer les solutions. Pour éviter les problémes de stabilité, le
terme pénalisé a été traité de maniére implicite. Ainsi la discrétisation en temps utilisée est
une variante semi-implicite du schéma de Heun. Ici, V}* et I'}" représentent toujours les valeurs
moyennes de N et I' le long de la cellule ¢ (dont le centre se situe en x = idx). N1 €t
’ 2

17}2‘ 41 désignent les flux numériques calculés par le schéma VF Roe ncv avec reconstruction
’ 2

de type MUSCL pour N et I', a l'instant ¢,, et & l'interface de la cellule i et ¢ 4+ 1, voir les
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formules (2.7)-(2.10). L’exposant 1, n correspond a I’étape intermédiaire du schéma de Heun.

NI N = S (Fiy = Feiey) + 0 5R
T % (Fips = F i) +OEENI" 45t 5,
;
1+ 5tMLO€
NPH = S(NM N - 2% (f}v’j;é ~ TN TR - f&i;> + % (Shvs+ Sut)
e 2T =55 (R A s - oy ) ot s Y s v s
1+ &Mioé

Le domaine de calcul est toujours [0,0.5] avec une condition de symétrie en z = 0 et la
zone contenant le limiteur est [0.4, 0.5], voir la figure 2.3. Deux cas tests sont présentés ici :
— Le premier cas avec la solution réguliére 2.14, qui est rappelée ici :

N(t,z) = exp <0-16(t+1)) T(t,x) = Mysin (%) exp (0.16}?11)) .

ainsi, Sy, St sont choisis de maniére & ce que les fonctions ci-dessus soient solutions
de (2.3) pour = € [0,0.4]. Grace a cette solution manufacturée du probléme limite
(quand € — 0), I’évaluation de l'erreur et Panalyse de convergence est facile a réaliser.
Le calcul de la solution manufacturée dans le limiteur se fait a4 partir de 'ordre 0 du
développement asymptotique de la solution du probléme pénalisé.

— Et avec des solutions stationnaires, comme cela a été étudié dans [37].

On analyse la convergence quand le paramétre de pénalisation € tend vers 0 grace a un
maillage en espace uniforme de pas 6z = 107°. Les erreurs ont été évaluées en norme L' et
L? pour N, 9, N, T et 9,I', dans le but de retrouver un taux de convergence optimal en O(¢).

Le maillage choisi est adapté au domaine contenant le plasma, au sens ou linterface
plasma limiteur se situe & l'interface de deux cellules volumes finis. Ce point mérite d’étre
discuté. En effet, d’un cété ce choix est nécessaire pour avoir une convergence au maillage
d’ordre 2 et ainsi avoir une erreur de discrétisation suffisamment faible pour étudier I'erreur
due a la méthode de pénalisation. De 'autre c¢6té, ce choix retire tout intérét des méthodes
de pénalisation ot le but est d’avoir un maillage indépendant du domaine originel. Il convient
de préciser que les tests numériques réalisés ici visent a étudier les propriétés du probléme
continu.

Une des difficultés majeures pour 'implémentation de la pénalisation est le choix d'une
condition a la limite en z = 0.5 (& U'intérieur du limiteur), nécessaire pour faire fonctionner le
schéma. Comme seule 1’équation sur I' est pénalisée, on a besoin d’une condition aux limites
transparentes pour V. Pour les tests numériques, les conditions a la limite z = 0.5 proviennent
de I'ordre 0 du développement asymptotique. Pour x > 0.5, dans le schéma numérique, N;*, I'}*
sont remplacés par, respectivement Npc (ty, z;), Npo(tn, ;) Mo (tn, x;) ot Npo et Mpe sont
donnés par les expressions (2.26)-(2.27) précisées ci-dessous :
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1. 1.0
0.9 e 0.9
0.8 0.8

0.7 N 0.7
0.6 e e 0.6+

0.5 0.5
0.4 0.4
0 3: 0 3:
0.2: 02:

0.1+ 0.1+

T T T T T T T T T T T T T T 0.0 LA L A A B N R N T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

(a) En gras : N(1,x), Gris : I'(1, z), Noir : M(1,z), (b) En gras : N(1,z), Gris : I'(1, z), Noir : M(1,z),
=01 e=10"°

FIGURE 2.8 — Tracé de N, I' et M en fonction de x avec la méthode de pénalisation sans
couche limite (& gauche pour ¢ = 0.1 et a droite pour ¢ = 107°), voir I’équation (2.17).
Les traits pleins représentent la solution approchée par le schéma numérique tandis que les
pointillés correspondent a la solution exacte (a la limite e — 0). Le limiteur correspond a la
zone x € [0.4,0.5]. Le pas en espace est dx = 107°.

Sif< r—04
- Si
My
Npe(t, o) = exp(U(t, 2)) = exp (=6.25(x — tMy)?) (2.26)
MBc(t,$) = V0’+(t,ZL’) + My = M. '
sinon
1
Npc(t,z) = exp(U%T(t,z)) = exp | ——————
t— Tt +1 (2.27)

MBc(t, .’E) = V0’+(t, x) + My = Mj.

Les calculs ont été faits jusqu’a ¢ = 1 avec un pas en temps adaptatif de maniére a

satisfaire la condition de type CFL donnée dans la section 2.1. Les résultats sont tracés dans
la figure 2.9. Dans la figure 2.9, il apparait que le taux de convergence optimal O(g) est atteint
pour la norme L', méme pour les dérivées. Concernant la norme L2, pour la dérivée de N
dans le limiteur, la vitesse de convergence ne semble pas optimale mais cela peut étre, au
moins en partie, expliqué par la difficulté & trouver une bonne condition a la limite artificielle
en x = 0.5 (puisque le probléme semble plutdt étre localisé en x =~ 0.5, voir la figure 2.10).
L’anomalie & l'intérieur du domaine plasma pourrait elle étre causée par une incompatibilité
de la condition initiale a l'interface plasma/limiteur.

Des résultats numériques similaires ont été obtenus en remplacant le terme pénalisé de

(2.17) par
x [T
S —= — M
- <N 0> )
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L1-error for N and dN/dx

epsilon

(a) Erreur L' pour N dans le plasma (+), N
dans le limiteur (x), 9, N dans le plasma (o) et
0N dans le limiteur (x)

L1-error for Gamma and dGamma/dx

epsilon

(c) Erreur L' pour I' dans le plasma (+), I" dans
le limiteur (x), 9, dans le plasma (o) et 9,T
dans le limiteur (x)

L2-error for N and dN/dx

epsilon

(b) Erreur L? pour N dans le plasma (4), N
dans le limiteur (x), 9; N dans le plasma (o) et
Oz N dans le limiteur (x)

°

L2-error for Gamma and dGamma/dx

>
o ol v ol il ol ol 3ol o

epsilon

(d) Erreur L? pour I' dans le plasma (+), I dans
le limiteur (x), 9, dans le plasma (o) et O,
dans le limiteur (x)

FIGURE 2.9 — Erreurs pour N, 0,N, I' et 9, en norme L' et L? avec la pénalisation sans
couche limite, voir I’équation (2.17). Les pointillées représentent les courbes el/4 el et e, Le

pas en espace est toujours éx = 107°.
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L2-error for dN/dx
\
\

4| -
10 = e
kK
5_| -
103 e
-
-
6 //
10 3 /

epsilon

FIGURE 2.10 — Erreur pour 0, N en norme L? avec la méthode de pénalisation sans couche
limite, pour 0.4 < x < 0.45. Les lignes en pointillés représentent les courbes e/t eV2 et e, Le
pas en espace est 6z = 107°. On constate que le taux de convergence optimal, en O(g), est
atteint.

voir [12]. En effet la seule différence entre le terme pénalisé de (2.17) et le terme ci-dessus est
une multiplication par My/N, avec N ne tendant pas vers 0.
La solution stationnaire a été obtenue en supposant que Sy = (1 — x)S et St = 0 :

Py = 52 e N =028 () + 5 (0 (<)) -

Cela a été étudié avec par Isoardi et al. [37] avec My = 1 en utilisant un maillage rela-
tivement grossier (0x = 0.01) : ainsi, bien que la condition a la limite M = 1 nous empéche
d’utiliser les résultats classiques justifiant I’existence et I'unicité de la solution, les calculs
convergent tout de méme vers une solution stationnaire. Cela est probablement di a la dif-
fusion numérique apportée par le schéma utilisé. Les tests ont été réalisés avec dx jusqu’a
5-107%, ¢ = 1073 ou 1077 et My = 0.9,0.99 voire méme 1. La solution numérique dans le
domaine correspondant au plasma converge vers la solution stationnaire. Dans le limiteur, N

est constant et non nul, comme prédit par le développement asymptotique. Un cas test a été
représenté dans la figure 2.11.

Cette méthode de pénalisation n'impose pas N = 0 dans le limiteur ce qui implique que les
variables N et I' n’ont aucun sens physique dans le limiteur. Un autre point de vue consiste &
dire que cette méthode ne modélise pas l'interface plasma-limiteur mais représente la frontiére
entre la prégaine et la gaine.

2.3.3 Pénalisation pour un limiteur a deux faces

La méthode de pénalisation (2.17) ne s’occupe que d'un coté du limiteur. Afin d’avoir
un modeéle plus réaliste tel que celui présenté par Isoardi et al, on suppose désormais que le
limiteur a deux faces en contact avec le plasma. On rappelle que 'axe des x suit une ligne de
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N versus x

1.7

o

I -

Gamma versus x

Gamma
o
IS
|

M versus x

FIGUurE 2.11  Représentation graphique de N, T et M en fonction de x (& t = 1) avec la
pénalisation sans couche limite (la condition initiale est la solution stationnaire). La solution
exacte correspond & la ligne grise en traits pleins. Le limiteur correspond & la zone z €
[0.4,0.5], voir la figure 2.3. On a choisi € = 1073 et My = 0.99.
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N(=0.5—x)=N(0.5—x) N(0.5+x)=N(—0.5+x)
I[(—05—x)=—T(0.5—x) r(0.5+x)=—I(—05+x)
/\/I“:lr]T M,=—1+n
5
2
£
0.5 01 | 0.1 05 x

FiquRE 2.12 — Représentation du domaine de calcul pour le limiteur avec deux faces en
contact avec le plasma.

champ magnétique qui forme une boucle interrompue par le limiteur : dans cette configuration,
au bord du domaine de calcul, on impose donc des conditions aux limites périodiques.

En étudiant les termes d’ordre 0 du développement asymptotique, on en déduit que 'infor-
mation se propage de l'interface plasma-limiteur vers l'intérieur du limiteur. Mais le limiteur
a désormais deux faces en contact et on ne veut pas que de I'information puisse le traverser.
Pour éviter ce phénomeéne, nous avons multiplié le flux par une fonction réguliére o, qui est
nulle dans une zone a l'intérieur du limiteur et qui vaut 1 dans le plasma et au voisinage des
interfaces plasma-limiteur. Le systéme obtenu reste bien posé grace a la régularité de a. Pour
les tests numeériques, le domaine de calcul est €] — 0.5,0.5] et le limiteur correspond a la
zone z € [—0.1,0.1] (voir la figure 2.12).

Le systéme pénalisé obtenu s’écrit ainsi :

N + 0, (al') = Sy

2 dans R} x] —0.5,0.5[.
ol + 0, <a <F+N>>+sign(—x)§ <F—N> =5r ] [

N
(2.28)
Pour a, on a choisi la fonction suivante :

si 2 €] — 0.5, —0.075)

1 1 1
<0.060 ( >) +5  si €] —0.075,-0.015]

—+
Q
=
=

£ —0.015 —0.075
si €] — 0.015,0.015]

1 1 1
tanh [ 0. = i .015, 0.
an (0 060 <x+0.015 + a:+0.075)> +3 si z €]0.015,0.075[

Q
—~
8
S—
1
= ool O o= =

si z €]0.075,0.5).

Pour le schéma numérique, on suit I'idée de Greenberg et Le Roux [34] qui consiste & voir
a comme une des inconnues du systéme. Le probléme hyperbolique obtenu avec cette astuce
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Thick black : N(1,x), Gray : Gamma(1,x), Narrow black : M(1,x), epsilon=1e-1 Thick black : N(1,x), Gray : Gamma(1,x), Narrow black : M(1,x), epsilon=1e-5

1.0
] [

FIGURE 2.13 — Tracé de N, I" et M en fonction de = (& t = 1) avec la pénalisation sans
couche limite et le limiteur & deux faces (& gauche avec ¢ = 0.1 et & droite avec e = 107°)
Le limiteur correspond ici a la zone z € [—0.1,0.1]. Pour £ = 0.1, on a max(N) = 115.65 et
max(|T|) = 122.72. Pour ¢ = 10~°, on obtient max(N) = 168.91 et max(|T|) = 152.04.

est :
N Or2 QF FQF N X PO Sy
ol T 1-—) 20— —+N |9,| T 2l —=-N |=| s
t N + a< N2> aN N+ T N +8 MO OI‘
0 0 0 0
(2.29)

Il est ainsi facile d’implémenter un schéma VF Roe ncv avec une reconstruction de type
MUSCL et une discrétisation en temps de type Heun.

Pour les tests numériques (voir la figure 2.13), 1a ot @ s’approche de 0 (sans étre égal a 0),
on observe des pics pour la variable V. Cependant, ce n’est pas une mesure de Dirac : bien
que les valeurs atteintes par les pics sont importantes elles restent bornées indépendamment
des paramétres du schéma numérique. Cela peut étre expliqué intuitivement par I’ordre 0 du
développement asymptotique & l'intérieur du limiteur : N est essentiellement régi par une
équation d’advection & la vitesse aM vers le centre du limiteur. La variable N est donc
transportée & la vitesse aM( depuis l'interface plasma-limiteur et est stoppée quand « tend
vers 0. Ceci explique donc les deux zones d’accumulation observées.

L’étude numérique de la convergence quand le parameétre de pénalisation ¢ tend vers 0
(voir la figure 2.14) aboutit aux mémes résultats que pour le cas du limiteur & une seule face.

2.3.4 Etude du comportement quand |M;| tend vers 1

Pour garantir le caractére bien posé du systéme N, T, la valeur de |My| a été diminuée de
14 1—¢&. La plupart des tests numériques ont été réalisés avec My = 0.9. Le comportement de
la méthode de pénalisation (2.28) lorsque 'on s’approche du cas de la frontiére caractéristique
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Li-error for N and dN/dx
L2-error for N and dN/dx

epsilon

(b) Erreur L? pour N dans le plasma (+), N
dans le limiteur (x), 0, N dans le plasma (o) et
Oz N dans le limiteur (x)

epsilon
(a) Erreur L' pour N dans le plasma (+), N

dans le limiteur (x), 9, N dans le plasma (o) et
0N dans le limiteur (x)

Li-error for Gamma and dGamma/dx
L2-error for Gamma and dGamma/dx

epsilon epsilon

(c) Erreur L' pour I dans le plasma (+), I" dans
le limiteur (x), 91" dans le plasma (o) et 0,I"
dans le limiteur (x)

(d) Erreur L? pour I dans le plasma (+), T dans
le limiteur (x), 8T dans le plasma (o) et 9T
dans le limiteur (x)

FIGURE 2.14  Tracé des erreurs en norme L' et L? de N, 9,N, T et 9,I" avec la méthode de
pénalisation sans couche limite appliquée a la configuration du limiteur a deux faces (voir la
figure 2.12). Les pointillés représentent les courbes gl/4 el/2 ot e. L’erreur dans le plasma est
évaluée sur I’ensemble x €] —0.5, —0.1[U]0.1, 0.5]. Dans le limiteur, la zone sur laquelle ’erreur
est calculée est z € [—0.1,—0.075] U [0.075,0.1]. Ainsi la zone ou «a(z) # 1 n’est pas incluse
dans les endroits oil I'erreur a été estimée. Ici, on a pris My = 0.9 et le pas est 6z = 107°.
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(c’est a dire |My| = 1) est alors une question naturelle.

Avec le schéma pour la pénalisation des deux faces, nous avons testé les valeurs My = 0.9
(voir le paragraphe 2.3.3 et la figure 2.14), My = 0.99, My = 0.999 et My = 0.9999 (c’est a
dire £ =0.1,1072,1073,107%).

Les simulations montrent que pour ¢ suffisamment petit, de maniére a ce que € < O(§),
les résultats de convergence sont les mémes que pour le paragraphe précédent (sous-section
2.3.3). Cette condition pourrait venir du fait que |M| doit étre inférieur a 1 et que l’erreur de
pénalisation sur M est en O(e), ¢f ordre 1 du développement asymptotique présenté dans
le paragraphe 2.3.1.

D’un point de vue théorique, I’étude de convergence vers la condition & la limite caracté-
ristique de (2.3) reste une question non résolue. Les simulations nous permettent de penser
que la solution numérique de (2.28) convergerait quand £ tend vers 0, mais cela pourrait étre
lié au fait que le schéma est diffusif.

2.4 Bilan du chapitre

Dans ce chapitre, une méthode de pénalisation ne générant pas de couche limite a été pro-
posée. La technique de pénalisation s’avére finalement assez simple : on réalise un changement

d’inconnue de maniére & ce que la condition aux limites soit de la forme P ( - > =0,ouP
v

<

est une matrice de projection, puis on ajoute simplement un terme de la forme Xp
€

au systéme de lois de conservation. Le chapitre 3 a pour vocation de généraliser et de fournir
une preuve compléte de ce résultat.

L’absence ou la présence de couche limite peut étre entrevue par les tests numeériques ot
une erreur de l'ordre de O(e) est observée. Cela nécessite des pas de maillage trés faibles.
Ainsi, cette étude serait trés gourmande en ressources informatiques si les tests numériques
étaient réalisés sur des modéles 2D ou 3D.
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Li-error for N and dN/dx
L1-error for N and dN/dx

epsilon epsilon

(a) Erreur L' pour N dans le plasma (+), N (b) Erreur L' pour N dans le plasma (+), N
dans le limiteur (x), 8, N dans le plasma (o) et dans le limiteur (x), 8, N dans le plasma (o) et
9:N dans le limiteur (x). My = 0.99 (6 =1072). 9, N dans le limiteur (x). My = 0.999 (¢ = 1073).

L1-error for N and dN/dx

epsilon

(¢) Erreur L' pour N dans le plasma (+), N dans
le limiteur (x), 8, N dans le plasma (o) et 9, N
dans le limiteur (x). Mo = 0.9999 (£ = 107%)

FIGURE 2.15 — Erreurs en norme L' pour N et 9,N en fonction de ¢ pour la pénalisa-
tion sans couche limite avec le limiteur a deux faces (voir la figure 2.12). Les pointillés
représentent les courbes /4, 1/2 et . L'erreur dans le plasma est évaluée sur l'ensemble
x €] — 0.5,—0.1[U]0.1,0.5[. Dans le limiteur, la zone sur laquelle l'erreur est calculée est
x € [-0.1,—0.075] U[0.075,0.1]. Ainsi, la zone ou a(x) # 1 n’est pas incluse dans les endroits
ou l'erreur a été estimeée.



Chapitre 3

Pénalisation d’un systéme
quasilinéaire

Les résultats théoriques et numeériques obtenus dans le chapitre 2 sont généralisés a des
systémes hyperboliques quasilinéaires multidimensionnels du premier ordre. En outre, nous
démontrons un théoréme de convergence de la méthode de pénalisation qui justifie les résultats
numériques présentés au chapitre 2. Cela est fait en utilisant une méthodologie proche de
celle proposée notamment par Fornet et Gueés [30] dans un cadre d’équation semi-linéaire :
développement asymptotique et estimations d’énergie sur la solution.

Ce chapitre comprend deux parties principales. La premiére partie est dédiée a la présenta-
tion des résultats classiques d’existence, d’unicité et de régularité de la solution d’un probléme
hyperbolique linéaire puis quasilinéaire et qui seront utiles pour la suite. La deuxiéme partie
contient la généralisation de la méthode de pénalisation proposée au chapitre 2 ainsi que la
démonstration rigoureuse de ces résultats de convergence.

3.1 Quelques résultats d’existence pour un systéme hyperbo-
lique

Dans cette section, il s’agit de rappeler des théorémes classiques.

Ces résultats sont présentés, dans des cadres légérement différents, dans des livres de
Chazarain-Piriou [25] et de Benzoni-Serre [16]. On pourra aussi se reporter aux travaux de
Rauch et Massey [55]. Dans le cadre de problémes linéaires avec conditions aux limites carac-
téristiques, des résultats ont aussi été présentés dans un article de Rauch [54].

Les solutions étudiées dans les problémes linéaires puis quasilinéaires de ce chapitre seront
des solutions fortes et réguliéres. En effet, comme on s’intéresse a des problémes hyperboliques
non scalaires dans des domaines de dimension d’espace généralement plus grande que 1, on
n’a plus les résultats classiques des solutions faibles entropiques (avec les ondes de choc, les
ondes de raréfaction, les discontinuités de contact...) comme on le trouve notamment dans le
livre de Godewski et Raviart [33].

62
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3.1.1 Cas d’un probléme hyperbolique linéaire

Dans cette sous-section, on va étudier un probléme hyperbolique linéaire.
On s’intéresse au probléme :

d
Ap(a)ov + Z Aj(a)d;v +B(a)v =f(a) dans|— Tp, +oo[xR%
=1 (3.1)
Cvipy—0 =0 sur | — 7o, —i—oo[de_l

Vico =0 sur | — Ty, O[xR4L,

La fonction a représente des paramétres physiques comme la viscosité ou I’'indice de réfraction,
par exemple. Ainsi, cette fonction a contient toutes les informations liées & ces parameétres.
C est une matrice constante, donc indépendante, entre autres, de t,x, v.
On suppose que a satisfait I’hypothése suivante :

Hypothése 3.1.1

a:|—To, +oo[><R‘i — RP" est une fonction qui appartient a H*(] — Ty, —i—oo[x]Ri) et qui
est 4 valeur dans un voisinage de 0 noté )Y C RD".

Par la suite, on écrira :

d
L=A¢d.+ ) Aj(a(t,x))d;. + B(a(t,x)).
j=1

ainsi que

L* = -0, (Ao(a(t,x)).) — Y _0; (Aj(a(t,x)).) + B(a(t,x)).

d
1

J

Dans un soucis de simplicité, dans ce chapitre, la dépendance des différentes constantes
en d, la dimension du domaine spatial, sera implicite.
On fait alors les hypothéses suivantes :

Hypothése 3.1.2

Pour tout y € R, A;(y) (j € {0,...,d}) et B(y) sont des matrices symétriques.

On choisit de considérer un bord non caractéristique et des conditions aux limites maxi-
males strictement dissipatives, ce qui se traduit par les deux hypothéses suivantes :

Hypothése 3.1.3

Le bord x4 = 0 est non caractéristique : pour tout y € RP', A4(y) est inversible. De plus
on suppose que A;ﬁ, € L>(Y).

Hypothése 3.1.4

La condition a la limite est maximale strictement dissipative :
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— Il existe ¢ > 0 (indépendant de t,y) tel que pour tout 'y € Y et pour tout W €
ker C, <Ad(y)W7 W> < _CHWH

— dim ker C est maximale pour cette propriété.
C est surjectif, son rang est p.

Remarque : On pourrait penser que I’hypothése 3.1.4 implique que seuls les champs rentrants
sont concernés par la condition & la limite. Mais ce n’est pas vrai! Pour s’en convaincre, il
suffit de considérer, par exemple, le systéme hyperbolique linéaire suivant :

o (1) (2 0o (M)=(0) et mrs
(o) ()= (0) =771

Le bord du probléme ci-dessus est non caractéristique, sa condition & la limite est maximale
strictement dissipative et pourtant, elle porte sur les deux champs (un rentrant et un sortant).

Hypothése 3.1.5

Ay est uniformément définie positive, c’est a dire qu’il existe e > 0 tel que pour tout
y € Y, pour tout v € RP,

(Ao(y)v, V)rp 2 e||V]|ro.

Ot (.,.)gp et ||.|[gp désignent respectivement le produit scalaire et la norme euclidienne
sur RP.

On fait aussi I’hypotheése ci-dessous sur f et a.
Hypothése 3.1.6

On suppose que
- f(0) =0.
— Pour tout t < 0 et pour tout x € R%, f(a(t,x)) = 0.

Le second point de cette hypothése nous permet de bien avoir la compatibilité avec la condition
de solution nulle dans le passé, pour le systéme hyperbolique linéaire (3.1).
Pour la régularité des coefficients du probléme hyperbolique (3.1), on suppose que :

Hypothése 3.1.7

Les fonctions Aj (j € {0,...,d}), B et f vérifient :
- Aj e Wl’OO(IR{D/) (j €{0,...,d}) c’est a dire que Aj et VA, (gradient par rapport
aux variables t,x) sont dans L>°(RP").
-~ B € Who(RP").
- f € C®(RP").

Etant donné la régularité de a et f, I'hypothése £f(0) = 0, nous permet d’affirmer que
f(a) € L?(Qoo). Pour justifier ce point, il suffit d’écrire f(a) & I'aide du développement limité
alordre 1 de f en O.

On démontre alors le théoréme suivant, qui nous assure ’existence d’une unique solution
au probléme linéaire (3.1).
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Théoréme 3.1.1

On fait les hypothéses 3.1.1 a 3.1.7. 1l existe \o(L) > 0 tel qu’il existe une unique
solution v € e B [2(] — Ty, —}—oo[xRi) du probléme hyperbolique linéaire (3.1), rappelé
ci-dessous :

d
Ao(@)dv + > Aj(a)d;v+ Bla)v =f(a) dans]— Tp, +oo[xR%
j=1

Cvig,—0 =0 sur | — Ty, +oo[xRT1

Vicg =0 sur | — TO,O[X]Rd_I.

De plus, pour tout A > \g(L) on a 'estimation suivante :

2
Ivexp(=A)ll20.) < Y lIf(a) exp(=At)lr2(0)-

Dans la suite, afin d’alléger les équations, la dépendance en a(t,x) des fonctions A;, B et f
sera implicite.

On va maintenant s’attacher a donner les outils nécessaires a la démonstration du théoréme
3.1.1.

Pour cela, on va utiliser un probléme légérement différent qui est :

d
Agoivy + ZAjajV)\ + Bvy + AAgvy =) (t,X) E] — Ty, JrOO[XR(_ii_
j=1
Cv),=0 (t,x') €] — Ty, +oo[xRI~?
Vi< = 07
ol A est une constante qui va permettre d’établir les estimations d’énergies en renforcant le
poids du terme AAgv, (en prenant A > 1). Pour retrouver le lien entre les problémes (3.1)

et (3.1.1), il suffit de considérer vy = exp(—At)v et fy = exp(—A¢)f.
On définit alors I'opérateur

d
Ly = Ao(a(t,x))0. + Z Aj(a(t,x))0;. + B(a(t,x)). + Mo(a(t, x)).

j=1
De méme, on écrit
d
LY = -0, (Ao(a(t,x)).) — Z 0; (Aj(a(t,x)).) + B(a(t,x)). + AMy(a(t,x)).
j=1

On définit les espaces suivants :
Hy = {<I> € L*(] — To, +oo[xR%), L& € L*(] — Ty, +oo[xRi)}

M, = {@ € LX(] - Ty, +oo[xRL), L ® € L*(] — T0,+oo[><Ri)} .
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Le lemme suivant fait appel a la définition du crochet de Poisson que 'on rappelle ici :
Définition 3.1.1 (crochet de Poisson)

Soit ® et W deux opérateurs, le crochet de Poisson est alors opérateur suivant :

@, 9. = & (V() - ¥ (()

On définit les domaines suivants :
Qoo =] — Tp, +oo[xRL

N =] — Tpy, +00[ xR x {0}
Qoo =] — T, +00[ xR %] — 0, 0].
On commence par s’intéresser au lemme de Friedrich :
Lemme 3.1.1 (lemme de Friedrich)
Soit A > 0. On suppose que A; et B vérifient les hypothéses du théoréme 3.1.1.

Soit p € C°(] — Ty, +o0o[xRY) tel que son support soit inclus dans la boule ouverte de
rayon 1 et de centre (0,0,...,0,—1) et tel que ji ga P(t,X) dtdx = 1.

On note alors p.(t,x) = ¢?*lp (27 %)
Alors :

—T0,+OO[><

Vw € Hp,, [La, pex]W —c—0 0 dans L%(] — Tp, +00[xR%)

Démonstration du lemme 3.1.1: La démonstration de ce lemme se fait en trois étapes :
1. On montre que si on a le résultat pour w & support borné alors, par densité, on peut
étendre & w € L%(] — Tp, +oo[xR?).
2. [Ly, pex] est un opérateur continu sur C*(] — Tp, +oo[xR?) qui se prolonge sur L?(] —
Ty, +o0o[xR9).
3. On achéve la preuve!

Etape 1 : Commencons par montrer que si le résultat du lemme 3.1.1 est vrai pour une
fonction & support borné, alors on peut I’étendre & une quelconque fonction w € Hp, . Soit
X € C(] — Ty, +oo[xR9) telle que X|Byayi(0,1) = 1 €t X|(Boasr (0.2))° = 0. Ot Bga+1(x,7) est

la boule ouverte de centre x et de rayon r de R%*t1. On définit alors la suite

W : (£,%) = (Z z> wit,x)

Xk(t, %) =X (Z;;)

On peut alors affirmer que wy est & support compact et que, d’aprés le théoréme de
convergence dominée de Lebesgue, W, —1_1 oo W dans l'espace L?(Q,). De plus, on a :

et on notera

d
1
Lyxwy = xpLaw + T ZAJV 9ix -

~~ j=0

0 borné

€L?(Ru0)
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Donc, toujours par convergence dominée, Wi —> k100 W €t LaxWi — k100 LAW.

Ainsi [Ly, pex|Wr — k100 [La, pet|W

Etape 2 : Montrons que Popérateur [Ly, p.*] est continu sur C°(Q.,) (pour la norme L?)
et se prolonge sur L?. Soit w € C(Q), on rappelle que

[Lx, pex]w = Ly (pe * W) — pe x (Laxw) .
Dans cette étape de la démonstration, on note :
X = (t,x).

Pour calculer le produit de convolution p. * (Lyw), on va faire un faire un changement de
variable (Y = £) :

pe * (Law) = /

oo

d
pe(Z) | Y A (a(X - 2)9;w(X —Z) + B(a(X - Z)) + \w(X — Z) | dZ
j=0

Aj(aX - €Y))%8ij(X —€Y)dY

-

= Y
/]—Teo,+oo[><]Rd p( )

+ / ) p(Y) (B(a(X — €Y)) + \) w(X — €Y)dY.
]—-2,4o00[xRd

j=0

Ot Oy, désigne la dérivée partielle par rapport a la variable Y.
Ensuite, il reste & évaluer [Ly, p.#|w grace a une intégration par parties :

d
Lpesiw = | () 7 (A;(a(X)) — A;(a(X — €Y))) * By, w(X — €Y)dY
=2 4oo[x R = €

+ / ) p(Y) (B(a(X)) — B(a(X — €Y))) w(X — €Y)dY
]— =L, +oo[xRd

d d
:/] f y,p(Y)) A;@X)—A, (a(X_eY))+p(Y)ZayjAj(a(X—€Y)) w(X—€Y)dY
— 2, +oo[x d € =

=0

Borné par rapport 3 XY, d support compact par rapport 3 Y

+ / p(Y) (B(a(X)) — B(a(X — €Y))) w(X — €Y)dY.
]— 72 +oo[xR?

Borné par rapport a X,Y, a support compact par rapport 3 Y

Donc on peut affirmer qu'’il existe une constante c¢(L, p) (indépendante de w et €) telle
que :

IEx; pexlWl L2y < (L )Wl L2 (0n)-
Ainsi, Iopérateur [Ly, pex] est continu sur C2°(0s) (pour la norme L?) et se prolonge sur
L3(Qs).
Etape 3 : Soit w € Hy, et ws € Hy, tel que le support de ws est borné et ||w —
W5HL2(QOO) < % et ws € C(Q) tel que ||ws —V~V5HL2(QOO) < %
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On a alors :
[[Lx, pexWs 220y < I[La, pex] (Ws — We) [[L2(00) + [I[Lx, pexWs[ L2 (0. )-
De plus on peut montrer que (avec ¢(L, p), une constante indépendante de 9, ¢) :

1L, pex]Wsl L2y < (L, p) Wl m1 (oo €

On arrive donc a 'estimation suivante (ou ¢(L, p) est toujours une constante indépendante de
d0,€) :
ILx, perlwsl 20y < e(Lyp) (8 + [Wsllmane) -

Donc en faisant tendre § et e vers 0, on a la démonstration du lemme de Friedrich (lemme
3.1.1). |

On peut alors montrer que C*° (ﬁoo)) est dense dans Hp, muni de la norme ||.[| 20 ) +
a1l L2 -7 4 oo xR )
Lemme 3.1.2
L’opérateur W (Ad‘I')|g;d:0 se prolonge par continuité de Cg° (ﬁoo) a Hr, a valeurs
dans H™2(00x).

Démonstration du lemme 3.1.2: Rappel : Soit ¢ € H%(ﬁﬂoo) quelconque, alors, il existe un
reléevement ¥ € Hl(Ri’Ll) tel que la trace de ¥ en x4 = 0 soit .

Soit @ € C§° (0 ), on peut réaliser le calcul suivant :
—Ay(a(t,x’',0))w(t,x',0)dt dx'= / v LYW dtdx + / Lyv - ¥ dt dx.
Q0 Qoo Qoo
D’aprés l'inégalité de Cauchy-Schwarz et la continuité de 'opérateur de relévement, on peut
affirmer que || ¥ (g, ) < c||1/1||H%(Q y ou ¢ ne dépend que du domaine Q. qui est ici fixé.
On obtient alors :
m—Ad(a(t,X',O)W(t,X',O) dtdx' < ||Vl r2.0) IL3® 22 00) + ILaVI2(00) ¥ L2000
< HV||L2(QO<,)C(L)H‘I’HHl(Qx) + HL/\V||L2(QOQ)||'I’||H1(Qoo)
car A;,B € Wh>(Qy)

< L)Vl 1903 ) 3PS [y < el

Or C°(Qy) est dense dans Hy,, et pour tout ¢ € Hz (9,), application

v € CX (o) —Ay(a(t,x’,0))¥(t,x',0) dt dx’
90

est continue pour la norme sur Hy,. Donc, la fonction

vV —Ay(a(t,x’,0))¥(t,x',0)dt dx’
000

se prolonge de maniére unique sur Hy,. On en déduit que (Aqv),, o € Hz (00s). |
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En posant Cy(y) = CA;l(y), on a Cy € L>®(Y) et, pour tout y € J,v € RP,
Cv=0<+= Ci(y)As(y)v=0.

De la démonstration du lemme précédent (lemme 3.1.2), on en déduit :

Lemme 3.1.3

Pour tout ® € C° (Qs), et pour tout v € Hp,

(8, Lav)r2(9.) = (LAY, ) r2(00) + {Plzy=0 (AdV)iou=0) 11} 900y 113 (9620

Soit x = (x/,0), supposons que Viz,—0 € ker C, cela implique que (Adv)|md=0 € Ayker C. De
plus si ®,,—¢ € (Agker C)l, le terme de bord est nul, c’est & dire :

(@m0 (Ad¥)ia,=0 d (1) -4 () =

On en déduit le lemme suivant.
Lemme 3.1.4
On note
& ={® e (), @m0 € (AgkerC)* }.
Soit v € Hp,, les deux propriétés suivantes sont équivalentes :
1. CV‘deO =0.
2. VP €&, <‘I’,L)\V>L2(Qoo) = <L§\@7V>L2(Qoo)'

On va maintenant s’attacher a montrer 'existence et 'unicité d’une solution faible du

probléme (3.1.1).
Lemme 3.1.5
Soit I'espace L3E = {L ®, P € £}.

L’adhérence de L} dans L*(Q), notée L3 &, est un espace de Hilbert (pour le produit
scalaire usuel de L?(Q0s,)) car c’est un sous-espace vectoriel fermé (pour la norme L?) de
L2,

I existe Ao(L) > 0 tel que pour tout X > \o(L), Iapplication

L€ — L* (D)

Gy :
U =L0\P— P

est bien définie, linéaire et continue (pour la norme L?) et se prolonge donc par continuité

sur L3 E.

Démonstration du lemme 3.1.5: On va commencer faire une estimation d’énergie. Soit ¥ €
L} &, donc il existe ® € L?(Qoo) tel que ¥ = L3, On fait le produit scalaire de ¥ et ®.

d
<L§<P7 @>L2(QQC) = —<6t(A0‘§), ‘1>>L2(Qx)—z<aj (qu)) R @>L2(Q&)+<Bq), ¢>L2(Qx)+)\<A0¢, ‘§>L2(QN).
j=0
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Il reste maintenant & estimer chaque terme. Comme A est uniformément définie positive, on
a ’existence de ey > 0 tel que :

MAg®, @) 12(0.) > oM @720
Pour les dérivées spatiales selon les directions z1,...,24-1 (j € {1,...,d —1}) :
@j (A]‘I’) s ‘I’>L2(Qoo) = <8j (Aj)‘}, (I’>L2(QOC) + (Ajaj{), ‘I’>L2(Qoo)
= —(A; ®,0;®)12(q.) par intégration par parties
= —(A;0;®,®)2q_) comme A; est symétrique

1
= 5(8j(Aj)<I’, ®)12(q..) en combinant les lignes 1 et 3 de ce calcul

1
< S105(A)) oo | @172 )

Concernant terme de dérivée temporelle, méme symptéme, méme traitement, en n’oubliant
pas les termes de bord (en t = —Tp et t = +00) :

0:(A0®) ;@) 2(0) = 5 (A0 R))— oo 1 Plt=too) L2(re) — A0 ®,0;®)12(00.0)

>0 car Ay est symétrique définie positive
1
—3 (Ao ®)j—_r, » Rle=—m) £2(R)
=0

1
< S 105(A0) ool @117z .-

1
2

Pour le terme avec la dérivée selon x4, il faut prendre en compte le terme de bord en x4 = 0
et utiliser le fait que la condition & la limite est maximale strictement dissipative :

OaAg®), P)r2(0.)= —(Ad ®,0a®)12(0.) — (Aa®) |, 0+ Plra=0)12(000)

1
5(0a(A) 2. @) 2 (0.) — 5((Ad®)jy,—0 » Blza=0)12(0900)-

DN | =

On va montrer par 'absurde que <(Ad(1’)|:vd:0 , (I)|"”d:0>H%(aQ VH-} (00.) >0

|2a=0 ° ®,,—0)12(90.) < 0 alors d’aprés 'hypothese des conditions
aux limites maximales strictement dissipatives, on a, pour un certain t,x’, ®(¢,x’,0) € ker C\
{0}. Dans ce cas, on a :

Supposons que ((AyP)

—eo|@(t, %, 0)[3 > (Aq(t,x',0)®(t, %', 0), ®(t,x',0) )go = 0.
N—_——

€A ker C €(Agker C)+

Ce qui implique que ®(¢,x’,0) = 0. On a alors une contradiction.

Donc on peut affirmer que <(Ad‘1’)\xd:0 y ®z—0) > 0, est ainsi,

HZ(09Q00),H™ 2 (09000)

1 1
0aAq®), @) 20 ) < §<ad(Ad)(I)a(I)>L2(Qm) —0< §H5d(Ad)HooH‘I’H%2(Qm)-

En réunissant toutes les inégalités précédemment prouvées, on obtient :

d
* * 1
LA 2 (0 Rl L2 (020) = (LA®, @) 120 = —52 [05(Aj)]loe + Blloo + Aeo | [[@]172()-
=0
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On choisit désormais A\ > \o(L) = 51~ ?:0 10;(Aj)]loc — || Blloo €t on a :

260

2 *
1®llz200) < FNLXRl 22 00)- (3.2)

Cette estimation d’énergie est importante car elle montre que ’application G, si elle est
bien définie, est continue.

Pour montrer que G est bien définie, il faut montrer I'unicité de 'image. On considére
une fonction ¥ € L3€. Supposons que l'on ait ®; et @2 dans L?() tels que ¥ = L5 P =
L5 ®,. Alors, par linéarité de L} (car on s’intéresse toujours au cas d’un systéme hyperbolique
linéaire), L5 (®; — ®2) = 0. Grace a l'estimation d’énergie magique (3.2), on peut affirmer
que

2 *
[@1 — P22, < X”L)\((I)l — ®3)|2(0.) = 0.

Donc G se prolonge par continuité sur L}E. |

On en déduit alors la solution faible du probléme (3.1.1) :
Soit A > Ao(L). L’application

;TR
' U (GA(P), ) 120

est linéaire et continue sur I'espace de Hilbert L& (ou f est le terme source défini dans le
théoréme 3.1.1).
D’apreés le théoreme de Riesz, il existe vy € L1E tel que :
V¥ € L3E, (GA(P), £) 12(a.) = (¥, Va) 12(000)- (3.3)
On pose @ = G\(¥) (c’est & dire que L3P = ¥) et on obtient :

VW e L€, <(I)7f>L2(Qoo) = <L§¢’,V)\>L2(Qoo) = <(I>7L)\u>\>L2(Qoo)‘ (3.4)

C’est a dire que v est donc une solution faible du probléeme (3.1.1).
De plus, d’aprés le théoréme de Riesz, on a 1’égalité des normes de vy et G :

IvallL2 (o) = HQHLTs’-

D’aprés I'inégalité de Cauchy-Schwartz, on a, pour A > \o(L) :

1G(®)]

e’ < 1G22 o) I3l 22 (0n0)

IN

2
XH\I’HLQ(QOO)HfAHLZ(QOO) d’aprés la continuité de G (équation 3.2).

On a ainsi I'estimation suivante pour v :

2
IVallz2(.) < XHfAHLQ(Qo@y
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De cette relation, on en déduit I'unicité de vy dans L}E.

On prend ensuite v = e* v, qui est alors solution du probléme (3.1).

On peut ensuite montrer que v ne dépend pas du choix de A > A\o(L).

Pour justifier le fait que vi;o = 0, on fait le produit scalaire dans L? avec une fonction

U € L*(Q) dont le support est inclus dans | — T, 0[xRZ :

<Va l:[1>L2(Qoo) = <V)\, eAt ‘II>L2(Qoo)

< Vallzzim) e ¥ 120
2
< XHfAHL%Qm)H\I’HLQ(QOO)

2
< {22000 12122 (00

— 0 quand A = +oo.

Le lemme de Friedrichs (lemme 3.1.1) nous permet ensuite de montrer que v) est aussi
une solution forte du probléme hyperbolique (3.1.1) au sens suivant : Il existe une suite de

fonctions (ug\k)>k N € (C° Qo) N H,\)N telle que :
€

1. (CV)\>xd:0 =0

k
2. L,\VE\ ) koo Lava = By

Cela achéve la démonstration du théoréme 3.1.1.

En reprenant la démonstration du théoréme 3.1.1, on prouve sans difficulté ’existence et
I'unicité d’une solution jusqu’a un temps 7T fixé :
Corollaire 3.1.1
Soit T' > 0 quelconque. On reprend les hypothéses du théoréme 3.1.1 en remplacant

I'intervalle de temps | — Tp, +oo| par | — Ty, T'.
Alors le probléme hyperbolique linéaire

d
Ap(a)orv + Z A;(a)d;v +B(a)v =f(a) dans]|— Ty, T[xRL
j=1

Cv\xd:O =0 sur | — To,T[X]Rdil

Vi<o =0 sur | — Tp, O[x R4~

admet une unique solution v € L?(] — T, T[xR%). De plus, il existe Ao(L) > 0 tel que,
pour tout A > A\g(L), on a 'estimation suivante :

2
||vexp(—At) HLQ(}_TmT[XRi) < Y [f(a) exp(—At) HLQ(]—TO,T[x]Ri)
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3.1.2 Plus de régularité!

On souhaite désormais avoir plus de régularité sur la solution v. Pour cela, nous allons
montrer qu'il suffit de supposer que les coefficients Aj(a) et B(a) ainsi que le terme source
f(a) sont suffisamment réguliers sur Q7 (en plus des hypothéses précédentes).

Hypothése 3.1.8

Les fonctions A; (j € {0,...,d}), B et f vérifient :
~ A; €C®([RP) (G €{0,...,d}).
B € C®°(RP).
— f € C®(RP"), tel que pour tout t < 0 et pour tout x, f(a(t,x)) = 0.

De I’hypothése précédente, on en déduit que Aj(a) (j € {0,...,d}) et B(a) sont dans
Wheo(] — Ty, T[xR%).

A nouveau, le traitement de la direction x4 sera différent de celui des variables tangentielles
t,x1,...,T4_1. Ainsi nous allons commencer par fournir un résultat de régularité tangentielle
et, ensuite, nous en déduirons la régularité selon la derniére variable. Nous commencons par
définir une norme & poids qui sera utilisé dans la suite :

Définition 3.1.2 (Normes a poids)

Soit ® :]—Tp, +oo[xQ — RP telle que ® exp(—At) € H™ (] —Tp, +0o[xQ), alors on définit
la norme :
@[y = > A™lafo0r .. 034 ® exp(—At)|| 121 +o0[x0)-
|a|<m
On note

a __ Q0o Q01 Qd—1
T =090 ... 05"

Iopérateur de dérivée tangentielle. On va aussi faire appel aux I’espaces de Sobolev tangentiels
suivant :
Définition 3.1.3

Pour m € N, on note

H™ (] — Ty, +00[xQ) = {® € L(] — Tp, +o0[xQ),Ya € N¢,
la| <m = T® € L*(] — To, +oo[xN)}.

La norme sur H{}},, (] — 1o, +00[x€2) que 'on considére est

ez (—Tortooixey = 2 T 22070 +o0[x0)-

laj<m

Livrons sans plus attendre le résultat principal cette sous-section :
Théoréme 3.1.2

! On fait les hypotheéses 3.1.1 a 3.1.6 et 3.1.8. Pour tout m € N, il existe A\o(L,m), tel que : !
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— Le probléme hyperbolique linéaire (3.1), rappelé ci-dessous

d
Ao(a)dv + > Aj(a)d;v+ Bla)v =f(a) dans] - Tp, +oo[xR%
j=1

Cvig,—0=0 sur | — T, +oo[xRE !
Vicg =0 sur | — TO,O[de_1
admet une unique solution v € eM H*(] — Tp, +oo[xR%).

— Il existe une constante ¢(L,m) (indépendante de f, v et \) tel que pour tout A >
Xo(L,m) on ai I'estimation suivante :

c(L,m)
¥l < S 6(a) 1

D’aprés le théoréme 3.1.1, Iexistence de v dans e*0(0F L2(]—Tp, +00[xRL) (pour Ag(L, 0)
suffisamment grand) est déja garantie.

On va donc montrer que pour tout m’ € N, v € H{ (] — Tp, +oo[xR%).

Pour cela nous allons utiliser un opérateur de régularisation tangentielle (e > 0 et s > 0) :

tan

® —— W solution faible de ¥ — eA; ¥ = P.

{ iy (RE) — Hi 2 (RET)

e

Cet opérateur permet & la fois de gagner en régularité et, en faisant tendre le paramétre ¢
vers 0, d’évaluer la régularité de la solution v de (3.1).

Dans la suite, quand on appliquera 'opérateur R, a v (définie sur | — T, —|—oo[><R‘i), on
confondra v avec son prolongement sur Rffrl en prenant vi;<_7, = 0. Comme on sait que
Vit<o = 0, cela ne modifie ni la régularité de v ni sa norme (au sens HVHH{Z,L(]—To,-s—oo[xRi) =
HVHHQH(RTLI))

Pour montrer que R, est bien défini, il suffit d’appliquer le théoréme de Lax-Milgram.

Plusieurs lemmes doivent étres établis pour R, afin de justifier les propriétés évoquées
précédemment, :

Lemme 3.1.6

Soit € > 0 et s € N. R, est une application linéaire continue de Hj (Rfljl) vers

tan
Hf;;?(RiH). De plus, les opérateurs

RG : Hzfsan(Ri+1) — Hzfsan(R(—il—+1)
VERe s Hf,, (REY) — HEFI(RE)

tan
R s Hy, (RE) > HEH2(RE)

tan

sont uniformément bornés par rapport a e.
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Démonstration du lemme 3.1.6 : Pour la démonstration du lemme, on va utiliser la transfor-
meée de Fourier .On note alors la transformée de Fourier de ® de la maniére suivante :

Fran(®(,20) (o - Eam1) = / ®(t,x) 672z7r(t§0+27;11 @ &) dt dx’.
R

La variable dans ce domaine de Fourier est alors notée &' = (&,...,£4—1). On remarque alors

que la norme
P — </]R+ /Rd (14 €125 | Fran (®(., 22))(£)|* €’ dxd>

est équivalente a la norme “'”Hfan(Rd“)'

2

Ici ¢(s) désigne a chaque fois une constante indépendante de ®, € et R..
: d+1
Soit @ € Hy,,,(RY™).
On réalise ensuite les trois estimations pour montrer le caractére borné indépendamment
de € de R, V/eR., €R..

2

IR @I, i) < els) ( | [ 0B B R an)E)F df’d:cd>

(S) (/R /Rd (1 + ‘5/|2)3 (1 + 6|§/‘2)_2 |]:tan(q)<~7xd))(f/)|2 d£/d$d>
(I, gery car (1+€l€?) > 1

1
2

IVER @172 gern) < els) ( / / A IEPYT (L €l ) | Fuan (B, a))(€) €’ dxd>

2

(1+e€ |§’| )?

gl

2
/R / (14 1EP) | R (B 2)(€) P d€' daa

< ofs) @]y, iy

=

JeR® gy < els) ( / / AR (U d€)E  Fran (B 2) () dE dxd>

1

2

(e+e€lg'?)? o
/]R+ /Rd L+ ') (1+ |g/|) [ Fran(®(, 2a))(§)]" dE’ diza

§1
< e(3)]| @] 5, ui-

On montre maintenant un lemme qui va nous permettre de suivre la régularité de v.

75

[N
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Lemme 3.1.7

Soient s € RY. et ® € Hy,,(RT™).
Alors, on a R.® e & dans Hj,,(RT).
De plus, pour tout s’ > s :

SUIO){HRE(I)HHtS’ (Rdﬂ)} <too= P € Hf(;n(RdJrl)' (3.5)
6> an

Démonstration du lemme 3.1.7: ¢(s) et ¢(s’) désignent ici des constantes indépendantes de
€.
Pour montrer le premier point du lemme 3.1.7, on étudie la norme de R, ® — ® :

N

2

| Fran (B (- 2a))(€)[? d’ dzq

||R P — @HHS (Rd+1 <C / / +‘§| 1+ |£/|2 -

On peut alors appliquer le théoréme de convergence dominée de Lebesgue qui nous permet
d’affirmer que ||R.® — <I>||HS L(RLH) T es0 0.

Montrons maintenant la deux1eme partie du lemme. On suppose d’abord que s < 5" < 5+2,
ce qui nous permet d’affirmer que R.® € Hy,,(RE™).

On prouve que ® € Hf,, (R est équivalent a dire

1

wlftan(‘i’(~,xd))(§’)l € LA(RT).

(L+ &)/

On sait déja que R P € Hfan(Rfl) si et seulement si

1

m|ftan(q’(vl’d))(§/)| € L*REM).

(L+ &)/

De plus on a :

2

1

D[ o gasty > L+ €13 g [Fran(®(. "2 de' d

IRl gy > els) (//( P e e (@) (€)F de xd>
/ 1

On rappelle que pour tout x4 € R, et pour tout ¢’ € R4~1 (1+|¢|?)* W|ftm(@(.,xd))(§’)|2

décroit quand e > 0 tend vers 0, tout en étant positif. Donc d’aprés le lemme de convergence
monotone :

112 s'; . 2 , .
</ L 04 Y G VB s P d)

— e < /R ) /R A EP) Fran(B(2a)) (€))7 d’ dw) z o)1 2y, v

[N
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Donc, si
sup{ Re®@|| ;. d+1 } =K < +00
ap (IRl

on a ||®| . @i+ < K/c(s") (avec ¢(s") > 0).

Cest & dire ® € HS

tan

® est dans Hj 2 (R, puis dans H (R jusqua arriver a Hj,

tan tan tan

(R_‘f“l). Si s’ > s+ 2, on procéde par récurrence pour montrer que
d+1
R m

Démonstration du théoréme 3.1.2: On fait la démonstration par récurrence sur m. Le cas
m = 0 correspond au théoréme 3.1.1. Nous supposons maintenant que vy € H™ ! pour

A > ML,m — 1) et nous montrons que vy € H,”? puis ainsi vy € H™ (pour tout A >

AL, m) > A(L,m — 1)). On pourra alors prouver l’estimation du théoréme 3.1.2 .

On va chercher & appliquer le lemme 3.1.1.

Soit o € N tel que |a| < m — 1.

On prend I’équation (3.1.1), on multiplie par Ag(a)~! et on applique 'opérateur TR,
avant de multiplier & nouveau par Ag(a) :

d—1
Z Ajaj (TQREV)\) + A40, (TQREV)\) +B (TOUR,eV)\) + Ay (To‘RevA)

j=0
d—1
== AJ[A'A;0;, T*Rc] v — Aq[A;'B(a), T*R] va
j=0
— MG [A A TR v + AgT*Ay(a) £y

CTO‘RevA =0
(TQREVA)t<O =0.

Pour un opérateur Q, on remarque que :
[Q7 TQRG] V= Q (TaRevk) - TQRG (QV)\)
= [Qa Ta]Rev)\ + TaQ (REV/\) - TaRe (QV)\)
= [Qa TQ]REV)\ - TQRS[Q,'Rzl]Rst
= [Qa TQ]RGV)\ - TQER€[Q’ At,x’]Rev)\-

Ainsi
(A7 A0, TR v = [A7"A;0;, T Reva — T*€RJ[A; A0, Apx ] Rev .

On va donc estimer les deux termes de 1’égalité ci-dessus. On rappelle que la fonction a (c¢f
Aj(a),Aq(a)) est H®(] — Tp, +oo[xR%) et a valeurs dans un borné de RP".

Pour lestimation du terme
-1
TY€RJ[A; A;0j, Ay x/]Reva,

on commence par relever que R.vy € H", (] — Ty, +oo[xR%) d’aprés hypothese de récur-
rence et la définition de R.. De plus, en faisant le développement du crochet de Poisson,
on peut montrer que [A;'A;0;, Ay ] est un opérateur borné de H[? (] — Ty, +oo[xR%)
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dans H] (] — Ty, +oo[xR%). Enfin, €R. est un opérateur borné (indépendamment de €) de

tan
H2(] = Ty, +oo[xR%) dans HJ?, (] — T, +0o[xRL).

tan tan
Donc

A AGT R AT A0, Arad IRV 1oy < e(Lym)A™ 1 [Revallrgy, 0.0)-

ot ¢(L, m) est une constante positive indépendante de € et A. Pour le terme [A;lA]ﬁj, 7'0‘] Reva,
un raisonnement similaire s’applique pour obtenir :

A AL A0, TT Revall oy < e(LemN™ IR VAL, 2c)-

L’estimation des termes
A [A}'B(a), T*R] vy et AAG[A]'Ag, TR v

se fait de la méme maniére. On a alors :

)\m+1—\a| HAd [AJIAO’ T&Re] V)\HLQ(QOO) S c(L,m))\m+1—|a| HREV)\HHZZ;1(9

o)
< e(L,m)Am 1ol IRevallzm, (0u)-

xmlel || Ay (A B(@), TR vl < e(Lym)A Y RevAll 1o

—To,+0o[xR%)

< L,m)N R (000

Pour cette derniére inégalité, on voit 'importante des coefficients A~ dans la définition
de la norme : le second membre reste borné quand A tend vers +oo0.

Or, d’apreés le théoréme 3.1.1 :

11 existe A\o(L, m) tel que pour tout A > Ag(L,m) on ait 'estimation suivante :

— | « C L7m m—|«
AT TR vl 2 () < %A ol (IRevallz, 0n) + IREN 17, (20)) -

tan
ot ¢(L, m) est une constante ne dépendant pas de A et . Donc pour A suffisamment grand :

c(L,m) c(L,m)
[Revallma < \ IR () < 3 [[£]lm,x-

Donc ||Rev|m,x est borné indépendamment de ¢, ce qui signifie que vy € H{, (Q) N
H™ Q). De plus on rappelle que

d—1
Oavxr = Ag" | —Aedva =D A;0;va —Bvy — Mova + i | € Ho N (D).
j=1
Par récurrence, on montre que pour tout k < m, 97'vy est composée d'une somme finie
d’¢léments de la forme KT Pvy avec |3| < m — k et K une matrice dont les coefficients (ainsi
que toutes leurs dérivées) sont bornées. Ainsi 97vy € H;" " (Qs). Donc vy € H, (Do)
Pour I'estimation, d’énergie en norme ||| g x, on fait comme pour 'estimation d’énergie
avec les dérivées tangentielles sauf que I'on remplace X"~ 1T par )\m"O“TB(?;{ avec ||+ <
m. |

On peut aussi montrer une version locale en temps. C’est d’ailleurs cette version qui nous
servira pour 1’étude du probléme quasi-linéaire.
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Théoréme 3.1.3
Soit T' > 0. On reprend les hypothéses du théoréme 3.1.2 en remplacant I'intervalle
| — To, +o0[ par | — Ty, T'[.
Il existe une unique solutions v.€ H*(] — Ty, T[xRL) N WL°(] — Ty, T[xR%) du
probléme hyperbolique linéaire (3.1), rappelé ci-dessous :

d
Ap(a)ov + Z Aj(a)d;v +B(a)v =f(a) dans]|— Ty, T[xRL
j=1
CV|md:0 =0 sur | — Ty, T[XRdil
Vicg =0 sur ] — T, O[XRdfl.

De plus, il existe A\g(L, m) et une constante ¢(L,m) (indépendante de f, v et \) tel que
pour tout A > A\g(L,m) on ai l’estimation suivante :

c(L,m)
A

[Vl rm x < [£ (@) zm -

3.1.3 Cas d’un probléme quasilinéaire

On s’intéresse maintenant au cas d’un probléme quasilinéaire. Une des caractéristiques de
ces systémes hyperboliques qui fait tout leur difficulté est la génération possible de chocs et
autres discontinuités ruinant ainsi & néant nos espoirs d’avoir une solution réguliére globale
en temps (sauf dans des cas particuliers). Dans cette sous-section, on va montrer que si on
part d’une solution réguliére dans le passé (¢t < 0), alors la solution reste réguliére jusqu’a
un certains temps T suffisamment petit, c’est & dire que si un choc ou une discontinuité de
contact devait apparaitre, alors leur génération ne serait pas immédiate.

On considére alors le probléme hyperbolique :

d
Ap(a,v)ov + Z Aj(a,v)0;v+B(a,v)v=f(a,v) dans]—Tp, T[xRi
=1 (3.6)
Cviyy—0 =0 sur | — 7o, T[><]Rd_1
Vico =0 sur | — Tp, 0[x R4~

Dans cette sous-section Qr, désigne | — Tp, T[xR4.
Pour cette démonstration on va s’appuyer sur un schéma itératif de Picard :

d
Ag(a, vF)o,viT 4 ZAj(a, vR)9;vFT + B(a, vF)vET! = f(a,vF)  dans | — Tp, T[xRY

j=1
Cv‘]f;;lzo =0 sur | — Ty, T[xR4!
vitl=0 sur | — Tp, O[x R4,

(3.7)
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vF*1 est ainsi obtenu & partir des résultats précédents pour un probléme hyperbolique
linéaire. Aprés avoir justifié que la suite (Vk) est bien construite, il restera & montrer qu’elle
converge.

Pour la démonstration du probléme quasi-linéaire, il sera nécessaire de faire appel & deux
lemmes.

Nous allons enfin utiliser un inégalité de type Gagliardo-Niremberg-Moser :

Lemme 3.1.8 (Inégalité de Gagliardo-Niremberg-Moser pour ||.||m;x)
Soit ®1,...,®, € HP, (Qr) N L>®(Q7), @ 1,...,a. € N (a ;= (apy,...,q)!) et k €

N, tel que Y7, Z‘LO a;; < k <m. Alors, il existe r > 0, indépendant de e, \, ®1,..., ®,
qui vérifie :

p

AT By T @pllox <7 > | [T 1®glloo | 1@0llma-
=1 \q#l

Une fois n’est pas coutume, ce lemme sera considéré ici comme admis. On trouvera néanmoins
des éléments de démonstration dans |7, 35].
On va aussi faire appel au lemme suivant :

Lemme 3.1.9

Soit T > 0. Soient d € N*, m > mgy = L%j + 2 et A > 0. Alors il existe k(mg,T,Tp) > 0
(qui ne dépend que de mg, Ty et T') tel que pour tout ® € H;", (Qr) N L¥(Qr) :

e)\T

)\m—mg

[@loc < #(mo, T, To) (1@l + [02®[lm—1,2) -

Démonstration du lemme 3.1.9: On prolonge ® de H;", (Qr) dans H7, (R4, L'opéra-
teur de prolongement de H;”,(Qr) muni de |.||,, » est continu dans H;”,(R4*!) muni de
[l zzn (ma+1y, uniformément par rapport a A voir par exemple [35]. Cela nous permet de pla-
cer dans le domaine de Fourier pour ®. On définit la transformée de Fourier de ® par

(&, .., &) :/ B(t,x) e 2 (Lt X m &) gt gx.
Rd+1

On cherche & faire intervenir la norme ||.||,,, x» de @, ce qui implique de faire intervenir les trans-
formées de Fourier des dérivées tangentielles de ®. On note & = (&g, ...,&4), & = (&0, .-, &n—1)
et &' =¢£5oes? .. ¢!, pour a € N

On rappelle que

1@]loc = [|1@]| L (07) < [1Bl| o (zast) < D]l 1sgars) = |(€)] de.
Rd+1
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ol = | (Siatm €21+ 16 Siaime-1 16°1) 18(6)]
L1(R4+1) = RA+1 Z\alﬁmo €| + €4l Z\alﬁmo—l 7]

2

ﬁ(/R Do €0 lgal D0 1EnT] 1RO dg

la|<mg |a|<mg—1

N

‘ / ! ; dé‘)
R (ngmo €+ 1€al Xojaj<mo—1 |§/a|)

On souhaite maintenant montrer que la seconde intégrale de l'inégalité ci-dessus converge.
Pour cela, on va majorer la fonction intégrée pour obtenir :

1 1
<
2 = 14 2 2(mo—1) R L ]20mo—1))"
(Z\a|§m0 1€+ 1€al X101 <mo—1 |§'o‘|) €al? (I&1| €1 )

Or 2(mg — 1) > d, donc intégrale converge.

0<

Estimation de la premiére intégrale de I'inégalité sur ||®|| .1 gat1y

2

/RM Do € Il Do €N 1€ dg

a<mg a<mgo—1
1 ~ 2
< ¢(myg) /RdH ( l; W (Qm)la\gfaq,(g)’

+ Z (4772)1|a+1‘(QZﬂ)laJrlfdg/a‘i)(f)‘z) dg§

o] <mo—1

1 o 1 a
< c(mo, T, Tp) Z WHT P72 + Z WII%T @72 | .

|| <mo lo|<mo—1

d’apres I’égalité de Parseval et la continuité de 'opérateur de prolongement de H,.° (Q7) dans
HmMo (RdJrl).

tan
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On introduit maintenant le paramétre A :

2

/RM Do €Il Do €N 1R dg

a<mg a<mgo—1
1 1
22T « 2 « 2
< ¢(mo, T, Tp) e > W”T @72+ D WH%T P72
|| <mo |a|<mo—1

< o(mo, T, To) T | Y7 T @7+ > oaT @7,

la|<mo la|<mo—1
< e(mo, T, To) € (| ®]lmg x + 10a® iy —1.)°
AT )
< ¢(mo, T, TO)W ([[®lm,x + 102 lm—1,2)" -

Donc, on a bien l'existence d’une constante k(mg,T,Ty) > 0 ne dépendant de mg, T et Tp
tel que :

e)\T

Amfm

[@]loc < K(mo, T’ To) 5 (1@ llmx + 10a®lm—1,2) - -

Soient V et Y des voisinages de 0 dans respectivement RP et RP'.
On suppose toujours que le systéme (3.6) est symétrique :

Hypothése 3.1.9

Pour tout y € RP',w € RP, A (y,w) (j € {0,...,d}) et B(y,w) sont des matrices
symeétriques.

Les hypothéses de bord non caractéristique et de conditions aux limites maximales stricte-
ment dissipatives du probléme quasilinéaire (3.6) sont celles données pour le probléme linéaire
(voir hypothéses 3.1.3 et 3.1.4) aprés linéarisation. C’est a dire qu’elles sont reformulées de la
maniére suivante :

Hypothése 3.1.10

Le bord x4 = 0 est non caractéristique : pour tout 'y € }RD/,W € V,Ay(y, W) est

inversible. De plus, on suppose que A;ﬁ, € L>*(Y x V).

Hypothése 3.1.11

La condition a la limite est maximale strictement dissipative :
— Il existe ¢ > 0 (indépendant de t,y) tel que pour tout'y € Y et pour tout V,W &€
kerCNYVY,

(Aa(y, VIW, W) < —c[[W]].

— dim ker C est maximale pour cette propriété.
— C est surjectif, son rang est p. Les coefficients de C sont de classe C.

Il en est de méme pour la condition sur Ag :
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Hypothése 3.1.12

A est uniformément définie positive, c’est a dire qu’il existe e > 0 tel que pour tout
y € Y, pour tout V,W € RP (Ay(y, V)W, W)gp > e||W||go.

Pour les coefficient du probléme (3.6), on suppose aussi que :
Hypothése 3.1.13

Les fonctions A; (j € {0,...,d}), B et f vérifient :
~ A € C®(RP xRP) (5 €{0,...,d}).
B € C®°(R” x RP).
~ f e C®°(RY" x RP).

On admet que f vérifie aussi :
Hypothése 3.1.14

Pour tout 'y € Y,f(y,0) = 0.

On donne maintenant I’énoncé complet du théoréme sur le cas quasilinéaire :
Théoréme 3.1.4
On fait les hypothéses 3.1.9 4 3.1.14.
Alors, il existe un temps T > 0 (suffisamment petit) tel qu’il existe une unique solutions
v € H®(] — Ty, T[xRL) nWLo°(] — Ty, T[xR%) du probléme hyperbolique linéaire (3.1),
rappelé ci-dessous :

d
Ap(a,v)ov + Z Aj(a,v)o;v+B(a,v)v=1f(a,v) dans]—Tp, T[xRi
j=1
Cvig,=0=0 sur | — T, T[de_l

Vico =0 sur | — Tp, O[xR4~L.

On insiste sur le fait que le théoréme énoncé ci-dessus ne nous donne pas de solution globale
en temps.

Démonstration du théoréme 3.1.4: Comme annoncé précédemment, la preuve de ce théo-
réme utilise le schéma itératif de type Picard présenté dans I’équation (3.7). L’initialisation
du schéma itératif se fait en considérant v° = 0. D’aprés le théoréme 3.1.3, on a l’existence
d'une solution réguliére v¥*1 a (3.7) quelque soit le temps 7. Nous allons alors montrer que
cette suite v¥ est bornée dans W1>° et H/", (avec la norme |||, 1). pour ensuite pouvoir jus-
tifier sa convergence. On ne peut pas directement utiliser 'estimation d’énergie du théoréme
3.1.3 pour montrer le caractére borné de la suite (v¥), car la constante de cette estimation
dépend des propriétés de v¥ et de ses dérivées.

Soit R > 0. Soit m > mg = | 4] + 3. On prend R > 0 tel que

—_

Al L wxB,p 0.8)) < A7 flloo < 5

[\

(possible car pour tout y € Y, f(y,0) = 0).
On fait alors les hypothéses de récurrence (sur k) suivante :
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Ve + TVH < R

o A

~Vm>mo= 4] +2,[vFnr <R
Au rang k = 0, cette hypothése est bien évidemment vérifiée. Reste alors & montrer ’hérédité.
Sous cette hypothése, la constante de l'estimation d’énergie du corollaire 3.1.1, sur le cas
linéaire dans L? dépend de R mais pas de v¥ ni de ses dérivées.

De maniére similaire & la démonstration du théoréme 3.1.2, on prend ’équation (3.7),
on la multiplie par Ag(a, v¥)~! et on lui applique l'opérateur 7, avant de la multiplier &
nouveau par Ag(a,vF) :

U
—

Aj(vk)aj (Tavl)C\—H) + Ad(vk)ad (Tavl;+1) + B(vk) (TQV§+1) + )\AO(Vk) (Tavl)C\—i-l)

<.
Il
o

d—1
== Au(vF) [Aa(vF) T A0, T VI — Aa(vh) [Ag(vF)TIB(VE), T Vi
j=0

= MV [AG(VF) T AG(VE), T VAT + Ag(vF) T A (vF) T A (V).

A nouveau, dans 'unique but de simplifier les notations, on ne fait pas apparaitre les dépen-
dances en a dans les coefficients de I’équation.

On note qu’il n’est pas nécessaire d’utiliser ici 'opérateur de régularisation R, car la
régularité de vFH! est déja assurée.

Afin de pouvoir appliquer l'estimation d’énergie du théoréme 3.1.1, nous allons estimer
chaque terme du crochet de Poisson, & I'aide des inégalités de type Gagliardo-Niremberg-
Moser. Les termes les plus délicats & estimer sont ceux de la forme Ay [AglAjaj,T“] Vi
(j € {0,...,d — 1}) puisqu’ils font intervenir une dérivée tangentielle supplémentaire. On a
alors :

NIl A (vF) [Aa(vE) T AG (vE)0;, T VA e
< e(Lym, T R) (| TV -1 Al TV oo + [TV 1)

< e(Lym, T, R) | [IVE [l [TV oo 4 [VFFH o
———
<R

< e(Lym, T, R) (ITvF oo + [V lma)

ott ¢(L,m, T, R) est une constante qui dépend de R mais pas de v* vF+1,

L’autre terme qui demande un peu d’attention est le suivant :
AP LA () [Ag(vF) " A (vF), T vE !
< e(Lym, T, R) A (V¥ [ ATV oo + ITVEH [m1,0)
< e(Lym, T R) X ([VF [ A I TV oo + AIVEFE [0 -

Ainsi, 4 laide de l'estimation d’énergie du corollaire 3.1.1, on peut montrer que pour A >
Am(L,m, T, R), on a 'estimation :

¢(L,m,T, R)

3 TV oo + IV lmr + 1E 1m0 -

[V lm,x <

84
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On applique ensuite :

d—1
OaTOVET = =3 " Ag(vF)TA; (VO TV — Ag(vF) T B(vF) TOvE
j=0

u

-1
— )\Ad(vk)flAO(vk)To‘vlf\""1 - [Ad(vk)flAjaj, 'TO‘] V’;\+1

J
— [Aq(VE)TIB(VF), T v = A [AG(vF) T A (VF), T VI + T AL (VF) T A (V).

Il
=)

Ce qui permet d’avoir, d’aprés les inégalités précédentes :

c¢(L,m,T,R)
A

On a ainsi tous les éléments pour utiliser I'inégalité du lemme 3.1.9 :

102"+ -1 < (ITVE oo + IV5F o + [1E[ln,) -

AT
(§]
HVk+1H<x> < lﬁ(mo,T, TO))\mfmo (||Vk+1||m,>\ + Hadvk+1||m—l,)\) .
AT
1T e < o, T 1) 5 (T et + 102V )
= I /\mflfmo m=h "
e>‘T k41 k+1
< H(mOaTaTO)m (HV + Hm,)x + ||adV " Hm—l)\) ’
On a alors :
e)\T

V¥ oo + 1TV oo < e(L,m, T, R) IV lx + 100V =1, -

)\m—l—mo

Ce qui implique que :
AT

)\m—mo

IV oo + 1TV oo < K(L,m, T, R) (ITv** oo + V5 lmn + [1Ellm,) -

Ou K(L,m, T, R) est une constante positive.
On fixe T' < % et on choisit \ tels que :
- % < %, pour avoir

K(L,m,T,R)

k k
V94 oo 4 TV o < S5

£l

~ KL TR) ey | < R, afin d’obtenir

IV oo + 1TV o < R.

et enfin
d—1
100V oo <D 1Aa(vF) T A (V) oo [TV oo
=0
+ [ Aa(v) BV oo [V oo + [[Aa(v*) T (V") o
< 1.
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Cela nous permet alors de vérifier qu’il existe A1 (L, m, T, R) > 0 (dépendant de R, m mais
pas de v¥ vF*T1 k) tel que pour tout A < A\ (L,m, T, R),T < % on a :

= [V oo + [TV < R.

- ||8dvk+1Hoo <1.

||Vk+1||m,)\ <R.

On peut donc affirmer que la suite (v*) est bornée en norme L.

On peut ensuite montrer que pour A suffisamment grand et donc pour T suffisamment
petit, la suite (v¥) est de Cauchy dans L2. (v¥) converge donc vers une fonction v dans
L?(Qr).

On peut ensuite montrer la régularité de v dans H;?,, (1) x H'(Qr), puis, par le théoréme
de convergence dominée de Lebesgue, le fait que v est bien solution du probléme non linéaire
original (3.6).

On justifie ensuite, par récurrence, la régularité de v selon la direction x4 en se servant
de la relation

d—1
0av ==Y Ad(v) ' A; (V)9 — Ay(v) I B(V)V + Ag(v) (V).
j=0

Cela permet d’aboutir au résultat souhaité. |

3.1.4 Petit résumé des techniques clefs de cette partie

Au dela des manipulations classiques des espaces de Lebesgue et de Sobolev, quelques

techniques sont & retenir et s’avéreront utiles par la suite :

— Les estimations d’énergie, qui consiste a faire le produit scalaire (dans L?) de 1’équation
avec sa solution. Cela nous permet de majorer la norme L3 de la solution (ou une norme
dérivée). Cela fait intervenir le coté maximal dissipatif du probléme.

— Les crochets de Poisson et 'inégalité de Gagliardo-Niremberg-Moser qui nous aide lors
de Pestimation des dérivées de la solution du probléme. Cela nous permet de montrer
la régularité des solutions.

— Le schéma itératif de type Picard, que 'on pourrait percevoir comme étant une simple
méthode de type point fixe.

3.2 Pénalisation d’un probléme hyperbolique quasilinéaire

Dans cette section, nous allons proposer une méthode de pénalisation pour un systéme
hyperbolique non linéaire plus général que dans le chapitre 2. La méthode de pénalisation
proposée a pour intérét de ne pas générer de couche limite.

Le contenu est trés proche de ’article [13] publié dans le journal Advances in Differential
FEquations.

3.2.1 Le théoréme principal et ses hypothéses

Dans cette section on va présenter le résultat principal de ce chapitre : une méthode de
pénalisation pour des systémes hyperboliques non-linéaires. Dans le but d’avoir un résultat
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Zone pénalisée |Domaine originel
R¥1x] — 00, 0] R4
(xq <0) (g >0)
Xjzq<o = 1 X|zq>0 =0
zqg=20

FiqurEe 3.1 Schéma du domaine spatial.

valable le cas d’un systéme défini sur un espace multidimensionnel (d > 1), on ne traitera que
des solutions réguliéres en accord avec ce qui a été présenté dans la section 3.1.

Afin d’éviter les problémes de compatibilité de la condition initiale et pour se concentrer
sur ’aspect pénalisation, on considére un probléme aux limites avec des données nulles dans
le passé.

Dans cette étude, on pourrait considérer le probléme hyperbolique suivant :

d
Z Noju(t,x) = £(t,x,u(t,x)) (t,x) €] — Tp, T[xRL
I= (3.8)
O(u(t,x’,0)) = (t,x') €] — Ty, T[xRI~?
uj<o = 0.
Mais, comme pour la section précédente, on introduit un fonction a :] — TO,T[de — R

qui prend en compte, entre autres, les différents paramétres du modéle physique menant au
probléme hyperbolique étudié.
Au final, le probléme hyperbolique que nous allons considérer est le suivant :

d
du(t, x) Z Ju(t, x))d;u(t,x) = f(a(t,x),u(t,x)) (tx) €] —Tp, T[xRL
Jj=
O(a(t,x',0),u(t,x',0)) = 0 (t,x) €] = To, T[xR"!
Ut<o = 0
(3.9)
Dans ce chapitre, on rappelle que la variable d’espace s’écrit x = (x1,...,24) = (X', 24). Le

domaine sur lequel est posé le probléme (3.9) est représenté dans Fig. 3.1.
On suppose que le probléme (3.9) satisfait les hypothéses décrites ci-dessous :

Hypothése 3.2.1

1. a:] — Ty, T[xR% — RP" appartient a H(] — Ty, T[xR%).
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2. f:RP" x RP — RP est de classe C® et, pour tout 'y € RD/, f'(y, 0)=0.

3. ® :RY x RP — RP est de classe C™® et pour tout (y,U) € RY x RP,v,© (y,U)
a un rang constant noté p. De plus, pour tout y € RP' @(y,0) = 0.

4. Pour chaque j, A; : RP" x RP — Mp(R) est de classe C°.

5. II existe un symétriseur S(y, U) tel que, quelque soit (y,U) € RP x RP .
— S(y, U) est symétrique et définie positive, uniformément en (y,U) quand U est
dans un voisinage U C RP de 0 et quand y est dans un voisinage Z C RP" de
0. Cela signifie qu’il existe € > 0 tel que, pour tout (y,U) € Z x U, et pour
tout W € RP, (S(y, U)W, W) > &||W||?, ou on rappelle que (,) et ||.|| désignent
respectivement le produit scalaire et la norme euclidienne sur RP.

— Pour tout j € {1,...,d}, S(y, U)A;(y, U) est symétrique.

6. On fait ’hypothése que le probléme est non caractéristique, c’est a dire que pour
tout (y,U) € RP?" x RP | la matrice Aq(y, U) est inversible.

7. Les conditions aux limites sont supposées étre maximales strictement dissipatives :
Pour tout y € Z, s’il existe U € RP tel que ©(y, U) = 0, alors la forme quadratique
vérifie les propriétés suivantes :
~ 31> 0,Vy € RP', YW € ker V,0O(y,0), (S(y, U)Ay(y, UYW, W) < —f|W|>.

— dimker V4©(y, 0) est maximale pour la propriété ci-dessus.

D’aprés les résultats présentés dans la section 3.1, on peut affirmer qu’il existe un temps
7 > 0 fini tel que le probléme original (voir I’équation (3.9)) admette une unique solution u
dans H®(] — Ty, 7[xRL) N Whe(] — Ty, 7[xR4).

Lemme 3.2.1

I existe @ C U, V, deux voisinages de 0 € RP et Y C Z un voisinage de 0 € RD" vérifiant
la propriété suivante : il existe H € C* (Y x V, Q) tel que, pour tout'y € Y, H(y,.) est
un C*°-difféomorphisme de V vers Q vérifiant

VUeQVy eV, Oy, U)=0=Vi=V=---=1,=0
et Vy € Y,H(y,0) =0,

ot V € RP est tel que U=H(y,V) et (Vi,...,Vp)=V.

Démonstration du lemme 3.2.1: La matrice V,0(0,0) est de rang p. Quitte & réarranger
les termes, on suppose que la matrice carrée de taille p x p dont les colonnes sont d,,©(0,0)
(i € {1,...,p}) est inversible.

On définit alors la fonction Z : (U,y) — (O(y,U),Upt1,...,Up,y) et on pose V =
(©(y,U),Up+1,---,Up).

Notons que Vy,aZ(0,0) est inversible. Le théoréme des fonctions implicites permet d’af-
firmer Dexistence de deux voisinages Q@ C U C RP ety Cc Z C RP" tels que Z est un
Co°-difféomorphisme défini sur @ x Y les D premiéres composantes de Z~! fournissent la
fonction de changement d’inconnue H. |
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A partir de cette ligne, on admet la fonction a est & valeurs dans le voisinage ), c’est a
dire que
Hypothése 3.2.2

V(t,x) €] — T, T[xR%, a(t,x) € V.

On remarque que la démonstration du lemme 3.2.1 permet d’obtenir un choix simple pour le
changement d’inconnue H.

Tout comme pour la section 3.1, nous considérons désormais que, pour les différentes
fonctions et matrices utilisées, la dépendance en (¢,x) et en a(t,x) est implicite. Ainsi, par
exemple, A;(u) désigne (t,x) — Aj(a(t,x),u(t,x)) et d; (A;(u)) correspond & VaAj(a(t, x), u(t, x))-
dja(t,x) + VuAj(a(t,x),u(t,x)) - 9ju(t, x).

La matrice P est définie comme étant la projection orthogonale sur le sous-espace vectoriel
RP x {0}P~P. La condition a la limite dans les nouvelles variables devient alors Pv = 0. Avec
la nouvelle inconnue v, le systéme s’écrit :

d
VVH(V) 9v + > A (H(v)) VyH(v)d;v = f (H(v))  dans | — Ty, T[xR$
j=1

(3.10)
Pvi,,—0=0 sur | — Tp, T[xR4L.
Le systéme est ensuite multiplié a gauche par V,H(v) 'S (H(v)) :
d
Ao(v)Ov + Z Aj(v)o;v =£(v) dans]— Ty, T[xRi
=1 (3.11)
Pv,,—0=0 sur | — Tp, T[x R4~
Vieco =0 sur | — Tp, O[xR%..

Sous cette forme, les fonctions A; et f s’expriment de la maniere suivante :
Ay(v) =V H(v)'S (H(v)) V,H(v)
A;(v) = V.H(v) TS (H(v)) A;(v)V H()

d
f(v) = V,H(v) 'S (H(v)) | f (H(v)) — V.H(v) - dia — Z A;(v)V.H(v) - 9;a
j=1

D’aprés les propriétés sur S (H(v)) et VyH(v), on peut en déduire que Ag(y, V) est unifor-
mément définie positive par rapport aux variables (y, V), oy € Y et V vérifie H(y, V) € Q.
Ainsi, il existe e > 0 (ne dépendant pas de V) tel que pour tout y et pour tout W € RP,
(Aoly, V)W, W) > | W|2.

On rappelle que ’hypothése de conditions a la limite maximale strictement dissipative est
invariante par le changement d’inconnue :
Lemme 3.2.2

Si le probléme original (3.9) a des conditions a la limite maximales et strictement dissi-
patives alors, il en est de méme pour le probléme (3.11).
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Pour le probléme reformulé (3.11) la propriété de condition a la limite maximale et stric-
tement dissipative signifie que pour tout V. € RP tel que PV = 0, la forme quadratique
W — (A4(y, V)W, W) a les propriétés suivantes :

~ 3u>0,YW € kerP,Vy € Y, (Ay(y, V)W, W) < —pu|W|?

— D — p est le nombre de valeurs propres strictement négatives de Ay4(y, V), comptées
avec multiplicité. Ainsi, comme A4(y, V) est inversible, elle posséde p valeurs propres
strictement positives.

On en arrive maintenant au systéme pénalisé qui est la raison d’étre de cette partie de ce

chapitre :

d
Ao(ve) Ove + 3 Aj(ve)djve + %Pva — f(v.) dans]— Tp, T[xR®
j=1
V€|t<0 =0 sur ] — TQ, O[X]Rd,

(3.12)

ol x est la fonction caractéristique de l'obstacle, c’est a dire que X|;,<0 = 1 et X|z;50 = 0,
comme indiqué dans la figure 3.1.
On remarque que la condition a la limite du probléme reformulé (3.11) est Pvj;,—0 =0et

que le terme ajouté dans le systéme pénalisé (3.12) s’écrit simplement XPvg. Formellement,

13
quand ¢ tend vers 0, on retrouve la condition a la limite Pv,, o &~ 0. Le résultat principal
de cette partie est le théoréme 3.2.1 (voir ci-dessous), qui justifie le caractére bien posé du
systéme (3.12) et qui donne une estimation de l'erreur due a la pénalisation.

Théoréme 3.2.1

Sous les hypothéses 3.2.1 et 3.2.2, présentées dans cette section, il existe un instant fini
T €]0, 7| tel que, pour tout € €]0,&¢|, le probléme pénalisé (3.12) rappelé ci-dessous

d
Ag(ve) Opve + > Aj(ve)dsve + %PVS — f(v.) dans]— Tp, T[xR
j=1
Velt<0 = 0
admette une unique solution v. € H'(] — Ty, T[xR?) N W1H2(] — Ty, T[xR?). De plus, v.
est régulier de chaque coté de l'interface x4 = 0, c'est a dire v.|,,~o € H*(] —Tp, T[xR%)

et Veayco € H®(] = To, T[xRZ),
De plus, quelque soit s > 0, on a ’estimation suivante, quand ¢ tend vers O :

v — VeHHs(]—TO,T[xRi) = 0(e).

Le théoréme 3.2.1 fournit une pénalisation linéaire du probléme reformulé (3.11). Si on
revient au probléme original, (3.9), le terme de pénalisation devient non linéaire. Au final,
pour le probléme hyperbolique original, le théoréme s’écrit :
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Théoréme 3.2.2

On rappelle ici ’écriture du probléme original :

d
Ora+ > Aj(u)du="Ff(u) dans]— Ty, T[xRY
j=1

(3.13)
O(u)=0 zqg =0

uji<o = 0.
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On suppose que les hypothéses 3.2.1 et 3.2.2 sont vérifiées.
Il existe un temps fini T < 7 et g9 > 0 tels que, pour tout € €]0,&9], le probléme
pénalisé

d
oy, + z; Aj(ug)aju‘E + X(EX)M(UE) u. = f(u.) (t,x) €] — T, T[de

Uglt<o = 0,
M) u. = (S(u)) ™ (VB (HHu)") PH (),

admet une unique solution u. € H'(|—Tp, T[xRL)NWL (] =Ty, T[xR?) qui est réguliére
de chaque coté de I'interface xqg =0 : Ug|y,~0 € HP(] — To, T[xRL) et Ugjp,<0 € H®(] -

Ty, T[xR%).
On rappelle que , pour S, H et donc aussi pour M, la dépendance en la fonction a est
implicite.

Quelque soit s > 0, Uerreur de pénalisation satisfait la relation suivante, quand e tend
vers 0 :

e — ull oy rieme) = OC).

La matrice de pénalisation est non triviale et est de la forme M(u.) u. avec

(s0) " (v\H(H(0)) PH(0) =0.

On remarque que, si p < n, la matrice de pénalisation n’est pas inversible. De plus, il est fort
possible que dans certains cas, 'expression de M ne soit trop compliquée pour étre vraiment
utilisable en pratique.

D’un point de vue pratique, il est plus simple de considérer le probléme reformulé (voir le
théoréme 3.2.1), car, sous cette forme, la pénalisation semble naturelle : les champs pénalisés
sont simplement ceux concernés par les conditions a la limite. L’estimation ||[uc—ul|gs = O(e),
peut étre interprétée comme une absence de couche limite pour la méthode de pénalisation
décrite dans cette partie. Cette caractéristique différe des autres résultats connus pour des
problémes hyperboliques quasilinéaires [41].

Pour montrer le théoréme 3.2.1, on commence par construire une solution approchée v,
du probléme pénalisé (3.11) grace a un développement asymptotique présenté dans la section
3.2.2. La seconde étape consiste & montrer que la solution exacte de (3.11) s’écrit v, +ew en
justifiant que w existe dans un espace de Sobolev adapté. Pour prouver 'existence de w, on
a crée un schéma itératif qui fournit une suite (w”)pen. Dans la section 3.2.3, on utilise des
estimations d’énergie pour prouver que (w*) est borné en norme L? et L™ et converge vers
une fonction w.

La solution du probléme original u est définie jusqu’au temps 7 mais, d’aprés le théoréme
3.2.1, la solution du probléme pénalisé pourrait ne pas étre définie jusqu’a cet instant. En effet,
dans le développement asymptotique, on n’a pas donné de résultat garantissant 1’existence
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du développement dans la zone pénalisée jusqu’a I'instant 7. Ce point différe de ce qui a été
obtenu pour une méthode de pénalisation, dans le cas semi-linéaire [30].

Dans les sections suivantes, nous allons considérer le domaine ouvert Qp =] — T, T[xR¢.
QF =] — Ty, T[xR% désigne le domaine originel (c’est a dire le domaine du probléme avec
condition & la limite (3.9)) et que Q7 =] — Ty, T[xR? représente la zone pénalisée (c'est a
dire, le domaine fictif). Fornet et Gues [30] ont présenté une méthode pour étendre le résultat
du théoréme 3.2.1 pour un domaine originel dont la forme est plus complexe.

La section 3.2.4 présente briévement un exemple d’application de cette méthode de péna-
lisation dans le cas linéaire en comparant avec d’autres méthodes connues.

3.2.2 Le développement asymptotique formel

Afin de construire une solution approchée de (3.12), on commence par chercher un déve-
loppement asympotique d’un solution continue de la forme :

“+o00
Za‘"V"’*(t,x) sixzg <0
ve(t,z) ~ -

> eV (tx) s ag > 0.

Les termes V™~ et V™1 sont supposés avoir les propriétés suivantes :

o
V|t<0 =0.
n,+ __
V|t<0 0.

— Quelque soit t > =Ty, V"~ (t,x1,...,24-1,0) = V> (t, 21,...,24_1,0).
Nous allons construire V»~ et VT pour n’importe quel ordre n. VT représente V™t
dans la zone x4 > 0 et V™~ ou x4 < 0, cette écriture servant uniquement & définir d’autres
notations. Comme la convergence des séries >, e"V™%(¢,x) n’est pas garantie (et ne nous
intéresse pas), on considére que ce n’est qu'un développement formel et on utilise la notation
~ au lieu de =.

Ceci est est en fait une généralisation de ce qui a été fait pour le systéme étudié dans le
chapitre 2 (voir la sous-section 2.3.1).

Comme pour tout j € {0,...,d}, Aj(a(t,x),.) et f sont de classe C*°, on peut écrire leur
développement asymptotique ci-dessous :

A; (a(t,x),ve(t,x)) Ze”AD (t.x), VOE(t,x), ..., V"E(t, %))

f (a(t,x), ve(t,x) Zs"fD (t,x), VO=(t, %), ..., V"E(t,x)) .
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Avec les développement asymptotiques, le systéme (3.12) devient :

+oo d
X 0,4 n| A 0/y/0,£ n,+ 070,41\ 9 v/t
PV +Z:a (AO(V YoV +Z Ad(VOE)o v
=0 i=t (3.14)
+FY(VOEVRE gvETLE 1<k §n)+XPV”+1> =0,

oll F"(Vo’i, VEE GVE-LE 1 < | < n) est une fonction qui contient tous les termes qui dé-
pendent de Vovi,ﬁjVO’i, I VAL e 0;V=hE V¥ mais pas de GjV”’i. On note que la
fonction V& s F(VOE VEE gVE—1E 1 <k <n) est affine.

Considérons maintenant ’hypothése de récurrence (H™) : 1l existe un certain temps 7' > 0
indépendant de n tel que pour tout k < n, VFT et V¥~ est bien défini sur, respectivement,
] — Ty, T[xRZ et ] — Tp, T[xRZ. De plus, PV 1+ est bien défini sur | — Tp, T[xR<.

Initialisation (H), a partir des termes en €V

D’aprés le terme en €1, on a PV%~ = 0 (pour tout z4 < 0).

Pour z4 > 0 (x(x) =0) :

D’aprés les termes en €V de I'équation (3.14), VO est solution du probléme hyperbolique

suivant :
d
AJ(VOH) g vOt £ 3T AYVOH) VO L FO(VOT) =0 dans | — Tp, T[xRY
j=1
3.15
PVO|’+7 — PVO,*i ( )
zq=0 |xg=0
0,+ .
jtel-Tp,00 = 0-

En fait, ce probléme n’est autre que le systéme originel reformulé (3.11), il a donc des condi-
tions a la limite maximales strictement dissipatives et un bord non caractéristique.
Ainsi, I'existence d'une unique solution réguliere VO+ € H>(] — T, 7[xR%) de (3.15) est
assurée. Remarquons, qu’au final V%+ = v la solution du probléme originel reformulé (3.11).
Pour z4 < 0 (x(x) =1) :

d
AJ(VOT) o VI + Y AV VT + FO(VOT) + PV =0 dans | — T), T[xR?

j=1
077 — 07+
v lzg=0 — v |zq=0
07_ —
Vim0 = 0

(3.16)
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Comme PV~ = 0 a déja été calculé, si on veut obtenir V¥~ il reste seulement a construire
(I-P)V"%~ qui est solution de :

d
(I-P)AJVO)A-P) o (I-P)VP) + > (I-P)AYV> )T -P)9; (I-P)V*")
j=1
+(I-P)F(V®%) =0 dans | — Tp, T[xR%
I-P)V _ =(@-P)VF
(T=P)V)5 g0 = O
(3.17)
On pose
( Vg}_ > =I-PVET < F%(S’O") ) = I=PF(VET)

et on définit les matrices A?’H(VO’*) de taille D — p x D — p telles que

(I-P)AY (VO )I-P) = ( g A?,II?VO,—) )

Le probléme (3.17) peut maintenant étre reécrit comme un probléme hyperbolique de D — p
champs (comme les p premiéres composantes sont nulles) :

d
AT (VO o vy + ) AV, VT + F(VET) =0 dans | — Ty, T[xR?

=1
07_ — 07+
Vil za=0 = Vi jzg=0
07_ —
Vi e-mo0 = 0-

(3.18)
. 0,11 0,— Ly 4 . s A 0,11 0.—
La matrice Ag™ (V%) est symétrique et définie positive, de méme que A" (V7). Pour
montrer I'existence et 'unicité d’'une solution au systéme (3.18), on va vérifier que les condi-
tions a la limite sont bien maximales strictement dissipatives :

Wy eRPPW=( 0 ) eR(I-P)=keP,
Wi
<A2’H(V(\);;:0)WH, Wi)go-» = (AS’H(V?;’J:O)WH, W) ro-»
= <A?I(V(|J;;—Z:0) \/W_, ) W>]RD*P
cker P

< —pllWI? = —pll W,

comme le probléme reformulé a des conditions a la limite maximales strictement dissipatives.

.. . Jis - s P .
Ainsi, la matrice Ag’ (V?ﬂ’ﬁdzo) est symétrique et définie négative, ce qui montre que

N = {0} € RPP est I'espace de plus grande dimension pour lequel il existe pu; > 0, tel
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que pour tout Wy € D, <—A27II(V(‘)‘;;Z:0)W[[,WI[>RD—p < —u1||Wx|?. On en déduit le
caractére maximal strictement dissipatif des conditions a la limite du systéme (3.18).

Il existe donc T €]0, 7] tel que (3.18) admette une unique solution V?I’_, définie sur
] — Ty, T[xR? . On peut donc construire (I —P)V?~ et VO~ jusqu’a linstant T. A priori, il
est possible que T' < 7.

Ensuite, PV~ est calculé grace a la relation suivante, obtenue en multipliant I'équation

du probléme (3.16) par P :

d
PVL™ = —PAJ(VY )9,V =) PAY(VY )9, VO™ — PFO(vO).
j=1

Etape de récurrence, grice aur termes en €” : On admet Phypothése (H"~!) est vraie : c’est
a dire que, pour chaque k < n — 1, VB~ V& et PV™~ sont construits jusqu’au temps T
défini précédemment.

Pour z4 > 0 (x(x) =0) :

( d
AJVOR) oVt £ ANVOIT) o VT 4 B (VO VR oV 1<k <n) = 0
j=1
dans | — Tp, T[xR%L
PVt =PV

|zg= lxg=0

n7+ —_—
Vi —n,0 = 0

Comme F*(VO+ VE+ gVFE—L+ 1 <k <n) est affine par rapport a la variable V¥, le systéme
(3.2.2) est un probléme hyperbolique linéaire dont la version avec des conditions a la limite
homogeéne a des conditions aux limites maximales strictement dissipatives. Ainsi le probléme
hyperbolique (3.2.2) admet une unique solution VT définie jusqu’a l'instant T introduit
dans la démonstration de 1'étape d’initialisation (H%) [16, 25].

Cas g <0 (x(x)=1) :

D’aprés les termes a l'ordre n de (3.14), V™~ vérifie :

d
AJ(VO)g, VT +Z AJ (VO o v
j=1
+FY(VO, VE- gV Lh 1 <k <n)4+ PV =0 dans |—Tp, T[xR?  (3.19)
n,— _ n,+
V|£Ed=(] - V|$d=0
Viier-o.00 = 0-
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A nouveau, PV™~ étant connu, il suffit de déterminer (I — P)V™~ pour avoir V»~. On
considére alors les D — p derniéres composantes du systéme linéaire ci-dessous :

d
I-P)AJ(VO)A=P) o (I-P)V™") + > (I -P)AJ V" )(I-P)o; (I-P)V™")
7j=1
+ (I —P)F(VO, Vh— avFi-b- 1<k<n) = dans | — Tp, T[xR4
n n,+
(I— P)V‘xd L, =I-P)Vi
[ @=P)Vig 5 o =0

De la méme maniére que pour la démonstration de (H%) (cas x4 < 0), la solution (I—P)V™~
est finalement construite jusqu’a l'instant 7', défini dans la preuve de (H°) (encore!).

Grace aux p premiéres composantes du probléme (3.19), on obtient PV"+1—,

Aingi H™ est démontré et le développement asymptotique peut étre construit jusqu’a
n’importe quel ordre.

Le premier terme du développement asymptotique VO est la solution exacte du pro-
bléme au limite, quand & tend vers 0. Comme la pénalisation est incompléte (c’est a dire
que la matrice de pénalisation n’est pas inversible), il est nécessaire de résoudre un probléme
hyperbolique dans la zone pénalisée (4 < 0), pour calculer (I — P)V%—,

On remarque que, pour générer ce développement asymptotique jusqu’a n’importe quel
ordre, on n’a pas eu a introduire des variables de la forme x4/£” (avec b # 0). Cela n’est pas le
cas dans le théoréme 2.6 de I’article de Fornet et Gueés [30], ot le développement asymptotique
fait intervenir des termes en V"(¢,x,z4/¢). Une couche limite due & une méthode de pénali-
sation L? a aussi été mise en évidence dans un article de Carbou [22] pour des pénalisations
de type Brinkman dans le cadre de fluides visqueux. Dans le cas d'un probléme hyperbolique
quasilinéaire, on pourra aussi se rapporter aux travaux de Kheriji [41| qui propose une matrice
de pénalisation (inversible) générant une couche limite.

La couche limite permet un raccordement continu dans les conditions a la limite du do-
maine originel (ici, ]Ri) et de la zone pénalisée ne sont pas compatibles, ce qui n’est pas le
cas dans notre approche.

3.2.3 Propriétés du probléme pénalisé et estimation de ’erreur de péna-
lisation

Le développement asymptotique crée dans la section précédente n’est pas forcément la
solution du probléme pénalisé (3.12), puisque c’est seulement une expression formelle. Mais,
les premiers termes de ce développement (jusqu’a un certain ordre M) seront utiles pour
trouver la solution de (3.12).
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3.2.3.1 Définitions et notations

On rappelle le probléme hyperbolique étudié :
d 1
Ao(ve)Orve + Y Aj(ve)djve + XPve=f (%) €] - To, T[xRY (320
j=1 '
Velt<0 = 0.

Dans la section précédente, nous avons crée une solution approchée v, (t, x) = Zr]\L/I:() e"V™E(L, %)
(pour M assez grand) tel que :
d 1
Ao(va)Orva+ Y Aj(va)djva + _XPv, = MR+ (t,x) €] — T, T[xR? a.21)
j=1 '
Valt<0 = 0.

La démonstration du théoréme 3.2.1 fait appel & la norme L* de R. qui est bornée
indépendamment de . C’est ce qu’indique le lemme ci-dessous.
Lemme 3.2.3
S M

=0 e"V™E est une solution du

Pour un M € N* fixé et pour g9 > 0, la fonction vg, =)
probléme approché suivant

d
1
Ao (ve)Opve + Z Aj(vq)0jve + gvaa =eMR, +f (t,x) €] — To, T[de
j=1

Va|t<0 = 0

et ||R¢||oo est bornée uniformément en e €]0, gg].

Démonstration: du lemme 3.2.3 : Comme le développement asymptotique est d’ordre fini, on
peut considérer :

Aj (a(t,x),ve(t, x)) Zs”AD (t,x), VO£ (t,x),..., VVE(t, x))
n=0

f (a(t,x), vq(t,x) Ze"fD (t,x), VO£ (t,x),..., VVE(t, x)) .

Le terme correctif R, vérifie :

d
) 1
MR, = Ag(vy)Ove + Z Aj(vy)0vg + gXPV“ —f

j=1
d M ’ M
=) emAP (vOE L V) Zspa ViE LY e PV
7=0n=0 p=0 n=0

M
=) P (VOE L V)
n=0
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D’aprés la définition du terme V™*, 1’équation ci-dessus se réécrit :

d 2M M
MRo=D) Y e Y AP (VOE L Ve g v My pyMELE
j=0n=M+1 p=n—M

On a donc une somme de termes en H>(Qr). On en déduit qu’il existe une constante ¢ > 0,
indépendante de ¢ €]0, (], telle que :

IR oo < e
|

Pour le suite de la preuve du théoréme 3.2.1, on prendra m > mgy = {%J +2et M >3+ %mo.
On rappelle ici les définitions des dérivées tangentielles : Soit o = (ap,...,@4-1) € N¢,

opérateur de dérivées tangentielles T s’exprime de la maniére suivante 7% = 9;°0%1 ... 0gi .
On définit aussi un espace fonctionnel adapté & nos besoins :

Définition 3.2.1

On définit I'espace A(Qr) comme l'ensemble des fonctions v : Qp — R vérifiant :
v e H! (QT)
— v e HX (Qr), cest a dire que, quelque soit a € N%, T € L%*(Qr).
Ogv € thon(QT)
— v € Wb ce qui signifie que v € L™, et, que pour tout j € {0,...,d}, ojv e L*

Désormais, notre but est de construire w € A(Q7) telle que v = v, +ew soit une solution
du probléme pénalisé (3.12), c’est a dire :

d
1
Ao(vg +ew)0(vg +ew) + Z Aj(vy+ew)0j(vg +ew) + gXP(Va +ew)=f

=1 (3.22)
(t,x) €] — Ty, T[xR?

Valt<o T EWjt<o = 0.

On fait ensuite la différence entre (3.22) et (3.21) :

d
1
Z (Aj(va+ew)0;(Va+ew) — Aj(vy)0jvy) + gxPew:—&:MR6 (t,x) €]— Ty, T[xR?
§=0

On définit I'application linéaire B(U, V,ew) : W — B(U, V,ew)W telle que :

d
Z (Aj(vg+ew) — Aj(vg)) 0jvy = —eB(vg, Vg, ew)w.
j=0
Cette application dépend de (a, v,, Vg, W) et est de classe C*°.Dans le but de raccourcir les

équations nous ne ferons plus apparaitre les variables v, Vv, dans Vopérateur B(v,, Vv,, ew)
qui devient alors B(ew).



CHAPITRE 3. PENALISATION D’UN SYSTEME QUASILINEAIRE 100

Ainsi, le probléme hyperbolique pour w est le suivant :

d
1
Ag(vatew)ow + Z Aj(vet+ew)ojw — Blew)w + gwa:—aMfle
j=1
(t,x) €]— Tp, T[xR?

Wit<o = 0.

Pour le traitement de la partie non linéaire du systéme, on va utiliser une méthode de
type point fixe. L’existence de la solution peut alors étre obtenue en étudiant une version
linéarisée du systéme.

Cela nous améne a considérer un schéma itératif de type Picard :

w’ =0
Vk € N,

d
Ag(vo+ewk)dwht! —I—Z A (votew®)o;wh ! —Bew®)wh !+ ?PwkJrl =_—eM-IR,
j=1
dans |—Tp, T[xR?

k+1_0

W|1t<0 o

On s'attend a ce que cette suite converge vers w dans L?(Qr) puis aussi dans H*(7.),
H>(Q7) et HY(Q7). C’est ce qu'on s’attache & montrer maintenant.

Dans toute la suite du chapitre, la dépendance des différentes constantes en v, Ty, T, et en
les différents coefficients du probléme reformulé (3.12), Ay,..., Ay, P ne sera pas explicitée.
Cela permettre d’alléger les notations.

3.2.3.2 Convergence de la suite (w*) dans L2

3.2.3.2.1 Normes a poids : Pour prouver la convergence de la suite (w") dans L?(Qr),
nous allons faire appel & des estimations d’énergie. Mais la norme L? n’est pas la plus pratique
pour fournir des estimations bornées en € < 1. C’est pour cette raison que ’on introduit ci
dessous les normes a poids que l'on utilisera dans cette partie :

Définition 3.2.2 (Normes a poids)

¥® € LX(Qr), [®loa = e @[l 120y
V@ € Hp (1), | ®llma = D N T@ o,

|a|<m
VB € H (1), [ @]lmae = Y A" VEN TR
la]<m

On fait les remarques suivantes, qui vont nous étre utiles par la suite :
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L. [[.[lo,x est équivalente & la norme ||.|[z2(q,), pour une valeur de A fixée.
2. [ llmx €t [-[lm,xe sont équivalentes & la norme |[.[|gp (p) = 2jaj<m 1T lL2@p) & A
et ¢ fixés.

3. On a aussi (® € H[}, (1)) :

M@[lm—1.xe < [®llmae
VEIT®lm-15e < [®llm e

On peut facilement montrer qu’il existe ¢ > 0 (dépendant de m, mais pas de A, &) et une
fonction (mn(A) indépendant de €) tel que

||RE||m,)\,£ < gm(A)
IR:

loo < c.
Puisque R.¢<o = 0, on note que (u(A) = O(A™), quand A tend vers Uinfini.
k+1

3.2.3.2.2 Estimations d’énergie pour w Cette sous-section a pour but de prouver
une estimation d’énergie pour le probléme hyperbolique ci-dessous, d’inconnue w :

d
1
Ag(Va+eb)aw + > Aj(ve +b)djw — B(eb)Ww + XPw =g (tx)€Qr 3.23)
j=1 :

Wii<o = 0.

Dans cette sous-section, b représente w”* (avec k € N) et w désigne w**!. Dans nos esti-
mations, les constantes ne doivent pas varier avec b, W (c'est a dire, avec w”*, wFt1) afin
de pouvoir montrer par récurrence que la suite (W*)gen est bornée pour les normes |.[|m.x e
et |l.lloo + |V.]loo- g correspond a e®~1R., donc on admet que ||gflmre < (n(N)eM ™t et

Iglloc < ce™~.

Propriété 3.2.1
Si les hypothéses suivantes sont vérifiées
b e A(] - To, T[xR?).
- HbHoo + HVbHOO <R.
alors il existe €1(R) €]0,1[ tel que le probléme hyperbolique (3.23) admette une solution
w € A(] — Ty, T[xRY), quelque soit e < e1(R). De plus, il existe ¢(R) (indépendant de g)
et \o(R) > 0 tel que 'on ait l'estimation d’énergie suivante :

- 1 N ¢(R)
YA > Mo(R), VA|[Wllox + —=|[xPW]jox < == .
o(R), VA[[Wllox \/g\lx llo,x 7 lIgllo,x

Démonstration de la propriété 3.2.1: On utilise les notations suivantes :

Vo (t, 21, ..., xq) = Va(t,x1, ..., —xq) €t Vo (t, 21, ..., xq) = Va(t,21,. .., +Tq).
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Soit le probléme hyperbolique suivant, :

(M0 e eny) () + (™5 o)) 5 (57)

+ <_Ad(ua6 e Ad(ua_0 + sb_)> % (X;) - (B(gbo_ o B(eb(jr)vh) (:;)

W_jt<0 =0

V~V+\t<0 =0

W_|24=0 = Wi|zu=0 = 0.

On remarque que le probléme hyperbolique ci-dessus est symétrique et a des conditions a la
limite qui sont maximales et strictement dissipatives. En effet,

~ Enzg=0,0onaAg(ve- +eb_)jz,—0 = Ag(Var +eby)jz,—0 et W_ = w.

Donc, (Ad< z; ) ( g; >>R2N 0.

A4(vay +eby) est symétrique et inversible, pour ¢ assez petit (¢ < e1(R)). Ainsi, la
somme des sous-espaces propres associés aux valeurs propres strictement négatives de
A, est de dimension n.

Le résultat du théoréme 3.1.2 nous permet d’affirmer 'existence et I'unicité de (W_, W) €
H>(2£)2. On peut aussi citer les résultats de Rauch [55], Gués [35], Benzoni-Serre [16] ou
encore de Chazarain-Piriou [25] (page 475, théoréme 6.10).

D’aprés les inclusions de Sobolev, on sait aussi que (W_, W) € Whe°(Q1)2,

La solution de (3.23) peut étre écrite :

wW_(t,x1,...,—xq) si g <0

Wi (t,x1,...,2q) sl zqg > 0.

W(tvl'la"'axd):{

De plus, W et ces dérivées tangentielles 7w sont dans L2(Qr).

En calculant 9;w a l'aide de ’équation (3.23), on en déduit que w € H*(Qr) N HL, (Q7).
C’est a dire, au final, que w € A(Qr).

Estimation d’énergie pour w : On pose W (£, x) = exp (—At) W(t,x), tel que [|[Wx || 20, =
W llo.x-

Comme Ag(v,+eb) est uniformément définie positive ((Ag(eb)Wx, Wa)22(0.) > €ol|WallL2(0.))

d

1
AAo(é‘b)\Xl}\ + ZA]‘(Eb)aj\X/)\ - B(eb)\?v)\ + gXP\X/A = g (t,X) E] - To, T[de
=0
VNVA\t<0 =0.
(3.24)
On fait le produit scalaire L?(Q27) de (3.24) avec W :
d
AeollWallZ2 (@) + Y (Aj (D)%, W) r207) — [IBED) oo WalIZ2 (0
=0

1 N -
+ g||XPWA||%2(QT) < llgrllzz@m Wl L2 ()
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De plus, pour j € {1,...,d} :
- 1 .
(A;(eD)O; W, Wa) L2 (7) = —5(0; (Aj(eb)) Wi, W) r2(ar)

1 -
2 =5 195 (A;(eb)) ool %Al Z2(0r)-
Pour le terme de dérivée en temps :

L 1 o 1 - -
<A0(5b)80W)\,W)\>L2(QT):—§<80 (AO(Eb))WA7WA>L2(QT)+§/Rdw)—\r\t:TAO(gb)t:TWMtszX

>0
**/ WMt——T 0(eb)1=1, W= -1, dX
=0 car W¢<o=0
1 -
> =519 (Ao(eb)) lloc[WalIZz (01
Aol WallZ2 o) + HXPW>\||L2 Q) < ZIIa J(€D)) o +IIB(eb) oo 1WAl Z2 (2

+ lgllz2 @r) WAl 2 (r)-
En remplacant, dans I'inégalité précédente, le terme L[|xPw, |2 72(qp Par 0, on obtient :
14
VA >0, Aeol[Wall2 @) < | 5 > 105 (Aj(eb)) lloo + IIB(eb) oo | 1Wall 2200y + llgallz2any-

§=0
On suppose ensuite que A > A(R) = 2 (% Z?:o 105 (A;(eb)) lloo + ||B(Eb)||oo), cela donne
MLz @) < o]
W _ )
AlL2(Qr) = eoro(R) gllz2(r)
A propos de I'estimation du terme ||[xPWy |12 (q,), le méme procédé que ci-dessus est appliqué :

1 -
%IIXPWAHLzmT) < lea i(€D)) o+ B(eb) oo | 1WAl 720 I8l 2 (20 WAl 22 (021

C (R)
=4

Finalement, en posant ¢(R) =

o 2
lgallzz ) d’apres A[|[Wallz2(ar) < —lI8llz2r) (A > Ao(R)).
€o

% + C1(R), on obtient 'estimation d’énergie souhaitée :

VAo + =[Pl < (f) lellos _
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3.2.3.2.3 Inégalités pour les dérivées tangentielles de w*t! :  Ce paragraphe a pour

objectif d’étendre I'estimation d’énergie de la proposition 3.2.1 aux dérivées tangentielles de
whtl
Propriété 3.2.2

On prend R > 0, b € A(] — Ty, T[xR?) et W € A(] — Tp, T[xR?) la solution du probléme
(3.23). On suppose que :
bl + [ Vbl < R
0<e<e(R)
—A>N(R,m) > 1

Alors, il existe ¢(R, m) (indépendant de w, b, \, €) tel que w vérifie ’estimation suivante :

- 1 - ¢(R,m)
VAW [mx et ——= [ XPW e < ——r?
[W([maet—=IIXPW[mae < 7

NG (Pllme ([TW/loo +[IXPWloo+lglloc) + [18[lm.xc) -

(3.25)

constantes de la forme ¢(R,m) seront,entre autres, indépendantes de w, b, A, e.

Aprés avoir appliqué Vopérateur de dérivée tangentielle \Ela‘T‘l a (3.23), le probléme
hyperbolique obtenu s’écrit :

d
lo| e [ p——— 1 ol ras\
;Aj(gb)af (\ﬁ T W) — B(eb) (\/5 T w) +-xP (\/E T W) -
d—1
Aa(eb) ( =3 [A7HEb) A (eb)dy, VAT W - % (A7 (b)P, Va7 W
7=0
+VeT? (A;l(sb)g)>
VE I T g, 01 = 0

(3.26)

On applique la proposition 3.2.1 appliquée au probléme (3.26) dont 'inconnue est ﬁla"T“\?v.
Ainsi, il est nécessaire d’estimer la norme ||.|[o,» du membre de droite de I'inégalité. Pour les
termes comportant un produit de deux fonctions, on utilise & nouveau une inégalité de type
Gagliardo-Niremberg-Moser (pour une démonstration du lemme ci-dessous, on pourra voir les
travaux de Gueés [35]) :

Lemme 3.2.4 (Inégalité de Gagliardo-Niremberg-Moser pour ||.||m,x,e)

Soit Pq,.. .,‘I’p € H" (QT) N LOO(QT), A 1y.--.,Q p € N¢ (O[.J = (OéoJ,. . ,Oéd)l)t) et k € N, tel

tan

que Y7, Zf:() a1 < k <m. Alors, il existe r > 0, indépendant de €, \, ®1, ..., ®, qui vérifie :

p
7@y T @y lox < 3 TLI%alloe | [0l
=1 \q#l

)\m—k \Ezf=1 Z;‘i:o Qi,l

On commence avec le deuxiéme terme du second membre de (3.26) qui est le plus délicat
a majorer (en norme ||.|[o.\) & cause du coefficient 7.
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Pour cela il est nécessaire d’avoir un inégalité sur la norme de [XAglP, ﬁ‘alT“ w. Tout

d’abord, ce terme peut étre développé de la maniére suivante (Lg . s sont des matrices) :

YAPVENT W=y S Ly, s(eb)T v, TPV, T (eb) ... TV (cb) T Pw.

> Bp+27
+6 < «

(3.27)
ou |§] < |a|. On regarde la norme ||.||o,» de {XAglP, \/E‘alTa} w ce qui donne les inégalités
suivantes :

Am—lel

[[aste VT |

0.\

m—|al
AT S Lp o s(eD)TPiva. TPV, T (eb) ... T (eb) TPPW

> Bpt+ 27

ti<a 0.\

- AM—a< 3 C(R’m)Hﬁ\aleﬁlva_..TﬁkvaT‘SPv”VHo/\
(v |

€
1see-71)=0

+ Z c(R,m)Hﬁla‘)ﬂ'ﬁlva...TB’“VQT“(Eb)...T”’(sb)T‘SPVNVH )
(1) 70 o

g( S0 clRom)yE ARl TP,
(7,

<o m)=0

+ ) e ) (Bl e [XPWlloo + [[XPW ([, a)) (lemme 3.2.4).
(717 l)#o

Finalement, on obtient :
/\m—|a\ —1 lol o] =
{XAd Pvel T } WHO)\

c¢(R,m) <

NG

On voit ici I'intérét d’introduire le coefficient \ﬁm dans la définition de la norme ||. ||,z
cela permet de remplacer le coefficient e~ par 1/4/¢, qui est plus facile & controler (on rappelle
que € < 1).

Le traitement du premier terme du membre de droite de (3.26) est plus classique car
il ne contient que des dérivées d’ordre inférieur ou égal a |a|. Donc, d’aprés 'inégalité de
Gagliardo-Niremberg-Moser (lemme 3.2.4) :

vie{o,....d—1},
[A;l(gb)Aj(ab)aj, ﬁ‘a'Tﬂ WHO < elRm)

)

P e+ (Bl [P0 + ||xP€v||m,A,E>) .

Amf|a\

+ [ Wllm.xe)

< c(R,m) (]

Wl e) -
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m
k)

Toujours d’apreés I'inégalité de Gagliardo-Niremberg-Moser, appliquée cette fois au dernier
terme du membre de droite de (3.26), on a I’existence d’une constante ¢(R), indépendante de
b, g, A, ¢ telle que :

IVE"Te (A7 (b)) llo < e(Rym) ([bllme

8lloo + llgllm.ae) -

En combinant les trois inégalités prouvées ci-dessus, on aboutit au résultat de la proposi-
tion 3.2.2. ]

3.2.3.2.4 Estimation L : Afin de pouvoir utiliser le théoréme de récurrence, il est
nécessaire de montrer que ||W||oo + [|7W||ooc < R, pour un \ fixé et pour ¢ suffisamment petit.

Lemme 3.2.5

On rappelle que my = L%J + 2. Supposons que ||g|lmre < Cn(N)eMTL (avec (n(N) >
1), llgllee < ce™7L Ibllmae < ¢n(MN)eMt et bl + [Vb|low < 1. Alors, il existe
Xo(1,m),e0(A) (indépendant de b, W) tel que pour tout A > \o(1,m) et pour tout 0 <
e < eo(A), les inégalités suivantes sont vérifiées :

[Wlloo + VW]l <1,
~ ~ _1 _5
[Wloo + [ TWloo < Gn(A)eM 2072,
HWHm,A,E < Cm()\)EMila

~ _3
IVEDqW lm—-1e < D(\)M2.

ot D()) est une fonction positive qui ne varie pas avec b, W, e.

Démonstration du lemme 3.2.5: On commence par considérer la relation :
dy
~ - - Xpe
0a% = A (eb) [ =D A;(b)d;W + B(eb)w — “Pwg|. (3.28)

=0

Grace a l'inégalité de Gagliardo-Niremberg-Moser, on a :

H\/gadwnm—l,)\,s < C(m) <\/g(||TV~VHm—1,/\,e+”W”m—L)\ﬁ
+Hb||m—1,A,a(||7—V~V||oo+\|‘7"Hoo+||g\|oo)+Hg||m—1,xe)

1
N
3

NG

Oun rappelle que l'on a choisi 0 < & < g1(1) et A > Ao(1,m). En comparant les normes

(UXPF 1,2+ B llm—1,2 [IXPWo0) )



CHAPITRE 3. PENALISATION D’UN SYSTEME QUASILINEAIRE 107

[-llm—1xc €t [l flm e :

E

IVEOaW [[m—1.3.e < c(m ( (1 T ||W||m xe S Bl e (ITWlloo + 1Wlloo +ligloo)
G
A

€ 1
”g”m)\s \[(XPW||m>\s+||b|m>\s||XPW||OO)>

On ajoute le terme ||[W||,, x ¢, ce qui donne :

[Wllmxe + 1VEOaW 1,2, < c(R,m) <||‘7V||m,x,e+ XPW||m,x e

1
NG

bl (1T W lloo +[1W |0 +llgl )

1 ~ 6]\/[—%
s bl W46 (0

|v~v||m,x,e+wéadv~v||mLA,ESc(R,m)( (f T f||wa|m)

=

EM_%
[Bllm.xe ([T W]loo+ 1 Wlloo +Iglloc) + Cm(A) :

\f X

D’aprés la proposition 3.2.2,

M—-1

- _ 1
||W||m,>\,€ + ”\/gadW”m—l,)\,E < c(R,m) <>\

[bllmae | 1TWlloo +Wlloo + |I8lloc | +¢
—— ———

SCm,()\)EA171 Scel\lfl

stl
ol xe ITWlloo + [1Wlloo + lIglloc) + Gm(A)—— |-

1
AW~

En rappelant que limy_y o0 (m(A) = +00 et que € < 1, on prend une constante £ (indépendante
de )\, ¢) telle que :
14 $mQ) (1 4 2¢)

£
Cm(A)
- ~ co(R,m) a3 ~ ~
¥ llmne + 1VE0aWllm—15e < =——"72 (ITWloo + [Wloo +ECn(N)VE) - (3:29)
A Taide des égalités de Parseval et de 'inégalité de Cauchy-Schwartz, on démontre le lemme
ci-dessous :

Lemme 3.2.6

Soient d € N*,m > mg = [$] +2,0 <e <1 et A > 0. Alors il existe r(mg) > 0 (qui ne dépend
que de d,mq, Ty et T') tel que pour tout ® € H{? () N L>®(Qr) :

AT

€
Am—mo ﬁm0+1

[@]loc < (m0) (I@llm.xe + [1VED P m—1.c) -
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La preuve de ce lemme est similaire & celle du lemme 3.1.9.
L’utilisation du lemme 3.2.6 pour w, nous conduit a l'inégalité suivante :

€>‘T

)\mfmo\ﬁm0+1
Comme /|| TW||lm-1,x: < [Wlmae et VEIVEIaW]m-2.c < [IVEOaW]Im—-1,7c-

e)\T

1Tl < elmo) sz (IT¥hmtae + VBT -2 )

e)\T

Am—1—mg ﬁmo+2

[Wlleo < ¢(mo) (W llmxe + 1VEDaW lm—1.7.c) -

< ¢(mo) (W llm.xe + [1VE0aWllm—1.5.c)

Gréce aux encadrements A > Ag(1,m) et 0 < & < £1(1), on obtient :

AT

~ - €
¥+ 1T < o)

(¥ llmxe + 1VE0aW [ lm—1.0.¢) -

L’inégalité (3.29), permet d’aboutir & :

AT M~—3

~ ~ € ~ ~
[Wlloe + 1TWlloo < c(mo,m)————s (ITWlloc + [Wloo + & Gn(A)VE) -
Am mgﬁ
On fixe A et on définit e5(A,mg, m) €]0,e1(1)] tel que c(mo,m)% e2(A\,mo,m) < %
Ainsi, A partir de l'inégalité précédente, on a

¥ lloo + 1T Wlloe < G (N2~ 5,
Comme M — %mo — % > 0, il existe e3(A, mo,m) €]0,e2(X\, mo, m)] tel que, quelque soit
e < e3(A, mo,m), [|[W]leo+]|TW|so < 4. En utilisant I'égalité (3.28) avec M > 2mo-+3, on peut
affirmer qu’il existe eo(\, m, mg) €0, e35(A\, mg, m)] pour e suffisamment petit, ||IgW||oo < %
Ainsi, pour A > A\o(1,m) et e < gg(A,m, mp) on a la derniére inégalité que 'on souhaitait
démontrer dans le lemme 3.2.6 : |[W|| 0 < Gn(A)eM L [ |

3.2.3.3 Fin de la démonstration du théoréme 3.2.1

Le premier terme w” = 0 appartient & w® € A(] — Tp, T[xR?) et vérifie les estimations
nécessaires a la mise en place de la récurrence. De plus, pour une valeur fixée de A > A\o(1,m)
(c’est a dire R = 1) et pour tout e €]0,9(A, m,mp)], si on a [|[wWF|[mare < Gn(N)eM™t (pour
un certain m > mp) et [|[W¥|l + [|[VWF||oo < 1, alors les propriétés du lemme 3.2.5 nous
permettent d’affirmer que :

W oo + | VW oo < 1
Hwk—}—le,)\,a < Cm()‘)gM_l
IVedaw* lm-10e < DM

Par récurrence, on en déduit que la suite (w¥) est bornée pour la norme ||| 1 et donc aussi
pour la norme L2.
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Pour justifier la convergence de la suite (w*), on va montrer que c’est une suite de Cauchy
dans I'espace L?(Qr). On rappelle que le schéma itératif s’écrit :

d
Aj(ewF)o;wh T — Blew®)wh T 4 Xpwhtl = —eM-1IR,.
=0 c
On fait ensuite la différence entre le systéme pour w**! (voir ci-dessus) et celui pour w* :
d d
Z A;Eewh)d; —BEw®)+ %P (Wk—H —wk"'Q) =— (Aj Ewr)—A; (awk)> Dy wht?
j=0 j=0

+ (B ew"1)-B (awk)> wht2,

Comme A > Ag(1,m), lestimation d’énergie de la proposition 3.2.1 nous permet d’affirmer
que, pour ¢ suffisamment petit :

d
wh 2wk, < € Z(Aj(gwk-i-l)_Aj(gwk)) Dy wh (B<Ewk+1)_B(6wk))wk:+2

ol ¢ est une constante notamment indépendante de € et de wF+!, wh*2,

Comme les matrices A; et B ont leurs coefficients continus par rapport aux variables
(y,v) et comme |[WF|l < 1, [WFH oo < 1, [WFF2 || + [VWFET2|| < 1, on montre que,
pour ¢ suffisamment petit :

”Wk—i-Q _ Wk—&-l”o’)\ < %Hwk+1 _ Wk 0
On en conclut que la suite (w¥) est de Cauchy pour la norme ||.[[o,x (et aussi pour |.||r2(qp)-
D’oit la convergence de (w¥) vers w € L?(Q7).
Pour achever la démonstration du théoréeme 3.2.1, il reste a justifier que w € A(Qr) et
que w est la solution du probléme 3.2.3.1.
On commence par remarquer que, au sens des distributions, Tw* — Tw et Oy;w* — dgw.
Comme (w*) est bornée, pour la norme ||.|[;n.1¢, on en déduit que I'on peut en extraire
une sous-suite qui converge faiblement dans H;",(Qr) et dans HY(Qr) (car [|0gw* (o est
aussi borné). Ainsi w € H™ (Qr) N HY(Qr).
Grace au théoréme de convergence dominée de Lebesgue, v. = v, 4+ ew est une solution
du probléme pénalisé (3.12). De plus, les estimations d’énergie L? assurent l'unicité de v..
Par récurrence sur p € N, on peut montrer que, pour chaque p < m, 9v,| 4,0 € Hip, V(] -
To, T[xRY) et 0v. 4 <0 € Hig, ' (] — To, T[xR™).
— Pour p = 0, on rappelle que v, = v, + ew est la somme de deux fonctions dont
les restrictions a zq > 0 et x4 < 0 sont respectivement dans H, (] — Tp, T[xR%) et
H (] — To, T[xRY),
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— On admet que p < m et que quelque soit k € {0,...,p— 1}, Oljvs est dans HZZ;]“(] —
To, T[xRZ) et dans H" (] — To, T[xR%). On a :

tan
d—1 X
Mve = 55—1 A;l(vg) — E:Aj(vg)ajvE — EPVE + f(ve)
§=0

Donc, d’aprés 'hypothése de récurrence et la régularité des coefficients, on peut prou-
ver que, pour chaque m € N,d%v. est dans Hy,, "(] — TO,T[XRi) et dans Hy, (] —
Ty, T[xR%).
Au final v, appartient & H®(] — Ty, T[xR%) et a H>®(] — Ty, T[xR%).
L’estimation d’erreur est simplement obtenue en considérant (vq+ew)|,;,~0—v = eV T+
s eMVMA 4 oew in | — Ty, T[xRE.
Cela clot 1a preuve du théoréme 3.2.1.

3.2.4 Un premier exemple d’application

Dans cette section, on décrit une application simple de la méthode de pénalisation proposée
dans le théoréme 3.2.1, pour un probléme linéaire et hyperbolique. Le fait que le probléme
soit linéaire rend possible la comparaison avec d’autres méthodes telles que celles décrites
dans les papiers de Fornet [30] et de Rauch [53]

Dans cet exemple, A est une matrice symétrique constante de taille D x D et C est une
matrice constante de taille p x D dont le rang est p < D.

onu(t,z) + Adgu(t,x) = f(t,z) (t,x) €] — Tp, T[x]0, +o0[
Cu(t,0) =0 te]—Tp,T]
uj.o = 0. x €]0, +o0]

On admet que toutes les hypothéses de la section 3.2.1 sont satisfaites. De plus, la sous-matrice
C,xp composée des p premiéres colonnes de C est supposée inversible.

La premiére étape est le changement d’inconnu. On choisit alors le changement d’inconnu
décrit dans la preuve du lemme 3.2.1 :
Ul

CPXP

Up+1

up

Dans ce cas, le changement d’inconnu H et son gradient sont les applications linéaires
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suivantes :
U1
Cot
H:v— Up et VVH(V):< Cpx 0 )
Up+1 0 |Ipy
UD

ou Ip_, est la matrice identité de RP-P,
Au final, la matrice de pénalisation est

M — Ch,| O L]0 Cpxp| O _ C,,Cpxp | 0
0 [Ip, 00 0 [Ip, o |0/’

et le probléme pénalisé s’écrit, pour les inconnues originelles :

_ 1 _

o + Adzu. + —Mu. =f  in | —Tp, T[xR
€

U jt<0 = 0.

Dans les résultats de Rauch [53], pour créer la matrice de pénalisation, il est nécessaire
de trouver une matrice définie positive E telle que ker C soit le sous-espace généré par les
vecteurs propres associés aux valeurs propres négatives ou nulles de EA. Dans ce cas, la ma-
trice de pénalisation s’écrit ¥ ' ¥ avec ¥ = OE%, O représentant une matrice orthogonale
quelconque. Le théoréme 2.7 de l'article de Fornet et Gueés [30] propose une matrice de pé-
nalisation de la forme (\II_I)T PW! ou P est le projecteur de RP sur ¥~ !ker C. Au final,
pour ces deux méthodes de pénalisation (Rauch et Fornet-Gueés), le point le plus délicat est
la recherche de la matrice E ainsi que le calcul de E>.

La méthode de pénalisation proposée dans ce chapitre est plus directe, méme dans le cas
linéaire, et s’étend au cas quasilinéaire. La principale difficulté est le choix du changement
d’inconnue, qui est donné dans la démonstration du lemme 3.2.1. De plus, dans cet exemple
précis, Pexpression de la matrice de pénalisation est simple.

3.3 Conclusion du chapitre

Ce chapitre a été 'occasion de se plonger dans les théories sur les solutions réguliéres
locales en temps, pour des systémes hyperboliques quasilinéaires et de rappeler quelques
résultats connus de la théorie, puis de nous focaliser sur le probléme de l'approximation par
pénalisation d'un certain type de probléme aux limites.

Nous avons étendu la nouvelle méthode de pénalisation proposée dans le chapitre 2 et
montré rigoureusement que celle-ci ne génére pas de couche limite, & aucun ordre. On observe
donc que 'erreur de pénalisation vérifie 'estimation ||u — uc|[gm = O(e). Un autre aspect de
la méthode de pénalisation proposé est sa simplicité : aprés un changement de variable adapté,



CHAPITRE 3. PENALISATION D’UN SYSTEME QUASILINEAIRE 112

on n’utilise qu’une matrice de projection. Par exemple, méme dans le cas d’un systéme linéaire,
la matrice de pénalisation est plus simple que celle proposée par d’autres auteurs [30, 53].

Cela clot ’étude des systémes hyperboliques dans cette thése, car nous allons nous concen-
trer, dans la derniére partie, a I’étude du potentiel électrique, dans le probléme de modélisation
du plasma de bord.

D’autres points pourraient étre étudiés de maniére théorique concernant 'approche par
pénalisation de problémes aux limites hyperboliques, comme par exemple le cas d’un bord
caractéristique, la convergence quand ¢ tend vers 0 pour un probléme discrétisé comme ce
qui a été fait par Chainais-Hillairet et Grenier [23] dans le cadre de la limite visqueuse avec
un schéma de Lax-Friedrichs. On pourrait aussi étudier le comportement de la méthode de
pénalisation dans un cadre scalaire ou avec une seule dimension d’espace en s’autorisant
I'utilisation de solutions faibles globales en temps.



Chapitre 4

Traitement des équations du potentiel
électrique

Jusqu’a présent, nous avons étudié des méthodes de pénalisation appliquées au systéme
N, T avec une généralisation a certains systémes hyperboliques non linéaires.

Bien évidemment 1'étude du systéme N, I' n’est qu'un intermédiaire pour un modéle plus
complet sur la géométrie réelle d’'un tokamak. Les autres quantités physiques que I'on sou-
haiterait modéliser sont la température (ou I’énergie) ainsi que le courant (ou le potentiel
électrique).

Pour la modélisation de la température, les conditions aux limites sont de type Neumann
non-linéaire. Une pénalisation a été proposée par Paredes et al. [47|, toujours dans le cadre
de ’TANR ESPOIR.

Dans ce chapitre, on va s’intéresser & une autre variable qui est le potentiel électrique ¢,,.
7 désignant ici la résistivité dans la direction paralléle aux lignes de champ magnétique.

Nous allons nous intéresser & un modéle simplifié¢ & deux dimensions d’espace proposé par
des physiciens du CEA de Cadarache, s’écrivant :

— 010,y — 71785% +v0,¢y =S dans ]0,T[xQ
OyOnlt=0 = OyPini dans €
ay(anEu =0 et 8S¢|EH =0 sur]0,T[xX (1)
Do, =1 (1 — e =Pie=r ) sur 0, T(x]0,U[x{~L}

O Pyla=r, = =1 <1 - eA_(b”'I:L) sur ]0, T[x]0, {[x{L}
condition de périodicité de ¢y, sur |0, T[x{—0.5,0.5} x]I, 1],

\

ol v correspond & la viscosité ionique perpendiculaire et A désigne le potentiel de référence
a l'intérieur du limiteur. z est la direction paralléle aux lignes de champ magnétique et y
correspond a la direction radiale, voir la figure 4.1.

Dans l'article de Negulescu et al. [45], il est prouvé que, a n > 0 fixé, le probléme (4.1)
est bien posé, sous des hypothéses convenables sur les données ¢;,; et S.

113
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FIGURE 4.1 — Représentation en deux dimensions de la zone contenant le plasma de bord. x
correspond a une abscisse curviligne le long d’une ligne de champ magnétique (de direction b).
Le domaine contenant le plasma est € et les frontiéres sont ¥ (pour tout la partie parallele
a b) et ¥, (pour la partie perpendiculaire a b). Cette configuration sera notamment celle
utilisée dans la section 4.3.

Les conditions aux limites de type Fourier non linéaire en x = —L et x = L correspondent
a un courant électrique paralléle & V'interface plasma-limiteur, (¢f loi d’Ohm). Les conditions
sur le haut du limiteur (y = [) sont un peu artificielles. En effet, en principe, les lignes de
champ sont paralléles & la face en haut du limiteur, donc il n’y a que trés peu d’interactions
avec le haut du limiteur. Le but est ainsi de proposer des conditions aux limites sur le haut
du limiteur qui rendent le systéme bien posé tout en n’ayant pas un effet trop important.

Un des buts de notre travail est de proposer une méthode de pénalisation pour ce systéme,
avec la difficulté engendrée par une condition aux limites de type Robin non linéaire. Mais
une autre difficulté apparait : En pratique, la résistivité paralléle 1 est trés faible, de I'ordre de
1079 [60]. Le systéme a donc un comportement fortement anisotrope. Remarquons que c’est
sur la base de cette anisotropie, liés aux forts champs magnétiques dans le tokamak, que 'on
a considéré un modeéle 4 une dimension pour N, I', dans le chapitre 2. Pour résoudre numéri-
quement ’équation modélisant le potentiel électrique, on va utiliser des méthodes préservant
Iasymptotique (asymptotic-preserving, en anglais).

Pour se concentrer sur les difficultés inhérentes & la faible résistivité i, nous allons com-
mencer par considérer le modéle jouet 1D stationnaire ci-dessous :

o, <1ax¢n<x>) —5-0, <1f(x)> vel - LI

n(z) n(z)
1 1 D) —d(—
LOson(—L) = L f(- L) + (1-eMDmnl0) o= p (4.2)
1 1 by _
JOeon(L) = L (1) = N(L) (1-erBmen®) g1,

ou S et f correspondent a des termes sources.
Ce probléme est de type elliptique avec une condition aux limites de Robin non linéaire.
Malgré sa simplicité apparente, la question de l'existence et de I'unicité d’une solution a
(4.2) n’est pas évidente, a cause de la non-linéarité des conditions aux limites. De plus, en
pratique la valeur de la résistivité paralléle i est trés faible, de I'ordre de 1076 & 1078.
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La résolution numérique de ce probléme génére deux difficultés :

- 0 < n <« 1 : Premiérement, on constate que, aprés multiplication des équations du
systéme (4.2) par 7, si on remplace formellement 1 par 0 dans (4.2), le probléme obtenu
devient mal posé. Cela se traduit numériquement par des difficultés a résoudre le systéme
linéaire quand 7 est proche de 0. Cela sera 'objet de la section 4.1.

La pénalisation d’une condition aux limites de type Robin non linéaire qui sera traité
dans la section 4.2.

La section 4.1 de ce chapitre sera consacrée a 1’étude du modeéle 1D avec une généralisation
pour un probléme multidimensionnel elliptique isotrope. Dans la section 4.1, nous donnerons
aussi quelques résultats numériques issus d’essais de méthodes de pénalisation des conditions
aux limites.

4.1 Traitement du cas n — 0 pour le modéle 1D

Dans cette section, nous allons mettre en évidence les difficultés pour la résolution numeé-
rique de (4.2) et proposer une méthode de résolution de type Asymptotic-Preserving (AP).

Aprés une bréve introduction aux méthodes de type AP, nous allons en proposer une
pour un modéle elliptique linéaire puis non-linéaire. Les tests numériques seront conduits
sur des problémes 1D tandis que les études théoriques seront présentées pour des problémes
multidimensionnels isotropes.

Il apparait paradoxal d’étudier des problémes isotropes alors que la difficulté décrite pré-
cédemment pour le probléme du potentiel électrique vient de la forte anisotropie du plasma.
Dans le modele 1D du potentiel électrique (4.2), on ne conserve que la direction paralléle
aux lignes de champ magnétique, qui est a I'origine du mauvais comportement des équations
quand 7 tend vers 0. Les problémes multidimensionnels isotropes étudiés dans la suite ne sont
alors qu’une extension directe du modeéle 1D (4.2).

4.1.1 Quelques généralités sur les méthodes de type Asymptotic-Preserving

Beaucoup de modeles s’écrivent sous la forme d'un probléme P, liés a un parametre > 0
proche de 0. Dans certains cas, le fait de remplacer n par 0 rend le probléme Py mal posé.
Dans cette situation, le systeme est souvent difficile a résoudre parce que P, est proche d'un
probléme mal posé : cela se traduira par un mauvais conditionnement de la matrice, un
probléme raide ou une condition de stabilité difficile a satisfaire.

L’idée est donc de reformuler le probléme P, en un nouveau probleme 777’7 équivalent tel
que le probléme limite P| soit bien posé et que l'unique solution de 777’7 converge vers celle
de P/ en un sens a donner, quand 7 tend vers 0. Cette approche a été introduit par Jin [38]
pour des modéles cinétiques multi-échelles. Depuis, les schémas AP font ’objet de nombreuses
publications pour des modéles de plasma fluides ou cinétiques : On peut par exemple citer les
travaux de Degond el al. [26, 27|, Mentrelli et Negulescu [44|, Vignal [65], Filbet [28]. Bien
évidemment, pour la résolution numeérique du probléme 737’7, il est nécessaire d’en construire
une approximation discréte P/, oit h désigne le pas de la discrétisation. Un schéma trés
classique sur les méthodes AP est donnée dans la figure 4.2.
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n—0
Py Po.n
h—0 h—0
n—0
P P}

FIGURE 4.2 Schéma présentant les convergences & montrer lors de 'utilisation de méthodes
de type AP

Différentes techniques sont possibles, comme faire un développement asymptotique en 7,
séparer la partie moyenne de la partie "fluctuante". Dans cette section, nous nous concen-
trerons sur la derniére technique citée qui a 'avantage d’étre assez naturelle & mettre en
place.

4.1.2 Limite Robin-Neumann dans le cas linéaire

Nous remarquons qu’il se passe exactement la méme chose dans le cas linéaire lorsque 1’on
passe & la limite Robin-Neumann. Dans un but pédagogique, on va présenter ici la méthode
AP utilisée sur ce cas linéaire : cela permettra de mieux en saisir les idées principales en
évitant les difficultés d’ordre technique.

4.1.2.1 Etude théorique

On s’intéresse ici & un probléme linéaire avec des conditions de type Robin (ou Fourier).
On consideére ) un domaine ouvert, connexe, borné dans R? (en pratique, d = 2 ou 3) et dont
la frontiére 082 est supposée lipschitzienne. On note n la normale unitaire sortante de €.

On étudie le comportement quand 7 tend vers 0 du probléme suivant :

{ —A¢y=f dans € (43)

—Véy - n=ndyeq+g sur I
On suppose que f € L2(Q),g € L?(09) et qu’elles vérifient la condition de compatibilité
suivante /fdx = gdo. La condition de compatibilité précédente est une condition
Q

, . Yo . . .
nécessaire pour ’existence d’une solution au probléme avec conditions aux limites de Neumann
(4.3) dans le cas n = 0.
On note

1
<¢77> = HIGS(Q)/Q¢T] dx.
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On pose alors ¢, = ggn + (¢y), c’est a dire que 5,7 est une fonction telle que mQ(ggn) =0. Le
probléme ainsi reformulé devient :

—Agy = f dans
— Vo -n=n¢y+n(dy)+g surIQ (4.4)

/andx:O.

On notera que le probléme (4.4) comporte a priori deux inconnues 577 et (¢y). Cependant, en
intégrant la condition aux limites sur la frontiére, on remarque que I'on peut exprimer mgq en
fonction de ¢,. On a ainsi formellement :

—V%n~nda:7]/8Q$7,d0+77<¢77>mes(09)+/ gdo

o0 o0

/ —AQNSW dx = 77/ 577 do + 1 (¢py) mes(0N2) + / gdo d’apres la formule de la divergence
Q o0 0N

/ fdx = 77/ 577 do + 1 (¢y) mes(0Q) +/ gdo d’apres (4.4).
Q 09

0N

Comme / fdx = / gdo, on a ’expression suivante :
Q o0

1 ~
= ——— do. 4.5
<¢77> mes(@Q) 0 d)n g ( )
Au final, le probléme (4.4) se réécrit :
— A<;~577 =f dans
~ ~ ’r] ~
_ ‘n = S d [}9]
Vo =10 = 00 /89 ¢gdotg  sur (4.6)

/andx—o.

On définit Vespace H,\, () = {v € H*(2), [ vdx = 0} muni du produit scalaire hilbertien
de H(2). L’espace H} () est un espace de Hilbert car c’est un sous espace vectoriel fermé
de HY(Q).

On peut donc écrire le probléme (4.6) sous sa formulation faible : Trouver 5,7 € HL(Q)
tel que :

Vip € H,, (),

/SZVgEn.Vzﬂdx—l—n(/m(anda—mesiam/mqgnda/mwda> —/wadx—/BQ(izic)ia.

On va commencer par énoncer le lemme préliminaire suivant :
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Lemme 4.1.1

On admet la condition de compatibilité / fdx = / gdo. Le probléeme (4.7) est alors
Q o0

équivalent au probléme : Trouver 57, € H! (Q) tel que :

Vo € H'(Q),

- ~ 1 oy
/Qqun-Vgodern(/m%SOdU—mes(am/{99‘757761‘7/8990610) (4.8)

—/f(pdx—/ gedo.
Q o0

Démonstration: Supposons d’abord que ‘;n € H} (Q) est solution de (4.7). Soit ¢ € H(£2). En
posant 1) = ¢ — (), on constate que ¥ € H' (Q). Donc d’aprés (4.7), on a :

Vo= teaxta( [ o tendo - oo [ Gydo [ o tprao)
Z/Qf(tp—@))dx—/mg(so—<90>)d0'-

Comme () est indépendant de x, on en déduit que :

- ~ L 7
Av¢n.vwdx+n(ég¢npd0—mes(am/(99¢nd0/aQ(PdU>

= [rto-thax— [ glo-tehdo—toh( [ rax- [ gan).

=0

Donc qgn est solution de (4.8). Pour la réciproque, il suffit de remarquer que H} (Q) C H*(Q). &

On montre aussi que le probléme faible reformulé avec la décomposition ¢, = 577 + (o)
est équivalent ou probléme faible originel pour ¢,, dans le cas n > 0 :

Lemme 4.1.2

Soit ) > 0. On pose ¢, = 5,7—%(5,7). Alors 577 € H} (Q) est solution de (4.7) si et seulement
si ¢, € H'(Q) est solution de

Vo € HY(Q),

/V¢n~chdx+n/ gbngpdoz/fgodx—/ gedo.
Q o Q o

Démonstration: Soit 5,, € H} () solution de (4.7), alors, d’apres le lemme 4.1.1, cette fonction

(4.9)

est aussi solution de (4.8). Ainsi, en posant ¢, = 577 - — fE)Q 5,7 do, on montre que

mes(99Q)
by € H'(Q) est solution de (4.9).
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Pour la réciproque, on considére que ¢, € H'(Q) est solution de (4.9). Alors en posant
Gy = Py — (Pn) € H},(€), on obtient :

{vw c HY(Q),

/qun-Vgodx—}—n/ 57,<pd0+17<¢7,>/ @daz/fgpdx—/ gpdo.
Q a0 a0 Q o0

En prenant ¢ =1, on a

(4.10)

/ b do = (B,,) mes(99).
o0

C’est & dire que (En est solution de (4.8) et donc aussi de (4.7). [ |

On rappelle 'inégalité de Poincaré-Wirtinger qui sera utilisée & plusieurs reprises dans ce
chapitre :

Lemme 4.1.3 (Inégalité de Poincaré- Wirtinger)

Soit Q, un ouvert bornée, connexe a frontiére lipschitzienne. Alors, pour tout v € H} (Q),
on a :

vl 1) < Crw (D)[IVYll 220,
ou Cpw (2) > 0 ne dépend que de Q.

Lemme 4.1.4 (Inégalité de trace)
Pour tout v € HY(2), on a :

[viaallz200) < Ctr(D[[v] 510,

ot Cy-(2) > 0 ne dépend que de Q.

On énonce aussi pour rappel le théoréme I11.27 du livre de Brezis [19] :

Lemme 4.1.5

Soit E un espace de Banach réflexif et soit (u,) une suite bornée dans E. Alors on peut
extraire une sous-suite de (u,) qui converge faiblement dans E.

On va alors démontrer le résultat suivant :
Proposition 4.1.1

Pour tout n > 0, le probléme faible (4.7) admet une unique solution 5,7 € HL(Q). De
plus, cette solution ¢, est solution du probléme (4.6) au sens suivant :

—A¢y = f dans L*(Q)

3 on=ndg "1 [ 3 -2
Voy -n=1n¢, mes(9) /aQ¢ndU+9 dans H™2(9) (4.11)

/Qggndx =0.
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Démonstration : Pour montrer, I'existence et 'unicité de la solution 5,7 du probléme (4.7), on
va appliquer le théoréme de Lax-Milgram. En effet, ’application

L’:weH}n(Q)H/wadx—/aggwda

est une forme linéaire continue sur H} (). De plus, I'application

e R B e o Ly R
est :

— Une forme bilinéaire sur H} (Q) x HL (Q).
— Continue sur H}, () x H} (Q).
et coercive sur H} (Q) x H} (Q) car :

V¢~5n € H’I%’L(Q)’

2
~ ~ ~ ~, 7’] ~
L On) = IV > do — d
a(6n:0) = IVonlliza + n/an oy do mes(092) </89 O J)
> ||V(;~5n||Lz(Q) + 0 car d’aprés l'inégalité de Cauchy Schwarz,

2
( 577 x 1 do) < 5727 do mes(09)
a9 a9
> CpW(Q)H(ZnH?{l(Q) d’apreés l'inégalité de Poincaré-Wirtinger dans H! (Q).
On a donc bien

Vo € Hy(Q),a(dy, &y) = Cow () dnl7r: g (4.12)

On remarque que la constante Cpy (£2) ne dépend pas de 7.
Le théoréme de Lax-Milgram peut donc s’appliquer et on en déduit que le probléme (4.7) est

bien posé : 1l existe un unique 577 € H} () qui est solution de (4.7). Observons que I'inégalité
de la coercivité est uniforme en 7 et reste vraie pour n = 0. Ainsi, la démonstration ci-dessus
reste valable dans le cas n = 0.

On fait maintenant Uinterprétation de la solution du probléme faible (4.7). D’aprés le
lemme 4.1.1, on a

Yo € C(Q) C HY(Q),

~ ~ 1 ~
/V¢W~V<pdx+n / O do ————— ¢,,da/ pdo :/fgodx—/ gpdo.
Q o0 mes(99) Jaq o0 Q o0
—_——— —— —_——

=0 =0 =0

On a donc
/ Vo, Vo — feodx =0.
Q

Or, d’aprés la définition de la dérivée au sens des distributions cela est équivalent &
(=Ady — f,9)c () cx@) = 0.
Donc, au sens des distributions, on a :

—~A¢, = f.
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De plus, on a fait 'hypothése que f € L?(Q), ainsi A%n € L3(Q).
On montre maintenant que ’on a la relation :

~ ~ fr/ ~ 1
Vo, -n= S — d dans H™2(09Q2).
Gn -1 =1y mes(aQ)/aQ% oc+g ans (09)
Pour cela on va utiliser un lemme dont la démonstration est dans le livre de Girault-Raviart
[32], page 28 :
Lemme 4.1.6
On note Hy;,,(Q) = {v € L2 ()4, V - v € L*Q)}, Pour tout v € Hy;, (), on peut définir

Popérateur de trace normale v - n continue de Hg;,, () dans H~=(8Q), a partir de la formule de
Green :

Yo € HI(Q),/QV -Vpdx = —/QQOV -vdx + (v n7(‘0>H*%(09),H%(aQ)'
On applique la formule du lemme ci dessus en prenant v = V%n et, d’aprés I’équation (4.8),
on a:
Yo € HY(Q),
~Ady— ) pdx+ (Vo 18) ) ok
/Q ( ! K H™2(09),H2 (99) (4.13)
=0
+</<Ed 1/$d/d>/d
7 pdo — ———— o wdo|=—[ gedo.
o mes(9Q) Joo Cl) Ele)
Ce qui achéve la démonstration de la proposition 4.1.1. |

On a montré que le probléme (4.7) pour 517 est bien posé.
Etude de la limite quand 7 tend vers 0 : On étudie maintenant le comportement du pro-
bleme (4.7) quand 7 tend vers 0.

Proposition 4.1.2

577 converge vers ¢y dans L2() et do € H} (Q) est 'unique solution faible du probléme :

—A(Zo:f dans §2
—Vaon:g sur 0f) (414)

/QgEOdXZO.

C’est a dire que gz~50 est la solution (4.7), pour n = 0.
1

Pour revenir au probléme initial, on rappelle que ¢,, = 5,7—1—((1)77) = ‘Zn s (050 Jo0 577 do

t Vuni lution faible de (4.3 >0.0 ite g0 = po————— [, D0 do.
est I'unique solution faible de (4.3) avecn n pose ensuite ¢y = ¢g mes(99) fdﬂ ¢o do
De plus, il existe ¢(, f,g) > 0, indépendant de n, tel que I'on ait I'estimation :

”¢77 - ¢0||H1(Q) < C(Q7 [y 9)77
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Démonstration: D’aprés la démonstration de I'inégalité sur la coercivité (4.12), on peut affirmer
que

Cow (V)| 6yl11 () < alén, dy) = L(on)
g/fgndx—/ ggnda
Q o0
< I fllz2@) 1nllz2) Fllgll2o0) oyl 2 (90)d aprés inégalité de Cauchy-Schwarz
———

SH%T/HHl(Q)

<Az l¢nllar @) + Crr()lgll2 o) €0l 1 ()
d’aprés la continuité de Popérateur de trace dans H' ().

On rappelle que C4-(€2) > 0 est une constante indépendante de 7 et <Z,,.
Donc pour tout n > 0, on a :

~ 1
1 < —— 2 + Cr (Q 2 .
Pnll e ) < Conw (@ (1f 1l 22y + Cer (D9l 200

indépendant de n

Ainsi, pour tout n > 0, 577 est & valeur dans un sous ensemble borné de H'(Q). D’aprés le
lemme 4.1.5, on peut extraire une sous-suite encore notée (5,]) convergeant faiblement vers go
dans H}, ().

Gréce a la convergence faible de la sous-suite (5,7), on peut montrer que la limite 50 est
aussi la solution du probléme (4.7) pour n = 0. On passe & la limite  — 0 dans le probléme
(4.7), vérifié par (Zn :

VY € H, (),
~ ~ 1 ~
/an -V dx +77(/89¢771/Jda ~ mes(00) /mqbnda/mz/}da) = /sz/)dx— /anwdo
A J 1 quand n — 0
/v&o-w}dx +0 —0 :/fz/)dx—/ g do.
Q Q o0
Or, le probléme consistant a trouver 50 € H} () tel que
Vi € HY (Q), V$0~dexz fwdx—/ g do (4.15)
Q Q o0

admet une unique solution. Ainsi, la limite qNSO étant indépendant du choix de I'extraction de
la suite, on en déduit la convergence de toute la suite (¢;)y>0-

On veut maintenant estimer ||($,7 — ol (). Pour cela, on fait la différence entre les
problémes faibles (4.7) et (4.15). On obtient alors :

19 (30 = o) s == (|30 (30 =0) do = ot [ Gyo [ G, = Gudo)

< (Il 200 + mes(02)[9yll12(00) ) 19 — Dol 2(o0)-
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D’aprés 'inégalité de Poincaré-Wirtinger (lemme 4.1.3), on a :

~ o~ 1+ mes(09)  ~
oy — dollrr (o) < WH%HH%Q)W

Comme ¢, — ¢g = (;n — ;50 - m faQ 577 — 50 do, on en déduit 'existence d’une

constante ¢(£, f, g), indépendante de 7 telle que

|6y — dollmr (o) < (2, f,9)n. =

_ Cette propriété permet de montrer le bon comportement du probléme (4.7), verifié par
on.-
4.1.2.2 Tests numériques

La décomposition ¢, = 5,7 + (¢,) permet de définir cette quantité a partir du probléme
(4.7) vérifié par qgn. De plus, on a la convergence dans H'(2) de ¢, vers ¢g = qgo + {(¢o), out
(750 est la solution du probléme (4.7) pour n = 0, c’est a dire du systéme (4.15). En reprenant
les notations générales des méthodes AP présentées dans la figure 4.2, on remarque que 1’on
a défini les problémes ’P{7 et Pj. Pour compléter I'étude, il reste donc a créer le probléme
discrétisé 777’7,,1, de pas h et a étudier sa limite quand 7 et h tendent vers 0.

Maintenant que la théorie a été présentée, nous allons désormais nous attacher a montrer
numériquement 'intérét d’'utiliser la décomposition partie moyenne et partie fluctuante.

Nous allons ainsi considérer le probléme 1D suivant :

—oy =f dans 0, 1]
¢, (0) =1 ¢,(0) + go (4.16)
— ¢n(1) = n¢y(1) + g1

N 1
out f,go, g1 tel que [; fdx = go+ g1
On suppose que f est réguliére, par exemple continue. On notera F' la primitive de f.

Pour les tests numériques, nous avons choisi :

f(w) = sinz)
go = cos(0) =1
g1 = —cos(1).

On peut alors mettre en ceuvre le schéma volumes finis de pas constant dz suivant pour
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résoudre le probléme (4.16) :

1492 _q .

+ii =10 0 0 b1 6z (F(62) = F(0)) = ¥ 90
-1 2 =10 : Pp,3 ox (F(20z)—F(6x))
0 —-12 —-1". : B :

L0 : :
: 212 1 b3 ox (F((K—1)5w)—F((K—2)5§v))
0  cee - 0 —1 1+1-6Fg]77 QZSV,’K,% (536(F(K(Sx)—F((K—l)&x))—H_%ngl
2

(4.17)
Il convient de préciser quelques notations :
— K = nombre de cellules volumes finis (= 10000, ici).

Pas constant : dz = —.

K
(Z)O,i—i-% ~ ¢o ((i + %)53:), pour i€ {0,..., K —1}.
~ 1/~ ox ~ h
¢O,i+% = ¢O,i+% 9 <¢0,; D RA + ¢O,K—% - 291>-

~ Ppirl N Py ((i + 3)dz).

On remarque dans la figure 4.3 que le conditionnement augmente quand 7 tend vers 0. Cela
peut se traduire par une grande sensibilité aux erreurs (due a la précision de la machine, par
exemple) sur le membre de droite du systéme linéaire (4.17) ou par une trés lente convergence
des méthodes de type gradient conjugué.

On va maintenant résoudre le probléme linéaire 1D (4.16) en utilisant la décomposition
¢y = ¢p+(¢y). Comme (¢,) peut se calculer en fonction de ¢,), il ne reste qu’a approcher cette
derniére fonction. Cela nous donnera le probléme discrétisé 737’77,” présenté dans les généralités
sur les schémas AP, voir la figure 4.2.

La fonction ¢, se calcule alors grace au probléme suivant :

o= dans ]0, 1]
;7(0) = g (gn(o) - 577(1)> + g0
= 3y (1) = 2 (64(1) = 3,(0)) + g1 (4.18)
1 %n dr =0
0

On utilise & nouveau un schéma volumes finis de pas constant dx pour approcher ¢, solution



CHAPITRE 4. TRAITEMENT DES EQUATIONS DU POTENTIEL ELECTRIQUE 125

Conditionnement de A versus eta (dx=0.0001)

Conditionnement de A

o
TR TNTTT NSO N TTTT SO R VTT! I MR T1 AT M W AT AN WA TTT N AN AT MR RRITT

F1GURE 4.3 — Conditionnement en norme ||.||2 en fonction de 7, de la matrice associée au
systéme (4.17), calculant 'approximation de ¢ sans utiliser le schéma AP.

faible de (4.18). On doit alors résoudre le systéme linéaire suivant.

Sz Sz
1+-2" —10 0 --- ——2" 7 1o 2
T, w0 | (O b (F(52) — F(0) —6 " g0 333501
-1 2 -10 : 3 ox (F(20x)—F(6x))
0 -12 -1 B :
0 ; :
: 19 _1 . _3 oz (F((K—l)éx)—F((JK;—Q)(Sx)) e
T T e 2 1
— %5’7 ...... 0 —11+ 67677 %,K—% o (F(K5x)—F((K—1)5w))—4+§5;’ngo—5xl+§n
5y H5n, 2

(4.19)
La matrice du systéme linéaire ci-dessus n’est pas inversible car la condition de moyenne
nulle n’a pas été intégrée dans la discrétisation (cela aurait conduit & la résolution a priori
couteuse d’un systéme de type point selle). La matrice est symétrique et semi-définie positive.
Cependant, on remarque que la méthode du gradient conjugué maintient cette condition de
moyenne nulle si le second membre du systéme et le vecteur servant & l’initialisation sont
tous les deux de moyenne nulle. Dans cette situation, on constate que la convergence de
la méthode du gradient conjugué est assurée, la vitesse est liée au conditionnement effectif
de la matrice, c’est & dire au rapport entre la plus grande valeur propre et la seconde plus
petite (la plus petite valeur propre étant nulle), voir larticle de Bochev et Lehoucq [17] et le
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théoreme 13.11, page 583, du livre d’Axelsson [14]. On remarque que pour le second membre
du systéme linéaire (4.19), on utilise la primitive de f, notée F. Cela est lié au besoin d’avoir
un second membre de moyenne nulle afin de pouvoir utiliser la méthode décrite ci-dessus. En
effet, approcher oz (F((i + 1)6z)— F(idx)) par f((i + 3)éz) (i € {0,..., K — 1}) géneére une
erreur d’approximation sur la moyenne du second membre de (4.19) qui empéche la méthode
de gradient conjugué de converger.

L’étude de (4.18) montre une des difficultés pour 'utilisation pratique de la méthode AP
proposée pour un modéle multidimensionnel du plasma ot les lignes de champ ne sont pas
forcément alignées sur le maillage : I'apparition de termes non locaux, en effet, pour savoir ce
qu’il se passe & un des bords du domaine de calcul en utilisant les conditions aux limites, on
remarque qu’il faut connaitre la valeur de ¢, sur I’autre bord du domaine. Dans un modele
multidimensionnel fortement anisotrope (directions paralléles et perpendiculaires aux lignes
de champ), il faudra alors suivre les lignes de champ et savoir ot elles interceptent le limiteur.

Dans la figure 4.4, 'évolution de I'erreur en norme L' et L? pour différentes méthodes de
calcul a été représentée. On constate que pour des valeurs de 1 plus grandes que 107°, toutes
les méthodes ont une décroissance en O(n). Par contre, pour des valeurs de 7 plus petites que
107%, seule 1a méthode dite AP (passant par le calcul de ¢n) continue & avoir une erreur qui
décroit en O(n) avant d’atteindre I'erreur de discrétisation. Pour les deux méthodes, Choleski
et gradient conjugué, utilisant la résolution directe de (4.16) (sans passer par le calcul de ¢,),
pour n < 1076, l'erreur L? sur ¢, recommence & augmenter pour ensuite tendre vers une
constante. Pour la dérivée, sur la figure 4.5, les trois courbes montrent bien une décroissance
de lerreur L? en O(n). Ce comportement se comprend en regardant la figure 4.6, ou on voit
que, pour 1 < 1079, seule la méthode AP réussit & maintenir une valeur moyenne de ¢y proche
de celle de ¢g. Les méthodes ne passant pas par le calcul de ggn donnent une valeur moyenne
de ¢, proche de 0 pour n < 1076, d’ott I'erreur observée. On observe ainsi un décalage dans le
tracé des courbes de ¢, voir la figure 4.7. La figure 4.8 montre le nombre d’itérations réalisées
par la méthode du gradient conjugué avec et sans méthode AP. Sur cette figure, on constate
que la convergence de la méthode du gradient conjugué est trés lente.

La figure 4.9 montre que la convergence au maillage du schéma avec la méthode AP est
bien d’ordre 2.

4.1.2.3 Synthése

On a vu ici les points clef du schéma AP utilisé : _
— Séparer la partie moyenne (¢) de la partie fluctuante ¢. Reformuler le probléme pour
@.
Calculer la moyenne (¢) a I’aide d’une intégrale sur la frontiére du domaine .
— Montrer que le probléme & moyenne nulle reste bien défini quand n = 0. Etudier la
convergence quand 1 — 0.
— Choisir une méthode de discrétisation (volumes finis, ici).
Il reste maintenant & appliquer cette méthode au probléme modélisant le courant électrique
en prenant en compte la non-linéarité des conditions aux limites.



CHAPITRE 4. TRAITEMENT DES EQUATIONS DU POTENTIEL ELECTRIQUE 127

Erreur L1 (phi-phi_0) versus eta (dx=0.0001)

Erreur L1

Cen® v v vl ed vl vl ol e g

2 +—+—+ Cholesky (phi)
- O—0O—0O Grad Conj (phi)
Grad Conj + AP (moy + fluct)
- — — —  ordre1

0 2 -11 -10 -9 -8 7 K 5 -4 -3 -2 -1
10 10 10 10 10 10 10 10 10 10 10

eta

=
L™
AN
N\

N

-
o

Erreur L2 (phi-phi_0) vs eta (dx=0.0001)

Erreur L2

% +——+—+ Cholesky (phi)
e O—0O—0O Grad Conj (phi)

o /N—/x—7/\  Grad Conj + AP (moy + fluct)
- _— ordre 1

Cron™ vl vl e vl vk rd el vl g

N

10 4 11 10 -9 8 7 6 5 4 3 2 -
10 10 10 10 10 10 10 10 10 10 10 10

eta

1

FIGURE 4.4 — Erreur ¢, — ¢o pour les normes L' et L? en fonction de 7 avec trois méthodes

de calcul différentes pour ¢, :

— En noir (+) : Résolution directe du probléme (4.16) (sans méthode AP) par la méthode de
Cholesky.

— En vert (o) : Résolution directe du probléme (4.16) (sans méthode AP) par la méthode du
gradient conjugué. _

— En rouge (A) : Résolution avec la méthode AP (utilisant ¢, = ¢, + (¢5,)), en passant par
la résolution de (4.18) par la méthode du gradient conjugué.

L’erreur est la différence entre ¢, approchée par le schéma et la solution exacte ¢g. Pour des

valeurs de 1 supérieures a 1076, les trois courbes sont confondues.
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Erreur L2 gradient (dphi/dx-dphi_0/dx) vs eta (dx=0.0001)

Erreur L2 du gradient
>

10
-9
10
10
10 Cholesky (phi)
O—0O—0O Grad Conj (phi)
10'1 /\—/—/\ Grad Conj + AP (moy + fluct)
—_— — ordre 1
-13
10 T T T T T T T T T T T
12 11 10 9 8 -7 6 5 4 3 2 1
10 10 10 10 10 10 10 10 10 10 10 10

FIGURE 4.5 — Erreur (¢, — ¢p)’ en norme L? en fonction de 7 avec trois méthodes de calcul

différentes pour ¢, :

— En noir (+) : Résolution directe du probléme (4.16) (sans méthode AP) par la méthode de
Cholesky.

— En vert (0) : Résolution directe du probléme (4.16) (sans méthode AP) par la méthode du
gradient conjugué. N

— En rouge (A) : Résolution avec la méthode AP (utilisant ¢, = ¢, + (¢y)), en passant par
la résolution de (4.18) par la méthode du gradient conjugué.

L’erreur est la différence entre — (¢, .. 1 — ¢, . 1) et ¢f. Les trois courbes sont confondues
ox \'mit3 70— 3

quelque soit la valeur de 7.
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Moyenne de phi versus eta (dx=0.0001 , moyenne phi_0=0.0389622)

7
+—F—F Cholesky (phi)
O—0O—C0O Grad Conj (phi)
1 /—/—/\" Grad Conj + AP (moy + fluct)
-0.005 AL e e e e e N e L L1 B e B Rl
-12 1 10 -9 -8 -7 -6 -5 -4 -3 -2 1
10 10 10 10 10 10 10 10 10 10 10 10

FIGURE 4.6 Moyenne de ¢, approché en fonction de 7, la légende des trois courbes est la
méme que pour la figure 4.4. Pour des valeurs de n pas trop petites, les trois courbes sont
confondues.
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phi en fonction de x (dx=0.0001 , eta=1e-12)
0.5
7 — Cholesky (phi)
— Grad Conj (phi)
——  Grad Conj + AP (moy + fluct) (1
- — phi_0 exact

0.4

0.37]

0.2

0.1

0.0

phi

-0.17

-0.27

-0.3 7

-0.4

-0.5 T T T T T T T T T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 4.7 — Tracé de ¢, en fonction de z.
En noir : tracé de ¢, obtenu par la résolution directe du probléme (4.16) (sans méthode
AP) par la méthode de Cholesky.
En vert (mixte tirets-pointillés) : tracé de ¢,, obtenu par la résolution directe du probléme
(4.16) (sans méthode AP) par la méthode du gradient conjugué.
En rouge : tracé de ¢,, obtenu par la résolution avec la méthode AP, en passant par la
résolution de (4.18) par la méthode du gradient conjugué.

— En bleu (tirets) : tracé de ¢ calculé analytiquement.
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Nombre d iterations versus eta (dx=0.0001)

| —_

IS

Nb d iterations
>

i =
O—0O—0O Grad Conj (phi)
/~—/\—/\" Grad Conj + AP (moy + fluct)
103 LI L L B ) ) B ] L B 1) B 1 B S B L) B M R AR
12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
10 10 10 10 10 10 10 10 10 10 10 10

FIiGURE 4.8 Nombre d’itérations pour la méthode du gradient conjugué en fonction de 7.
En vert (mixte tirets-pointillés) : Nombre d’itérations pour la résolution directe du probléme

(4.16) (sans méthode AP) par la méthode du gradient conjugué.
En rouge : Nombre d’itérations pour la résolution avec la méthode AP, en passant par la
résolution de (4.18) par la méthode du gradient conjugué.
On constate que pour les deux méthodes, le nombre d’itérations est trés élevé (de 'ordre de
10%). L’initialisation de la méthode du gradient conjugué est ici faite avec un vecteur nul.
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Erreur L2 (phi_0 exact - phi_0 approx) vs dx (pas)

O——= Erreur L2
—-—-—  ordrel
—-—"—° ordre2

Erreur L2

o
e R ETTT T R AT SR VTTT R AR A T R ATV MR ETTT MR AR

10 ——— ——— ——— —

- - -3 -

10 10 10 10 10
dx

FIGURE 4.9 Convergence au maillage, erreur L? (différence entre ¢ approché par le schéma,
et ¢¢ calculé analytiquement).
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4.1.3 Cas d’une condition aux limites non linéaire pour le probléme iso-
trope

Dans cette sous-section, nous allons généraliser I’étude au cas d’une condition aux limites
non linéaire, toujours dans le cas multidimensionnel isotrope. Ce résultat permettra d’établir
le comportement du modéle originel 1D du potentiel électrique, décrit par le systéme (4.2). Ce
résultat s’étend au cas multidimensionnel et nous allons le présenter dans ce cadre. Le domaine
utilisé sera alors un ouvert Q C R? qui est borné, connexe et a frontiére lipschitzienne. On se
place dans le cas ot la résistivité dans la direction paralléle peut varier, c¢’est a dire que 'on
pose n(x) = nq(x), o n € R et ¢ est une fonction continue bornée et strictement positive sur
Q.

On considére le systéme d’équations non linéaire, d’inconnue ¢,, suivant, pour tout n > 0 :

—V-<1V¢q7):1f+5 dans Q
nq nq
1
ndq

On fait comme pour la section précédente : on décompose ¢, en une partie moyenne et

! (4.20)
(Voy -n) = hi¢y,) + %g sur Of.

une partie fluctuante : ¢, = 57, + (¢y)- On a ainsi [, 577 dx = 0 et la moyenne (¢,) est reliée
a ¢plaq par la relation suivante :

/ h(q?n+<¢,,>)da:/5dx. (4.21)
o2 Q

Pour obtenir cette relation, il suffit d’intégrer formellement la condition aux limites de (4.20)
sur le bord en utilisant la condition de compatibilité :

1 1
/fdxz/ —gdo.
Q4q o 4

Ainsi, grace la relation (4.21), on définira une fonction m telle que :
(Gnjo) = (¢n) : / ¢y d
m = = — X.
o 7 mes(Q) Jo !

On montre plus bas que m est bien définie sur H? (092).
On aboutit ainsi & notre probléme a moyenne nulle :

—v'<1v$n>=1f+s dans Q
nq nq
1~ - - 1
- %(V% ‘1) |90 = h(Ppjaa + m(Pyan)) + P %)
/ ggn dx = 0.
Q

Pour que ces expressions formelles puissent avoir un sens, nous faisons les hypothéses
suivantes :



CHAPITRE 4. TRAITEMENT DES EQUATIONS DU POTENTIEL ELECTRIQUE 134

Hypothése 4.1.1

— Q est un ouvert borné connexe de R? avec une frontiére lipschitzienne.
f € L3R) et g € L?(09) tels que la condition de compatibilité suivante soit vérifiée

dmin < Q(X) < dmax-
h € C?(09Q x R).

— Oyh(x,v) > 0 (pour tout (x,1)) € 92 x R).
Pour tout x € 09, il existe a(x) € R tel que :

h(x, a(x)) = me;am/Qde'

1 1
La condition de compatibilité / - fdx = / — gdo est une condition nécessaire d’exis-
q o0 4q

tence d’une solution faible au probl%me (4.20).
En appliquant le théoréme des fonctions implicites, sur h € C?(9Q x R), on montre que la
fonction a € C1(0£2). 99 étant un fermé borné de R?, on en déduit que a est bornée sur R%.
On souhaiterait affirmer l'existence d'une fonction m : H%(aﬁ) — R telle que pour tout
p € H2(09),

| txpto) £ mig)do = [ S

En prenant un domaine 2 de dimension 1 (c’est a dire, d = 1), on remarque que la frontiére
0€2 se rameéne & deux points et que H%((?Q) C L*™(092). On en déduit alors I'existence de m.
Grace au théoréme des fonctions implicites, on en déduit que m est de classe C! sur H%(Q)
Dans le cas d = 1, on supposera de plus que (X, @) — h(x, p(x) + m(y)) est bornée par M.

Pour un domaine 2 de dimension d > 2, nous avons eu besoin de faire des hypotheéses
supplémentaires sur h :

Hypothése 4.1.2

— Sid =1 (cas unidimensionnel) : La fonction (x, @) — h(x, p(x)+m(p)) est bornée
par M sur 02 x H%(Q)
Si d > 1 (cas multidimensionnel) : Les fonctions h et Oyh et Oih sont bornées sur
092 x R. Notamment, on définit M tel que :

Vx € 00,V € R, |h(x, ¥)| < M

L’hypothése 4.1.2 dans le cas d > 1 est peut étre plus exigeante que nécessaire. Cette
hypothése nous permet de prouver le lemme suivant qui sera trés utile dans la suite :
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Lemme 4.1.7

Sous les hypothéses 4.1.1 et 4.1.2 (dans le cas d > 1), il existe une unique fonction m
telle que :

H2(09) —» R

o — m(yp) tel que /

[ () + () do = /Q S dx.

De plus, m est de classe C* sur H%((‘?Q)

Démonstration du lemme 4.1.7: La démonstration du cas d = 1 ayant déja été faite, il ne
reste plus qu’a traiter le cas multidimensionnel.

On commence par montrer ’existence de m a ’aide du théoréme des valeurs intermédiaires.
Soit o € H2 (09).
On rappelle que la fonction a, définie par

h(x,a(x)) = m /Q S dx,

est, continue et bornée sur 0f).

Comme h est strictement croissante par rapport & sa seconde variable, on peut définir
pour € > 0 suffisamment petit (et fixé), les fonctions a™ et a~ telles que, pour tout x € 9 :

De méme que a, les fonctions a™ et a~ sont continues et bornées sur 9.

Donc, en notant x, <.+ lafonction caractéristique associée a I’'ensemble {x € 0Q, p(x)+
1 < at(x)}, on a, pour presque tout X € 9, Xyiu<at(x) — 0 quand g — +oo. D’aprés le
théoréme de convergence dominée de Lebesgue, h étant supposée bornée, on en déduit que :

/8 e

On pose :

/ W%, 9(x) + 1) do = / B, 9(%) + 1) Xt pcart (%) dot / h(%, 9(%) + 1) X et () dor
o0 o0 o

<m fQ Sdx+e Zm fQ Sdx+e
Ce qui donne :
li h do= 1i h do > Sd 0N e.
Jim [ o) ) de = Tim [ hx o0+ 10 Xessar (6) do > [ Sixcrmes(00) e

De méme, en utilisant la fonction a~, on prouve que :

lim h(x, o(x) + p) do < / Sdx — mes(99Q) e.
Q

n==20 Joq
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Ainsi, d’aprés le théoréme des valeurs intermédiaires, il existe m(y) € R tel que :

| nxpto) £ mig)do = [ Sax.

L’unicité de m(p) découle de la monotonie de h par rapport a sa seconde variable.
Pour la régularité de m, nous allons utiliser le théoréme des fonctions implicites. L’exis-
tence de m étant déja connue, il suffit de prouver que la fonction

H?(0Q) xR > R
G:
(p,2) = | h(x,p(x)+2)do
onN

est de classe C! sur H2 (92) xR. En utilisant la formule de Taylor sur 1 — h(x, 1) au voisinage
de ¢(x) + z, on obtient :

Ve, 80 € H?(00),Vz,62 € R,

Glp+6p,2+02) = G(p,2) + /m Oyh(x, o(x) + 2) (dp(x) + 02) do (4.22)

+ / Rix, p(x) + 2, 8¢(x) + 52) do
o0

ou la fonction R est le reste du développement limité de h.
On remarque alors que :

(6p,02) — - Oph(x,o(x) + z) (dp(x) + 02) do

est une application linéaire continue sur H %(89) x R & valeurs dans R. Il reste & montrer que
le dernier terme de (4.22) est en O(H&‘OHH%(aQ) + |z]).

Comme Qih est supposée bornée sur 9 x R, on a l'existence d’une constante c¢(h) > 0
(indépendante de x, ¢, §p, 202) telle que :

Vx € 00, Vo, 0p € H? (00),¥2,02 € R, |R(x, p(x) + z,50(x) + 02)| < c(h)(0p(x) + 62)%
On a donc
Vx € 0Q,Vp,5p € H? (9Q)Vz, 6z € R,

[ RO () 280000 +62) dr < el 09 |3 + 52200
o0

< c1,09) (16612, +57°)

On en déduit que G est est classe C! sur Hz (99) x R et, d’aprés le théoréme des fonctions
implicites, m est de classe C' sur Hz (99). |

Les hypothéses sur la fonction h étant contraignantes, il convient de préciser que 'on peut
trouver de telles fonctions h. Par exemple, pour le modéle 1D du potentiel électrique étudié
dans la sous-section 4.1.4, on prendra :

h(z,v) = (1 — eA(x)_w> , avec A € C*(0Q) et S = 0.
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Dans un cas multidimensionnel (d > 1), avec S = 0, on pourrait par exemple prendre h
sous la forme :

h(x,v) = arctan(A(z) + 1), avec A € C2(99).

Dans un souci de lisibilité, dans la suite, nous ne ferons plus apparaitre la trace des fonctions
sur 9 lorsque cela est évident. Ainsi, pour tout ¢ € H,\ (), m(p) désignera en fait m(pja0).

La suite du paragraphe est dédiée a la démonstration théoréme suivant qui montre que
que le probléme est bien posé (4.20) et que 1'on peut passer a la limite n — 0.

Théoréme 4.1.1
Sous les hypothéses 4.1.1 et 4.1.2, pour tout n > 0, le probléeme (4.20) rappelé ci-dessous

—V-<1V¢n>—1f—i—5 dans §)
nq nq
1

1
Vo, n =h + — sur 0f)
77q( ¢y - n)jaq = h(dya0) nd’

admet une unique solution faible ¢,, € H' ().

De plus, quand n tend vers 0, ¢, converge en norme H! vers une fonction ¢g € H'(£2)
qui vérifie o = m(¢ojaq)) + do ot o € H} () est I'unique solution faible du probléme
suivant :

1_~ 1
-V (V¢0) =—f dans(Q
q q
—V¢o-n=g sur Jf) (4.23)

/QggodX:O.

Enfin, il existe g > 0 tel que pour tout n €]0,n0], il existe une constante c¢(, ¢o, S),
indépendante de n, ¢y telle que, pour tout n € [0,no] :

[¢n — Pollr (@) < (82 ¢o, 5) 7.

L’existence et I'unicité d’une solution faible au probléme linéaire (4.23) se démontrent de la
meéme maniére que pour le cas linéaire, voir la proposition 4.1.2, équation (4.14). La principale
différence étant 'ajout d’une fonction ¢, ce qui ne change pas la méthode de la démonstration
car ¢ est bornée sur §) avec un minorant strictement positif.

Pour démontrer le résultat, nous allons faire appel a la formulation variationnelle du
probleme vérifié par ¢, que 'on obtient formellement pour des solutions régulieres de la
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maniére suivante :

Vi € HY(Q) = {v € Hl(Q),/dex = o},

té—v-(;v&ozmk:iéifwdx+jéswdx

/Q;vasn-wdx+/m—; (van-n) wda:/ﬂifd)dx%—n/QSwdx
/Q;vq?n.wdxm/mh@n+m($n))¢da+/ ;gzpda:/gifwdx—kn/gé’wdx.

o0

Le fait que 577 soit & moyenne nulle nous permettra d'utiliser I'inégalité de Poincaré-Wirtinger
(voir le lemme 4.1.3) afin d’obtenir des estimations de ¢, indépendantes de 7.

Lemme 4.1.8
On pose ¢, = ggn + m(&]) Alors, le probléme faible trouver 577 € H}(Q) tel que

Vi € H,,(Q),
1 ~ ~ ~ 1
Vo, - Vidx + / h(on +m(¢ 1/1da+/ -gvdo
/Qq n n . (¢n (¢n)) o0 q (4.24)
1
—/fwdx—i-n/Sz/de
Q4 Q
est équivalent au probléme trouver ¢, € HY(Q) tel que
vy € H'(Q),
1 1 1
/V¢n-V¢dx+77/ h(¢n)wda+/ g¢daz/f¢dx+/5¢dx.
Q4 o0 o 4 Q4 Q

(4.25)

On remarque que le probléme (4.25) n’est autre que la formulation faible du probléme initial
sur ¢, donné par le systéme (4.20).

Démonstration du lemme 4.1.8: Soit 57, € H} () solution du probléme (4.24), on montre
que ¢, = ¢, + m(¢y) est solution de (4.25).
En effet, si pour tout ¢ € H(Q2), on pose ¢ = p— (¢) € H} (Q) dans (4.24), on a, d’apres

1 1
la relation de compatibilité / - fdx= / —gdo:
Qd aa 4

h((g77 + m(qzn)) do + / égapdo

o0

/ Vo, - de+n/ <$n+m($n>>goda+n<so>/

1219}
/ f(pdx—i-n/Sgodx—i- /de
(4.26)

Or, par définition de m, / (¢n + m((/),, ))do = / S dx, on en déduit que ¢, = (b,, + m((b )
o0
est solution du probléme faible (4.25).
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Réciproquement si ¢,, € H} () est solution de (4.25), alors on peut montrer que 5,, =
on — (¢p,) € HL () est solution de (4.24). Pour cela, on remarque d’abord que :

Vo € H'(Q),
1_~ ~ 1 1
-V, -Vodx+n [ h(o,+ (dy)) pdo + —gpdo= | = fedx+n [ Spdx.
Q4 o0 o0 4 Q4 Q
B (4.27)
Pour montrer que (¢,) = m(¢y,), il suffit de prendre ¢ = 1 dans (4.27) et d’utiliser la relation
de compatibilité ainsi que la définition de m. |

4.1.3.1 Existence et unicité a n > 0 fixé

Dans ce paragraphe, on prouve le lemme suivant :
Lemme 4.1.9

Le probléme : trouver qgn € H} () solution du probléme (4.24) rappelé ci-dessous
Wi € Hy,(Q),
1 _~ ~ ~
|2V, Vodxtn [ b+ m@)vdo+ [
04 oN

1g1/1da:/1f1/1dx+77/5¢dx
o0 4 04 Q

(4.28)

admet une unique solution pour tout n > 0.

Démonstration du lemme 4.1.9: On commence par définir le sous ensemble K, de H} ()
de la maniére suivante :

K, = {U S Hrln(Q)a HU”Hl(Q) < CPW(Q)ZQmux <77 (Otr(Q) mes(Q) M + ||SHL2(Q))

1 1
+ Ctr(Q)HgQHLZ(aQ) + ||§fHL2(Q) + 77||5||L2(Q)) },

ott Cy,(2) est la constante de I'inégalité de trace ||vjpa|r20) < Co(Q)||v|| 51 (0)-
On remarque que K, est un compact pour la topologie associée & la norme L2, en vertu
du théoréme de Rellich.

Soit I’application Tj, :
i, - HL(9)
w + v solution de Vi € H} (),

1 1 1
/QaVv-V¢dx+n/69h(w+m(w))wda+/8 agwda—/ggfwdx—i—n/ﬂSz/)dx.

(4.29)

De la méme maniére que pour le cas linéaire, on peut montrer qu’il existe une unique fonction
v € H} (Q) solution du probléme faible décrit dans (4.29). Ainsi T, est bien définie de K, C
H},(Q) a valeurs dans H} (€2). Nous allons montrer que T;, est bien & valeur dans K. Soit
w € H} (), en choisissant ¢ = v, on a alors :

1 1 1
— V|2 + / h(w + m(w vdJJr/ fgvdaz/ffvdXJr /Svdx.
H\/a IZ2(0) + 1 - ( (w)) 4 L nJ

Q
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D’apres les inégalités de Cauchy-Schwarz, on a :
1

H\/a

1
VolZzq) < nllh(w + m(w))|l 200 lvjeall L2 (90) + ”59HL2(8§2)HUWQHLZ(QQ)
1
+ ||6fHL2(Q)||UHL2(Q) + 0|18 22 |Vl 2 () -

En utilisant I'inégalité de Poincaré-Wirtinger (lemme 4.1.3) et I'inégalité de trace [|vjaql|2(a0) <
Cir(Q)||v|| 1 (), on obtient

1
el e < (1Cu(®) Jaw + m(w) sz o0

<mes(Q) M
1 1
+ Ctr(Q)HggnL?(aQ) + Hgf”L?(Q) + 77H5||L2(Q)),
d’ott I'estimation :
1 1
||U||H1(Q) < CPW(Q)QQmaa: (nCtr(Q) mes(€2) M + CtT(Q)||59HL2(E)Q) + ||afHL2(Q) + 77||SL2(Q)) .

Ainsi T}, est bien une application allant du compact K, (pour la topologie associée & la norme
L?) vers lui-méme. Pour appliquer le théoréme du point fixe de Schauder, on a besoin de
montrer que T;, est continue pour la norme L?. Soit (w,) une suite d’éléments de K qui
converge vers w € K pour la norme L?. Montrons que (T, (w,,)) converge vers T, (W) en norme
L?. Comme 09 est borné, on peut extraire une sous-suite de (wnjaq), notée (wy,|00) qui
converge vers wWgn presque partout.

Comme h et m sont continues, on en déduit que h(w,, +m(wy,)) — h(W+ m(w))
presque partout et h(wp, + m(wy,,)) est borné indépendamment de ny (par hypothése).
D’aprés le théoréme de convergence dominée de Lebesgue :

W € H(Q), [ B, munn,) v i —isi /a (@ m(m) o,

Comme W est donné a priori, la limite ne dépend pas du choix de la sous-suite de (w,) (qui
est une suite quelconque d’éléments de K convergeant vers w). Donc, pour la suite entiére
(wy), on a:

v e HL(@), |

h (wn + m(wn|ag)) Ydo —ptoo / h (@—i— m(mag)) Ydo.
o0

o0

Ainsi, en posant v,, = T;,(wy), on a (v,) borné dans H} (Q) (espace de Banach réflexif),
donc, & une sous-suite prés, (v,,) converge faiblement vers v € H} (Q) (et converge aussi dans
L? d’aprés le théoréme de Rellich). Ainsi en passant & la limite des deux c6tés on a :

Vi € H,,(Q),

1
-Vu-Vydx+n h(@+m(@))wdo+/
Qdq b19) 0

1gwdaz/lfwdx—i—n/Swdx.
q Q4 Q

C’est & dire que T = T,,(W), ainsi T est indépendant du choix de la sous suite de (v,). On en
déduit la convergence de toute la suite (v,) vers T. Donc T, est continue de K, dans K. De
plus K, est compact pour la topologie associée a la norme L2
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Ainsi d’aprés le théoréme du point fixe de Schauder, il existe 5,7 € K, tel que 57, =T, (5,7)

On a donc montré I'existence d’une solution de H}, () au probléme (4.24).

On peut donc calculer ¢, = (En + m(%n) solution de (4.25).

Pour montrer 'unicité de 57,, solution de (4.24), on utilise I’équivalence avec le probléme
résolu par ¢y, (4.25), voir le lemme 4.1.8. On montrera alors 'unicité de ¢,, par un argument
de monotonie pour enfin revenir & ‘;n-

Prouvons 'unicité de la solution du probléme (4.25) : Soit qS}] et (;5727 deux solutions de (4.25).
On fait alors la différence des deux équations et on prend pour fonction test ¢ = (;5717 — 727, ce
qui permet d’obtenir I’équation :

IV (¢ — 7) IZ2() + 77/ (h(¢y) — (@) (¢ — 7)) do = 0.

o0

>0

On en déduit que
[ 6 - e3) 6} - ) do =o.

Comme h est une fonction strictement croissante, cela implique que (h(¢y) — h(¢7)) (7 —
d)%) > 0 (presque partout sur dQ). On en déduit que ¢, — (,253] = 0 sur 09Q. Comme de plus

v (¢717 - ¢37) ||L2(Q) = 0, on obtient ¢717 = ¢127_

On rappelle que 'on cherche & montrer I'unicité de la solution 577 du probléme reformulé
(4.24). On a alors

Gy = &y = m(dy) —m(dy).

Le premier membre étant de moyenne (sur Q) nulle, on en déduit que m((gfl) = m(%) puis

que ¢, = ¢p.
On a donc montré Iexistence et 'unicité de la solution au probléme (4.24) ainsi qu’au
probléme équivalent pour ¢, € H*(Q) (4.25). [ ]

4.1.3.2 Limite quand n — 0

Il s’agit ici de montrer que ¢, converge bien vers ¢o € H*(2), solution de
$o = + m(do)
1_~ 1 1
Vi € H}n(ﬂ),/ V¢0-V1pdx+/ —gvdo :/ f¢dx+/ S dx.
Q4 on d Q4 Q

Pour cela, on va simplement donner une estimation en norme H' de 5:7

Pour tout 1 > n > 0, ggn est dans le compact K (pour la norme L?) : On peut donc en
extraire une sous-suite qui converge vers une fonction 50 € LQ(Q). De plus, on peut aussi
en extraire une nouvelle sous-suite qui converge faiblement dans H*(Q) (lemme 4.1.5). Donc
q~50 € K1 ¢ H'(Q). En utilisant la convergence faible, on peut passer a la limite dans (4.24),
et montrer que cette limite est la solution de (4.24) en prenant n =0 :

1_~ 1 1 .
- . - = Z Q). .
/Qqquo dex—I-/aquwda /quwdx—l—/gswdx, Vi € H,,,(2) (4.30)
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Comme gz~50 est recherchée dans H} (), on peut en montrer l'existence et I'unicité via le
théoréme de Lax-Milgram. On construit ensuite ¢g en posant ¢g = ¢ + m(do).
On va maintenant estimer 'erreur ||y, — ¢o|| 1 (o) en remarquant que

6 = ol () = lén — Poll3r @ + m(dy) — m(o)|*.

Pour évaluer ||$77 - 50” H1(), on fait la différence entre les problémes faibles pour 7 > 0
(4.24) et n = 0 (4.30). Ce qui donne :

/Q;v (& — 90) -vwdx+n/mh(q§n+m($n)) wdazn/QSzbdx, v € HL ().

En prenant ¢ = an —%0 et en utilisant I’inégalité de Poincaré, on a ’existence d’une constante
c(Q, S) telle que : o
lPn — doll () < (€2, 5)n.

Pour montrer que ]m(ggn) — m($0)y < (9, 50, S)n, pour n suffisamment petit, on se rappelle
simplement que d’aprés le théoréme des fonctions implicites, m est de classe C! au voisinage

de ¢0.
On a donc bien l'existence d’un ny > 0, tel que pour tout n < g, on a :

||¢T] - ¢0||H1(Q) < 0(97(/5075) n,

ou (12, q~50, S) ne dépend pas de 7, ni de ¢,,.
Cela achéve la démonstration du théoréme 4.1.1.

4.1.4 Application au probléme du potentiel électrique 1D

On revient maintenant a notre probléme de potentiel électrique ¢, pour lui appliquer
la méthode AP basée sur la décomposition en partie moyenne et partie fluctuante présentée
dans le paragraphe 4.1.3. On va appliquer les résultats et la méthode donnés par le théoréme
4.1.1 au modele 1D du potentiel électrique. On prend ici Q =] — L, L.

On souhaite résoudre le probléme (4.2) rappelé ci dessous :

1 1
O <n<x>8x¢"<x>> =50 (77(56)f @)) rel =Lk
1 1 TV
JOeon(—D) = L (D) + (1-erBmnl0)) o= p
1 1 _
;8x¢77(-[/) = @f([z) — <1 — eA(L) ¢W(L)) x = L.

On utilise a nouveau la méthode de la décomposition en partie moyenne et partie fluc-
tuante : ¢, = (¢y) + ¢y, avec

1 ~ ~
<¢77> = m /}—L,L[¢n dr = m(¢n)
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Erreur L2 (phi_eta approx - phi_0 exact) versus eta ; pas : h=0.0001

A—A—A Erreur L2
— —— — ordre’l

Erreur L2

- - -6 -5 -
10 10 10 10 10 10 10 10 10
eta

FIGURE 4.10 = [|¢y 62 — $0.62 || 12(j—0.4,0.4)) €n fonction de 7. La discrétisation utilise un schéma
centré en volumes finis avec un pas de dz = 10™4.

Formellement, le probléme (4.2) est ainsi reformulé sous la forme :

1 - 1
-0 (i) =5 =0 (550) el nd
1.~ 1 DLy .
LOeOn(—L) = (- L) + (1 — ML) =y (=L)=m( >) z=—L (4.31)
o3 (1) = 1 #(1) — (1 — ADI=Fn(L)=m(dy) v —
L Oe0a(L) = - () (1 ) L.

L’existence et l'unicité de 577 e H) (- L,L[) et ¢, € H(] — L, L[), ainsi que le compor-
tement quand 7 tend vers 0, découlent du paragraphe précédent.

Dans ce cas, on peut calculer explicitement m((bmaﬂ) en sommant les deux conditions aux
limites :

exp (A(—L) - an(—L)) +exp <A(L) - @(L))
2 — f}—L,L[ S dx

m(;b/n) =In

Nous avons ainsi fait un test numérique afin de confirmer numériquement le résultat théo-
rique provenant du théoréme 4.1.1. Dans la figure 4.10, la convergence de la méthode préser-
vant I'asymptotique est confirmé numériquement : on observe la méme vitesse de convergence
que pour le cas linéaire (voir le paragraphe 4.1.2.2), c’est a dire ||¢y, 55 — do5z/lz2 = O(n),
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jusqu’a arriver & U'erreur de discrétisation. On utilise ici un schéma volumes finis centrés. La
résolution du probléme discret non linéaire est effectuée par une méthode de point fixe.
Dans les tests numeériques, on a choisi :

- S=0.

— q(z) =1, c’est a dire, n(x) = .

4.2 Pénalisation pour I’équation du potentiel en 1D

On souhaite & nouveau utiliser une méthode de type domaine fictif pour faciliter la discré-
tisation des conditions aux limites. Quelques essais ont d’abord été réalisés avec les méthodes
proposées par Angot dans [8] et testées par Ramiére [51]. L’idée de ces méthodes est de fixer
des conditions de saut pour la solution et pour le flux a la frontiére du domaine originel.
L’inconvénient de cette méthode est la nécessité de réaliser un traitement adapté des cellules
proches de l'interface avec l'obstacle, selon le stencil du schéma. Cela complexifie un peu la
programmation.

Pour éviter cela, nous avons étudié une autre méthode, de type pénalisation volumique,
proposée par Bensiali et al. [15], dont les tests numériques sur des cas d’équations elliptiques
linéaires semblaient donner des résultats de convergence intéressants. L’idée de la méthode
est simplement d’ajouter un terme de pénalisation volumique correspondant aux conditions
aux limites de Fourier souhaitées; comme ce qui est fait pour une condition aux limites de
Dirichlet.

4.2.1 Présentation de la méthode de pénalisation proposée par Bensiali et
al.

Dans cette sous-section, on fait une bréve description de la méthode de pénalisation pro-
posée par Bensiali et al. [15]. La méthode a été décrite a travers I’exemple d'un probléme
elliptique linéaire sur un domaine & une seule dimension d’espace.

Cette pénalisation s’obtient directement a partir des conditions aux limites :

Probleme originel : Probléme pénalisé (¢ < 1) :
_ auwe
On considere le probléme originel X1 /
+ = (au; —bu; —g(—04 _
suivant, d’inconnue w : 3 ( c == 9l ))  €]—0.5,0.5]
X2 /
+ == (au; —bu. —g(0.4)) =
—au’ =f z €] —0.4,04] € (ave - 9(0) =/
au'(—0.4) = bu(—0.4) + g(—0.4) ue(—0.5) = u(0.5)
—au'(0.4) = bu(0.4) + g(0.4). x1 = 1size[-0.45,-0.4] et 0 sinon.
X2 = 1si z €[0.4,0.45] et 0 sinon.
x =1siz€]—0.5-04U[0.4,0.5] et 0 sinon.

Dans ce cadre 1D, il est possible de calculer explicitement les solutions et d’estimer I'erreur
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X1 Plasma X2

—-0.5-04 04 05 7

F1GURE 4.11 Le domaine de calcul utilisé : x; vaut 1 en = €] — 0.45, —0.4] et 0 ailleurs.
Quand a x2, elle vaut 1 dans ]0.4,0.45[ et 0 partout ailleurs.

due a la pénalisation. On a alors :

|te)—0.4,0.4) — wll 5t = O(e) et ) —0.4,0.4) — ullLe = O(e).

Les tests numériques en 1D réalisés par Bensiali et al. [15] montrent une décroissance de
Perreur ||u —uc|g1(q) en O(e). Cependant, dans des domaines de dimension 2 ou plus, aucun
résultat théorique n’est proposé. Cette absence provient du fait qu’il faut étendre la notion de
vecteur normal a la frontiére du domaine dans tout le volume pénalisé. Une autre difficulté du
cas multidimensionnel est le cadre inconfortable pour les estimations sur la forme bilinéaire
correspondante.

Pour avoir une convergence au maillage d’ordre 2, il est souvent nécessaire de faire un
traitement adapté des cellules au voisinage de la frontiére (avec un méthode de type cut-cell,
par exemple) ou d’utiliser un maillage adapté au domaine pénalisé, comme cela a été fait dans
les tests numériques du chapitre 2. Cela retire bien évidemment une partie des avantages des
méthodes de pénalisation. Il est apparu lors des tests numériques que pour retrouver une
convergence au maillage d’ordre 2 avec un schéma de type différences finies, il faut que la
frontiére du domaine originel soit confondue avec un des points de la discrétisation.

Deux questions restent en suspens pour cette méthode de pénalisation :

Ces résultats intéressants peuvent-ils étre confirmés numériquement sur un probléme
avec un espace multidimensionnel 7

Le bon comportement de la méthode de pénalisation sur le cas linéaire se retrouve t-il
aussi avec une condition aux limites non linéaire 7

Dans le paragraphe suivant, nous allons réaliser quelques tests numériques sur le modéle
1D du potentiel électrique pour apporter quelques éléments de réponse & la deuxiéme question.

4.2.2 Application au probléme du potentiel électrique

Bien que 'on n’ait pas de résultat théorique concernant 'utilisation de cette méthode de
pénalisation sur le cas non linéaire, nous avons choisi de la mettre en place sur le probléme
du potentiel électrique. On applique alors la méthode de pénalisation proposée a au probléme
de potentiel électrique aprés la décomposition en partie fluctuante (¢,) et partie moyenne
(m(%ﬂag)). Le domaine de calcul considéré est représenté dans la figure 4.11.
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Le systéme d’équations pénalisé est alors le suivant :
_ 18:%577 L XL <1am$n(0.1) _ lf(_0'4) — (1 _ eA(0~4)$n(0-4)%(5n)>>
n €\ n
1, ~ 1 e Y 1
+ X2 <— 0y (0.4) + = £(0.4) — (1 - eA<°-4>—¢v<0-4>—m<¢v)>> = —0,f ]—-0.5,0.5]
€ n n n
¢n(0.5) = —¢,(—0.5)

_ oM —L)yby(=0.4) | A(L)0y(0-4)

oll on a les quantités suivantes :
— x1 =18 z¢€[-045,-0.4] et = 0 ailleurs.
X2 = 1si z €[0.4,0.45] et = 0 ailleurs.

— ¢ = parameétre de pénalisation (0 < e < 1).

Le schéma numérique est & nouveau un schéma de type volumes finis. La discrétisation
des termes pénalisés a été faite a 'aide d’une discrétisation de type LUD (Linear Upwind
Differencing, voir [64], page 165) d’ordre 2. Sur les maillages utilisés, les parois plasma-limiteur
sont & l'interface entre deux cellules volumes finis. Ainsi, comme l'interface plasma-limiteur
n’est pas confondue avec le centre d’une cellule, la convergence quand le pas du maillage tend
vers 0 est limitée a 'ordre 1. Donc avec ce schéma, on ne pourra pas étudier numériquement
Ierreur sur la dérivée d,¢,, ni rechercher la présence de couche limite due a la pénalisation
sur ce terme.

Pour les tests numeériques, on utilise dans la configuration suivante :

f(z) = cos(2mz), A=0, S(z) =0.

L’étude numérique de I’évolution de D'erreur due & la méthode de pénalisation a été faite
dans la figure 4.12. On observe une décroissance de l’erreur en norme L? décroit comme O(g)
jusqu’a arriver a erreur de discrétisation spatial qui est relativement élevée & cause du fait
que le schéma numérique n’est que d’ordre 1. La figure 4.13 permet de controler la convergence
de la méthode quand la résistivité tend vers 0.

Ces premiers essais encourageants permettent d’entrouvrir des perspectives de méthodes
de pénalisation volumique pour les équations régissant le potentiel électrique, en vue d’'une
intégration dans un modéle plus complet. Pour un modéle multidimensionnel, il sera peut étre
nécessaire d’utiliser une méthode de frontiére immergée avec des conditions de saut, comme
dans [8].

4.3 Modéle 2D anisotrope

Pour résumer les résultats précédents sur le modéle 1D du potentiel électrique, on peut
noter qu'une bonne partie des difficultés réside dans la prise en compte de la faible résistivité
paralléle 7. Pour traiter le probléme, nous nous sommes tournés vers des méthodes préservant
lasymptotique. L’idée la plus naturelle consiste a séparer ¢, en sa moyenne selon la variable
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Erreur L2 en fonction de epsilon (h=0.0001 , eta=0.0001)

[s—/5—/\" Resol par AP (psi-> phi)
- O(epsilon)

Erreur L2
EN
Covronl vl vl

epsilon

FIGURE 4.12 — Erreur L? en fonction du paramétre de pénalisation . On a pris = 107 et
dx = 10~%. On observe une décroissance de l'erreur en O(e) jusqu’a Uerreur de discrétisation
spatiale.
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Erreur L2 en fonction de eta (h=0.0001 , eps=1e-10)

[
] /~—/x—/\" Resol par AP (psi-> phi)
B — ordre 1 (en eta)
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FIGURE 4.13 — Erreur L? en fonction de la résistivité paralléle n. On a pris ¢ = 10710 et
Sz = 10~*. On observe une décroissance de I'erreur en O(n) jusqu’a l'erreur de discrétisation
spatiale.
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x (abscisse curviligne le long des lignes de champ magnétique) et en sa partie fluctuante. Les
bonnes propriétés de cette méthode quand 7 tend vers 0 se vérifient alors aisément. On est
méme parvenu a les généraliser & un probléme elliptique non linéaire et isotrope. Le souci, est
I'apparition de termes non locaux au bord du domaine contenant le plasma qui impliquent
de pouvoir suivre une ligne de champ magnétique. Si dans le cadre a une dimension d’espace,
cela ne pose aucun probléme, il n’en est pas de méme si les lignes de champ ne sont pas
alignées avec le maillage dans un cadre multidimensionnel. C’est ainsi que pour le modéle du
potentiel électrique dans un systéme & deux dimensions d’espace, on fera appel & une autre
décomposition de ¢, : cette décomposition sera nommée micro-macro, en référence a l'article
qui l’a introduite |27].

Nous allons maintenant nous intéresser au modeéle 2D du potentiel électrique décrit dans
larticle de Negulescu et al. [45], qui est donné par le probléme non linéaire (4.1) rappelé
ci-dessous :

[~ 0,02, - Tllag% + 00y =S dans |0, T[xQ
OyOnlt=0 = OyPini dans O
@ﬂﬁmz“ =0 et a§¢|EH =0 sur ]O,T[XZH
Ontgjeer, =1 (1 — et} sur 0, T[x {~L}x]o,
D Prje=1 = —1 (1 - eA_d’"‘z:L) sur |0, T[x{L}x]0,[
condition de périodicité de ¢, sur |0, T[x{—0.5,0.5} x]I, 1],

ou v > 0 est une constante strictement positive. Et A désigne le potentiel de référence a
I'intérieur du limiteur.

L’existence et I'unicité de la solution faible au probleme (4.1) a n fixé est déja prouvée
dans I’article pré-cité, sous une condition de terme source de faible amplitude.

Dans toute cette section, 2 désignera le domaine

Q= (—0.5,05[x]0,1) \ (] — 0.5, —0.4[x]0,[) U (]0.4,0.5[x]0, [)),

comme représenté dans la figure 4.1, rappelée ici pour plus de lisibilité.
De méme, on donne les domaines suivants :

2 = (=L, L] x {0}) U ([~0.5, —L] x {1}) U ([L,0.5] x {I}) U ([~0.5,0.5] x {1})
Y, ={-L}x]0,]

S, = {L}x]0,{[

Y, =%, LU,

La réunion ¥ U¥ | U ({-0.5}x]I,1[) U ({0.5} x]I, 1[) donne la frontiere de (2.

Pour un temps 7' > 0, on défini Q7 comme étant 'ensemble ]0, T'[x Q.

Dans la suite, nous allons traiter la situation ot n tend vers 0. Pour éviter le probléme de
la dégénérescence du probléme (4.1) quand n — 0, nous allons le reformuler en utilisant une
décomposition dite micro-macro [27] de la solution ¢,. On prouve alors I'existence et I'unicité
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Y Centre
1
= Plasma o
é‘ EL EL é
0 | R 3
0.5 —L b Mur L 05«

F1GURE 4.14 — Rappel de la figure 4.1 : Représentation en deux dimensions de la zone conte-
nant le plasma de bord. x correspond & une abscisse curviligne le long d’une ligne de champ
magnétique (de direction b). Le domaine contenant le plasma est € et les frontiéres sont
Y (pour tout la partie parallele & b) et ¥, (pour la partie perpendiculaire & b). Cette
configuration sera notamment celle utilisée dans la section 4.3.

de ¢, et on étudie la convergence de (¢,) vers ¢g. Enfin nous conclurons cette partie par des
tests numériques.

Ces travaux sont résumés dans un compte rendu de la conférence Seventh International
Symposium on Finite Volumes for Complex Applications (FVCA7) qui a été accepté pour
publication [9].

4.3.1 Décomposition micro-macro

Pour traiter le cas d’une faible résistivité paralléle dans un domaine en dimension 2, nous
allons donc mettre en place la méthode de la décomposition micro-macro décrite dans larticle
de Degond et al. [27]. Dans leur travail, Degond et al. ont présenté et étudié la méthode pour
un probléme elliptique linéaire fortement anisotrope. Mentrelli et Negulescu [44] ont aussi
utilisé, sans démonstration, cette méthode AP pour résoudre numériquement une équation
de diffusion non linéaire anisotrope, issue d’'un modéle simplifié décrivant 1’évolution de la
température du plasma dans un tokamak.

L’idée est de décomposer le potentiel électrique de la maniére suivante

¢77 = Py + N4n,

ol p, est indépendant de la variable x, associé¢ a ’axe paralléle aux lignes de champ magné-
tique. Autrement dit 0,¢, = 70,q,. Pour assurer I'unicité de cette décomposition, il faudra
alors fixer une condition supplémentaire sur g,. On remarque ici, que c’est la méme idée que la
décomposition en partie moyenne et partie fluctuante, p, jouant un role similaire a la moyenne
sur la ligne de champ et ¢, se comparant & la partie fluctuante. La différence étant que ¢,
n’est pas fixé par une condition de moyenne nulle mais par une condition de type Dirichlet.
L’idée qui nous évitera de conserver des termes non locaux dans les équations que 'on va
résoudre, c’est de ne pas calculer p;, et g, mais ¢, et ¢,. La contrepartie de cette stratégie est
que Ion devra évaluer deux fonctions de trois variables (¢, (t, z,y) et ¢,(t,z,y)) au lieu d'une
fonction de deux variables (p,(t,y)) et d'une autre de trois variables (g, (t, z,y)). On reprend
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1 1

alors le probléeme (4.1) et on remplace les termes —0,¢, et —agqs,, par, respectivement, 9,qy
n n

et 92q, :

- 3@5@7 - 39%(17, + 1/83@7 =S dans Qr

835(2577 = 778906]77 dans Qp

a:cqmz:—L = (1 - GA_(%“":_L) sur ]0, T[X Yi_L

OxQylo=1, = — (1 — eA—¢n|z:L) sur |0, T[xX) 1, (4.32)
tjamms =0 sur 10, T[x {~L}x]0, 1]

ayd)mg” =0 sur ]O,T[X Z”

82¢77|ZH =0 sur |0, T[x %

Pylt=0 = Pini at=

On ajoute a cela une condition de périodicité sur ¢, par rapport a la variable z en {—0.5} x|, 1]
et {0.5} x]l, 1], pour tout temps entre 0 et 7.
Pour faciliter la résolution numérique du probléme (4.32), on pourra remplacer I’équation

Or®y = N0pqy par :

036y = nd3ay dans Qr

Oxpje=—05 = NOxlylz=—0.5 sur 0, T[x{-0.5}x]l, 1]
Oz Pylo=—1 = N0xlyo——1, sur |0, T[xX3, _f
OxPyjz=1, = N02ly|z=1L sur |0, T[x¥

02 Pyjz=0.5 = N02ly|z=0.5 sur |0, T'[x{0.5} x]I, 1[.

A n > 0 fixe, I'existence et l'unicité de la solution faible ¢, de (4.1) sont garanties [45].
On peut alors aisément prouver que la décomposition ¢, = p, + ng,est unique. Il reste
donc & étudier le comportement quand 7 tend vers 0 : c’est & dire d’abord montrer que
@0 et qo, les solutions du probléme limite pour n — 0 ont bien un sens et évaluer ’erreur
¢y — dollL1(0,7522(0))- On remarque que, sous réserve d’avoir la convergence de ¢, ¢, vers
o0, go quand 7 tend vers 0, on a ¢ indépendant de z.

La démonstration de 'existence et de 'unicité de ¢¢ se fait en suivant étape par étape la
preuve faite pour le cas a 7 fixé donnée dans [45] : on démontre le cas linéaire puis on étend
au cas linéaire par un argument de type point fixe. Dans un souci de rigueur et de clarté,
nous allons 'exposer en détail ici.

Nous allons ici commencer par donner quelques définitions d’espaces qui seront fréquem-
ment utilisés dans les démonstrations qui vont suivre.

Définition 4.3.1

On définit les espaces de Hilbert suivants :
-V ={feH'Q),0]f € L*(Q), f périodique sur {—0.5,0.5}x],1[,9, f = 0 sur ¥ }
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avec pour produit scalaire :

l
(f,v)y = / 0y f Ozv dydx + / 8§f 851) dydx + 2/ fle=1 Vja=r dy.
Q Q 0
— L’ensemble des éléments de V' a dérivée par rapport a x (direction paralléle) nulle :
Vo={feH(N),0;f € L*(Q),0:f =0 dans Q,0,f =0 sur 3} .
On le munit du produit scalaire :
l
(f,v)v, = /Q ajf Ojv dydx + 2/0 fle=1 Vja=r dy.
- H={feL*Q),0,f € L*()} avec son produit scalaire (pour e > 0) :
(fyv)g = e/ fodydr + / Oy f Oyv dydz.
Q Q

— L’ensemble des éléments de H a dérivée par rapport a x (direction paralléle) nulle :
Hy = {f € HY(Q),0.f = 0 dans Q}, muni du produit scalaire (pour e >0) :

(f,v)m, = e/ fvdyda:—i—/ Oy f Oyv dydz.
Q Q
Q= {f € L*(0),0.f € L*(Q), fiz=—1, = 0 sur ]0, 1[}, muni du produit scalaire :

<f7v>Q = /Qazf Oy ¥ dyd{L'

On remarque que le produit scalaire (f,v)p, dépend d'un parameétre e dont on va expliciter
le réle par la suite.

On montre alors aisément l'inégalité de type Poincaré suivante, voir [45] :
Lemme 4.3.1
Il existe une constante Cq > 0 (ne dépendant que de ), telle que pour tout ¢ € V, on
a:

2
18l 22) < Ca (1fja=rllLrqoap + 1028l 120y + 10,8l 12(02)) -

On note V' le dual topologique de Vi. Hy étant un espace de Hilbert, on l'identifie a son
dual topologique. On note — 'inclusion avec injection continue. Vg muni du produit scalaire
(., )V, est aussi un espace de Hilbert.

On précise que Vy — Hp — Vg forme un triplet d’évolution (voir la définition dans
lannexe A) car Vj est dense dans Hy et que U'inclusion de Vj dans Hj est continue.

On définit aussi :
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Définition 4.3.2

L’espace A est I'espace des fonctions ¢ telles que :
- ¢ L*(0,T;V),
- Oy € L¥(0,T; LA(Q)),
- 0,0 € L2 (0.T{f € H\(Q),02f € LX(Q), fis, = 0}) .
d2¢ € L>(0,T; L*(Q)),
~ 09 € L20,T; V),
0y0rp € L*°(0,T; L*(R)).
L’espace A | est I'espace des fonctions ¢ telles que :
~ ¢ € L*(0,T; Vo),
— 9y € L*(0,T; L*(2)),
0y € L2 <O,T; {f € H\(Q),02f € L*(9),0,f = 0 dans Q, fi5, = 0}) ,
~ 02 € L>(0,T; L*(9)),
8t¢ € L2(07 T; ‘/E))a
— 0y01p € L>(0,T; L*(12)).

Dans l'article de Neguslescu et al. [45], il est montré que, sous des hypothéses convenables
sur les données S, ¢;n;, la solution ¢, est dans A pour tout n > 0. On peut alors montrer

1
que g, € L*(0,T,Q) en écrivant q,(t,z,y) = = (¢y(t,z,y) — ¢y(t, L, y)), pour presque tout
n

t €]0,T[,(xz,y) € Q. De plus, on a le lemme suivant qui sera utilisé lors de I'étude de la
convergence quand 7 tend vers 0 :

Lemme 4.3.2
Si ¢y, € A, alors, g, € L*(0,T,V).

1
Démonstration: On sait déja que d,q,, = —9,¢, € L*(0,T, L?(2)). Par ailleurs, comme
n

0,6y € L* (0.T:{f € H'().8}f € L*(Q), fis, = 0}),

on montre que dy ¢y —_1, et 8§¢,,|$:_L sont dans L2(0,T; L?(]0,1])), en utilisant les résultats
du livre de Lions-Magenes [42], page 9. Tl vient alors d,q,, 0;q, € L*(0,T; L*(2)). Enfin, on
remarque que 8yqn|EH =0. |

Dans la suite, nous allons notamment prouver que ¢g appartient a A .
Si on fait le produit scalaire de la premiére équation de (4.32), par une fonction v € V/
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(donc v ne dépend pas de t), on a le probléme faible pour n > 0 :
Yv eV,

d
T /Q Oyr Oyv dydx + /Q Oy Orv dydx + v /Q 85(1),7 8231) dydz

l l
+ /() (1 - eXp(A - ¢77|$:—L)) Vig=—L dy + /() (1 - eXp(A - ¢77|$:L)) Vje=L dy

Q

Ay @ojt=0 = OyPini-

(4.33)
On réécrit maintenant le probléme (4.32) sous sa forme faible en espace et en temps :
Trouver ¢, € A et ¢, € L*(0,T,Q)

Ve € HY()0,T]),Yv € V N H*(Q),Yw € Q,

/8y¢n|t 1 Oyv dydx {(T / /Oyd)nt 7 Oy vdydz & dt—l—/ /3;,3%8 vdydx € dt

+I// /52¢n82vdyd:1:§dt+/ / 1 —eA*¢"|1=—L> Vjp——r dy & dt
/ / 1 — A Pnla= L) Vjg—r, dy § dt = /8y¢m,8 vdydx £(0 / /Svdydmfdt

7]/ / Oy Opw dydx & dt = / / O0x Py Opw dydz€ dt.
0 Q 0 Q
(4.34)

Le probléme faible pour 7 = 0 est le méme que le probléme (4.33) sauf que les espaces
dans lesquels on recherche ¢g et gy sont différents :
On cherche a trouver ¢g € A, et gy € L?(0,T, Q) solution faible de :

Y € Vp,

4 / Oydo Oyv dydz + / 02qo Oz dydx + V/ D2 o 0%v dydx

dt Jo Q o VY

. (4.35)

+2/ (1 —exp(A —¢p))vdy = | Svdydx
0 Q

OyBojt—0 = OyPini-

Comme ¢q est & chercher parmi les fonctions constantes par rapport a x, 'axe paralléle
aux lignes de champ magnétique, on peut se retreindre a v € Vg, ce qui donne le systéme
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suivant :

Yv € Vp,

% / Oy Oyv dydx + l// (95% 851) dydx

’ l ¢ (4.36)

+ 2/ (1 —exp(A — ¢>0\m:L)) Vjp=r dY = / Svdydx
0 Q

Oy Pojt=0 = OyPini-

On peut ainsi découpler ¢ et qo dans le systéme (4.35) pour donner le probléme (4.36), mais
cela ne peut se faire que dans le cas n = 0. C’est le systéme (4.36) que I'on va considérer pour
construire ¢g dans la suite.

Comme la forme bilinéaire (¢,v) € H x H — [, 9y¢0yvdydz n’est pas coercive sur
H, d’ou lintroduction du paramétre € > 0. On remplacera donc cette forme linéaire par
(p,v) € Hx H — fQ €pv + Oyp Oyv dydx et on étudiera le comportement quand e tend vers
0.

Nous faisons ensuite I’hypothése suivante :
Hypothése 4.3.1

1. §,0,8, 855, O0S, 81525 € L2(QT) et ||S||LOO(QT) < (s et ”S‘t:THLoo(Q) < Oy avec Cy a
définir.

2. ¢mz S H4(Q)
3. ¢ini est indépendant de x, c’est 4 dire Oy Pin; = 0.

l
4. /S|t0 dydx = / a§¢ini dydx+2/ (1 —eA_‘i’i"“x:L) dy.
Q Q 0

Les hypothéses 3 et 4 du théoréme 4.3.1 sont des conditions nécessaires d’existence de ¢g, la
solution du probléme (4.36), ce sont des conditions de compatibilité de la condition initiale.
On remarque que pour 1 > 0, les hypothéses 3 et 4 ne sont en général pas valables au temps
t > 0. A S fixé, on peut trouver ¢;,; vérifiant ces deux hypothéses 3 et 4, par exemple en
recherchant parmi les constantes par rapport a x et y.

Nous allons maintenant énoncer le résultat que nous allons démontrer dans la suite :

Théoréme 4.3.1

Sous I’hypothése 4.3.1, le probléme (4.34) admet une unique solution (¢y,q,) € A X
L*(0,T,Q). De plus, on a la convergence faible de ¢, et g, :

by — ¢o dans L*(Qr)
dn — Qo dans LQ(QT),

ott (¢o,q0) € AL x L*(0,T,Q) est I'unique solution faible de (4.35).
Enfin, on a lestimation d’erreur suivante :

1on — dollLro0,m522(0)) < e(Qr, @0, S, A) /1.
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On remarque que lestimation d’erreur n’est pas donnée dans L?(€7), cela restant une question
ouverte.

La démonstration du théoréme 4.3.1 consiste d’abord & prouver I'existence et 'unicité de
¢o, solution de (4.36), puis de g, solution de (4.35) et enfin étudier le comportement quand
1 tend vers 0. C’est 'objet de la suite de cette partie.

4.3.1.1 Existence de ¢ dans le cas linéaire

On commence par étudier le probléme linéaire en vue de prouver ’existence de ¢q, solution
du probléme non linéaire (4.36), par une méthode de point fixe.

Dans ce paragraphe, la solution recherchée dans le probléme linéaire est ¢¢. Dans le pro-
bléme non linéaire (4.37) présenté plus bas, le terme non linéaire de (4.36), (1 —exp(A — ¢0\x:L))
a été remplacé par h¢f, _; +g, ou h € L>=(]0,T[x]0,1[) et g € L*(]0, T[x]0,1[).

On va utiliser ’espace suivant, dont les propriétés sont rappelées dans 'annexe A :

W2(0,T; Vo, Hy) = {f € L*(0,T; Vo), 0:f € L*(0,T; Vy)}

Nous allons montrer la propriété suivante :

Proposition 4.3.1

On considére le probléme linéarisé sous sa forme faible :
(V¢ € HY(]0,T[), Vv € V,

/€¢t TU+8y¢\t T8 vdydx§ / /6¢|t Tv+ay¢|t =T yvdyd:vf dt
+u/ /a§¢€8§vdydx§dt+2/ /hqbszvx:Ldyfdt
0 Q

/ €Dini U + OydiniOyv dydz€(0 / / Svdydwﬁdt—2/ / gVp=r dy & dt.

(4.37)
On suppose que h :)0,T[x]0,l[— R est dans L*°(]0,T[x]0,l]) et qu’il existe hyn tel
que pour presque tout t €]0,T[,y €]0,l[, h(t,y) > hmin > 0. On admet que g €
L2()0,T[x]0,1]),S € L*(Q7) et ¢ii € HY(Q). Ce systéme admet une unique solution
¢¢ € WH2(0,T; Vo, Ho). De plus, il existe une constante ¢(Qr, v, hyin) > 0 (indépendante
de €) telle que cette solution vérifie 'estimation d’énergie, pour tout t € [0,T] :

1 € € €
3 (€H¢ (t>”%2(9) + Hay¢0(t)H%2(Q)) + 06 H%Q(O,t;L2(Q))
+ 2hiinl| 9= 7204225, 1))

1
c(Qr, v, hinin) <2 <6||¢im”%2(g) + ||ay¢ini‘|%2(ﬂ)> + 2||9||3:2(}0,T[x2u) + ||S||L2(QT)> :

On remarque que la condition initiale dy¢gj;—g = Oy¢in; a été changée en ¢|t 0 = ini-
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Démonstration de la proposition 4.3.1: Cette démonstration consiste essentiellement & vé-
rifier soigneusement les hypothéses d’un résultat donnée par Zeidler et Boron dans [66], page
424 et rappelé en annexe A (théoréme A.0.1). Le théoréme utilisé est basé sur la méthode de
Galerkin pour un probléme d’évolution du premier ordre :

On remarque que, pour presque tout t €]0,T], v — fQ Svdydr — 2 fé g Vjz—1 dy est une
forme linéaire continue sur ’espace de Hilbert V. D’aprés le théoréme de Riesz, on peut donc
trouver S(t) € Vp tel que :

1
Yo € Vo, (S(t), v)v, z/Svdydx—Q/ G Vg1 dYy.
Q 0

En utilisant les produits scalaires hilbertiens sur Hy et Vj, on réécrit le probléme (4.37)
sous la forme :

Trouver ¢¢ € W2(0,T; Vo, Ho) = {f € L*(0,T; Vo), 0:f € L*(0,T; V)} tel que :
V¢ € €°(]0,T[), Yo € V,pp-t €]0,T7,

T T T

- / (6°(8), o), €(1) dit + / alt, (1), v) () dt = / (S(t), )y €(t) di
0 0 0

¢8\t:0 = ¢ini € Hop.

avec la forme bilinéaire a(t, .,.) : Vo x Vo — R définie par :

!
a(t, ¢,v) = u/ 8§¢8§v dyda?+2/ h(t) ¢lo=1V|o=1 dy.
Q 0

Cette forme bilinéaire a(t, .,.) est donc :

1. Continue, uniformément par rapport a ¢ :

(6,0 < V1026 (00 19301 2@ + 20l 602|201 [P0 0.0 21
< (v + 20plle) 9] olvs-

2. Coercive, uniformément par rapport a t :
l
a(e, ¢) = V(|09 72 () + 2 / hdieerdy  Rappel : h > hppin >0
0

1

> min{v, 2hmin } <|8§¢||L2(Q) +/ ¢\2$:L dy>
0

> (v hinin) |9l vs-

D’aprés le théoréme A.0.1, on a Pexistence et 'unicité de la solution du probléme linéarisé
(4.37). On a de plus l'inégalité suivante, pour une constante ¢(Qr, v, h) > 0 indépendante de

(N
||¢E||W1‘2(0,T;VO,HO) = ||¢e||L2(O,T;Vg) + Hatd)eHLz(O,T;VO*) (rappel de la déﬁnltlon)
< c(Qr, v, hinin) (|‘¢\€t:0||H + 1Sl z20,;vp) + HQHLZ(O,T;VO*)>

< c(Qr, v, hupin) (6”¢|€t:0”L2(Q) + 110y b0l z2(0) + 1Sl 220,7v) + H9||L2(0,T;v0*)) :
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De plus, on a, pour t €]0, 7] :
1 2 2 ¢ 2 2 ¢ : 2
5 (0 Ol + 10,6 ) + [ 1050 a2 [ [0 (01,2r) dya

1 € € ! l € ! €
=3 (€H¢\‘t:oH%2(9) + ||3y¢|‘t:o||%2(9)) + 2/ / 9 Plu=r dy dt +/ / S ¢ dydx di.
0 JO 0o JQ

Ce qui implique que :

1 € € € €
3 (f||¢ D720 + 10y (ﬂ”%z(m) + (8291 72(0.4:02(0)) + 2Pminll$fzrllT2 0,225 1))

1 €
<3 <€H¢z‘m'||2L2(Q) + Hay@mniz(g)) +2[gll 20,4225 ) 1 9fe=r 2200552221 1)

+ 151 220,622 191 220,522 (2)) -

Au final, en utilisant des inégalités de Young, on a

(€||¢€(t)||%2(9) + ||3y¢6(’5)\\%2(9)) + |00 N2 0. 02(0)) + 2Pminll0fezr 720,022 L)

DN | =

1
< c(Qr, v, himin) <2 <€H¢im'||2L2(Q) + Hay@‘ni”%%m) + 2091220, 71x5, 1) + ||S||2L2(QT)> .

Cela achéve la démonstration du cas linéaire. [ ]

4.3.1.2 Existence de ¢y dans le cas non linéaire

Nous allons alors maintenant prouver le résultat dans le cas non linéaire, a ’aide d’un
argument de type point fixe.
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Proposition 4.3.2

Sous I’hypothése 4.3.1, le probléme non linéaire (4.36) qui consiste a trouver ¢g € A}
telle que

(Ve € HY()0,T[), Vv € Vp,

/ €poji=1 v + Oydoj—1 Oyv dydx §(T / / Oy do|i=T Oyv dydz &' dt
+ 1// / 55% 8511 dydz § dt + 2/ / 1 - eA_‘z’O'z:L) Pojz=L Vjz=1 dy § dt

/ay@m(‘) vdydx £(0) / /Svdydxfdt

admet une unique solution faible ¢y € A, c’est a dire telle que :
— ¢o € L*(0,T; Vp).
~ Oy € L>(0,T; L*()).
~ Oyd0 € L2 (0,75 {f € H'(Q),02f € 1%(2),0,f = 0 dans ©, fi5, =0}).
— 0o € L*°(0,T; L*(92)).
~ 9o € L*(0,T; Vo).
9,090 € L=(0,T; LA(Q)).
De plus, on a l'estimation d’énergie suivante, pour une constante c(Qr) > 0 :

10y oll oo 0,7:2202)) + 90l L20,m3v0) < (@) (14 10y inill L2(0) + 1S oo (021)) -

Etant donné la régularité de ¢¢ on, peut montrer que ¢gj,—z, € H'(]0,T[x]0,1]), et par
une inégalité de Trudinger [6, 19], que e*~%oe=L ¢ L2(]0, T[x]0,[).

Ainsi, on est assuré que la formulation variationnelle de (4.36) a un sens.
Lemme 4.3.3

Pour tout ¢ € H'(]0,T[x]0,1[), il existe une constante (I, T, A, |||l g1 o r(x10p) > 0
telle que

lexp (A = ¢) [l 2q0,71x100p) < (T, A 1Bl 5 go,71x10.07)-
Soit K > 0. Si, de plus, on suppose que ||| g1(j0,7(xj04p < K, alors :

[ exp (A —¢) |20, 7xj00p < (I, T, A, K).

Démonstration: Soit ¢ € H'(]0,T[x]0,[). D’apreés I'inégalité de Trudinger [6], page 277, on a :

2
mf{k>0/ /exp(|¢ )—1dydts1} < e, DIl go 2101
0 0

Ce qui implique que :

9|2 )
exp dydt <1+1T.
/ / ( (TN o, rx10.)? Y




CHAPITRE 4. TRAITEMENT DES EQUATIONS DU POTENTIEL ELECTRIQUE 160

En multipliant les deux cotés de 'inégalité précédente par exp ((c(l, T)||¢||H1(]0,T[x]0,l[))2): on
obtient :

T rl 2
exp ((c(l, T 2 / / ex ( 9] >d dt
p(( ( )H¢||H1(]O,T[><]0,l[)) ) 0 0 p (C(l,T>||¢||H1(]O’T[><]0’ZD)2 Y
< (11T exp ((e(l, Tl a1 o, 71x10.0)?) -

L’inégalité de Young nous permet d’avoir :

T l
/0 / exp (—26) dydt < (1+1T) exp ((e(l, )18l s qo.r1x1000)?) -

Au final cela donne :

[N

[ exp (A — @) | z2qo.rixj0ap < (1 +1T) exp (2A + (c(l, T)||8] 1 qo,7(x10p)7))

On en déduit alors les inégalités annoncées dans le lemme 4.3.3. |

IN

Les hypotheses de terme source de faible amplitude (|.S]| oo, 71x0) < Cs et || Sp—r |z~ ()
C) vont nous permettre d’établir les estimations d’énergie utiles & la la démonstration. Une
question intéressante qui reste en suspens est la suivante : Est-ce que ces hypothéses sur S sont
uniquement techniques? Qu est-ce que la résolution du probléme est vraiment compromise
quand S est trop grand?

4.3.1.2.1 Etape 1 : On commence par démontrer ’estimation d’énergie qui est simple-
ment une estimation a priori. Pour cela, on considére I'équation (4.36) avec v = ¢g et on
integre par rapport au temps ¢ :

1 o _
§”8y¢0|t:TH%2(Q) + 0010560l 72 ) + 2/ / (1 —et %"”:L) Poje=1 dy dt
0 70 (4.38)

1 T
:ﬂ%%ﬁﬂﬁm+/(/S%WMﬁ.
0 Q

On peut montrer que la fonction f(z) = = (1 — eA_"”) vérifie, pour des constantes cq, cg, c3
strictement positives bien choisies :

f(z) > ez Al i< —ep = min{A — 1,0}

f(x) > —co si —epa <z <A+1
f(z) > e3lx| siz>A+1.

En injectant ce découpage du terme non linéaire dans (4.38), on obtient :

l

] T
§||ay¢0\t:T”%2(Q) + 110500l 72 ) + 201/0 /0 (1 - eAH%'Z:L‘) |Goje=rL| dy dt

Gojz=L<—CA

T !
1
+ 263/ / |boje=1| dy dt < 2¢olT + 5\\3y¢o|t:o\\%2(sz) + 1Sl oo () | B0l 21 (001)-
0 0¢0|£E:L>A+1
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En prenant ¢4 = min{cy, cs}, 'inégalité précédente devient :

1 T
2‘ay¢0|tTH%?(Q)+V||a§¢0||%2(QT)+2C4/O /0|¢og:L|dydt

=l¢oje=rll21 g0, 7[x]0.10)
1
<c(Qr) + §||ay¢0\t:0||%2(ﬂ) + 1151 poo () V/es(Q) | G0l 21 (07220 -

On utilise ensuite I'estimation donnée par 'inégalité de type Poincaré du lemme 4.3.1 :

1
219boirliizq@) + V105 dollzz(ar) + 261l doa=tllzigorixiony
1
< e(Qr) + 5 19y60=0ll 120

+ Vimes(@)Call Sl zear) (o=t lzrgorgom + VTIOZG0l 2 ) -

On demande alors & ce que || S| o () soit suffisamment petit pour avoir :

Vmes(Q)Cal| S| L@y < ca.

Cela permet au terme comprenant ||¢g|,—r || 1(j0,7(x]0,i) dans le membre de droite de I'inégalité
précédente d’étre plus faible que son homologue dans le membre de gauche. En rappelant que
Pon veut [|S|| g (q,) < Cs, on prend alors :

Cq

Cs < ———.
mes(2)Cq

Ensuite, on pourra observer que pour une constante c1 (€, ) > 0 bien choisie, on a
v
Vmes(Q)TCaql|0; doll 12(07) < f”gjgbOHL?(QT) + a1 (Qr,v),
S

ou ¢1(Q7,v) ne dépend pas de ¢y.
On obtient alors I'inégalité suivante, pour c5(Qp,v) > 0 :

1 v
5!\3y¢0|t=TH%2(Q) + §H8§¢0H%2(QT) + ¢5(Qr, V)| oja=rll L1 qo,7[x70,00
1
< c(Qr) + 5“%%@:0“%?(9) + [[S Lo ()1 (2, ).

En faisant appel a nouveau a l'inégalité de type Poincaré du lemme 4.3.1, on obtient l'esti-
mation d’énergie de la proposition 4.3.2.

4.3.1.2.2 Etape 2: Dans cette étape, on étudie une version modifiée du probléme (4.36) :
comme pour le probléme linéaire (voir la proposition 4.3.1), on introduit le paramétre € et on
prend un terme non linéaire borné indépendamment de I'inconnue. Pour cela, on introduit
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le paramétre n € N*, dont dépendra la borne du terme non linéaire. On remarque que pour

tout z € R T <
out = , —— < n.
1+ |z|/n

On va montrer I'existence d’une solution pour le probléme suivant dont l’inconnue est
og" € WH2(0,T; Vi, Hy) telle que :

Yv € Vp,

d
/ ey v+ OyPGOyv dydr + 1// a§¢g,n 851) dydz
dt Jo 0

en
—|—2/l (1 — exp <A— 1%632:L>> Vjp=r Ay = / Svdydz
0 + ’¢0|x:L\/n Q
Qb(e)]?:o = Gini-
Le terme
Pol—r,
RNy

est alors dans L>°(]0, T'[x]0,![) avec une borne ne dépendant que de n. Cela nous permettra
d’utiliser notre argument de type point fixe.

Pour une fonction ¢ € W12(0, T; Vi, Hy), on considére le probléme linéarisé suivant dont
le but est de chercher ¢!" € Wh2(0,T; Vo, Hp), tel que :

Yo € Wy,

d / eqblm v+ ayqs“" Oyv dydz + 1// aqu“" 851) dydx

!
Ple=L Ple=L lin
—|—2/ <l—exp(A— >— +¢x:)vm: dy—/Svdydx
0 Ut lpperl/n)  THlpp—rl/n = 71=t) =007 )

li
(;6\11520 = (Z)znz

(4.39)

Dans un souci de lisibilité des notations, nous n’avons pas fait apparaitre la dépendance de
A" en € et n.

D’apres les résultats précédents sur le probléme linéaire (proposition 4.37) :

B <€||¢l (720 + 1059 (t)H%z(Q)) + 1050 72041200y + 21Dl L 17204522 0.

1
< c(Qp,v) (2 <6||¢im'H%2(Q) + ||8y¢mi\|%2(ﬂ)>

Plz=L Pla=L 2
F 21 —exp (A - - , + 1181l 20,0 .
I exp< T !wx:L\/n> T ‘(plx:L’/n||L2(O,t,L2(]0,l[)) | ||L2(O,t,L2(Q))>

donc on a

1 in n mn n
3 (€H¢l (DI72(0) + 11850 (t)”%2(9)> + 1050720 220y + 2N T2 (0,22 q0.up)

1 n 2
< e(Qr,v) (2 (eHgbimH%g(Q)—I—Hay@mH%%Q))+2(1+eA+ +n) ZT>.
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Ce qui donne, d’apreés 'inégalité de type Poincaré du lemme 4.3.1 :
||<f>lm(t)||%2(s2) + 16" 2200,7,v) < M (Qr, v, €).

ott M(Q,v,n,€) est une constante indépendante de ¢!™ mais dépendant, entre autres, de
n, €.

On définit 'ensemble X = {¢ € W'2(0,T; Vo, Ho), | ¢llwr20.7:v,10) < M (Qr,v,n,€) }.

Soit la fonction G : X — X qui & ¢ associe ¢"". On montre que G est continue sur X (par
rapport a la norme L?) :

X est un fermé borné convexe, avec une inclusion compacte dans L2(]0, T[xQ), d’aprés le
lemme d’Aubin-Lions (voir par exemple le livre de Showalter [59], page 106). Pour prouver la
continuité de G, on utilise le fait que WH2(0,T; Vo, Hp) est inclus de maniére compacte dans
L%(0,T, L*(]0,1[)). Cette inclusion compacte s’obtient en utilisant le lemme d’Aubin-Lions
pour montrer que W12(0,T; Vo, Hy) < L?(0,T; H%(Q)) avec injection continue et compacte.
Ensuite, on utilise I'inclusion avec injection continue LQ(O,T;H%(Q)) — L%(0,T; L?(]0,1[))
([42], page 9).

La continuité de G se montre facilement en utilisant le fait que WH2(0,T;Vy, Hy) est
inclus de maniére compacte dans L2(0,T, L?(]0,1[)) : On prend alors une suite (¢y) d’élé-
ments de X convergeant vers p € X pour la norme L?(Qr). D’apreés I'injection compacte de
Wh2(0,T; Vo, Ho) dans L2(0, T, L?(]0,1[)), on sait qu’a une sous-suite prés, (@r|p=1) converge
Vers Pjp—r,- Comme, pour tout k, qﬁ%” = G(pr) € X, on remarque que, & une sous-suite
prés, (¢4") converge faiblement dans X C W12(0,T; Vo, Hp) vers @fin. A nouveau, d’apreés
I'injection compacte de W2(0,T; Vy, Hy) dans L?(0, T, L?(]0,1[)), on peut affirmer qu’a une
sous-suite pres, ( ?&:L) converge vers ¢“”|$:L. On peut donc passer a la limite & — 400

dans la formulation faible (4.39), pour avoir :

Yv € Vp,

d — - “Tin
— €¢lm v+ 8y¢lm ayv dydzr + I// 8§¢lm 857) dydzx
Q

dt Jq
¢ %) —
S0|:E:L QOI:E:L __
—1-2/ 1—exp|A-— i _ I L s
0 < ( L+ [@l=rl/n ] 14 [Bl=rl/n jo=L | Vje=L

= [ Svdydx
Q

Pl g = Pini-

Ainsi ¢!" est unique et indépendant du choix de Pextraction de la sous-suite. On donc (G (o))

converge vers ¢l = G(%) en norme L?(Q7). D’oil la continuité de G.
On a donc Pexistence d’une solution faible au probléme, pour tout v € V; : Trouver
og" € X C WH2(0,T; Vo, Hp) tel que, pour tout ¢ €]0, T :

e/ O (65™) v + 0 (0ypg™) Oyv dyda + 1// 2dg" v
Q Q

1 ¢67”_ ¢e,n_
2/ l—exp|A- OGI?;—L — OGITTH_L + o5 Vjper dy = / Svdydz.
0 1—|—|¢)0|x:L‘/TL 1+|¢0|x:L‘/n Q
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En se rappelant que

/l ¢E)7|7; L +¢6,n ¢8,n dy > 07
0 1 + |¢0|m L’/n

on obtient I'estimation, pour presque tout t €]0, 77 :

€,m (12

(10,t[x€2)

+2/ / | A+ -t dy dt
wep | €XD ——— | dy
045" _y<cn 0\ L 1+ |¢0|x L/ (4.40)

+ 2/ / WS’\Z:L‘ dy dt < c(Qr, ini, V).
0 0¢;’|Z:szc,\

avec ¢(£2, pini, v) indépendante de n et € et ¢y ne dépendant que de A.
Maintenant que l'on a prouvé l'existence de ¢y, on va s’attacher a faire tendre n vers
+oo (étape 3) puis € vers 0 (étape 4).

1 €n €,1
5 (el )20 + 10,66 () 22y ) + v

4.3.1.2.3 Etape 3 : On étudie le comportement quand n — +oo.
Comme la suite (45" )nen est bornée dans W12(0,T; Vp, Hy), on en déduit Iexistence
d’une sous-suite, encore notée (¢5"), telle que :

og" — ¢f  fort dans L*(Qr)
0y05" = 0,0 Dpo5" — 0500 0.0G" — 9,05 faible dans L*(Qr).
De plus, ¢g" (t) — ¢§(t) fortement dans L2(92), pour tout ¢ € [0, T).

Pour justifier le passage a la limite, quand n — 400, il ne reste plus qu’a montrer la
convergence du terme de bord :

Pola—L D=L
— exp + " | vip—p dy dt.
/ / ( ( 1“‘|¢0|33 L]/n 1+|¢0|z L\/n 0 =L

Grace a l'inclusion compacte de W12(0,T; Vo, Ho) dans L?(0,T; L?(X, 1)), on peut affirmer
qu’il existe une sous-suite, encore notée (gbg’lZ:L) telle que ¢8’\Z:L — 0 quand n — 4o0.
Ce qui implique que

O\x L €n
+ @giper | Vje=r dydt — 0
/ /( 1+|¢0|x Ll/n 0l L) |
quand n — 4o0.

Nous allons maintenant nous intéresser a la partie exponentielle qui contient le terme de
bord.
On rappelle que l'on a, d’apres (4.40) :
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T [l
€n |z=L
|Pgpey XD [ A+ ———cm—— | | dy dt < (2, Pini, V).
/0 /()¢;”;_L<c,\ Ow=L 1+|¢g‘x Ll/m

(ot (€2, Pini, v) est indépendante de n et €).
Pol—r,

TH 19571/

on peut appliquer le lemme de Fatou. Ainsi, sa limite quand n — 400 est exp(A — ¢[E)|w:L) et

appartient & L'(]0, T[x]0,1[). On prend ici v quelconque dans Vj. Donc les inégalités ci-dessous

ont un sens, quelque soit K >0 :

¢0\x L .
(eXp ( 14+ |¢O\w L|/n> - <A — ¢0|x=L>) V|z=L dy dt
¢O\x L
xp | A — e (A — ot iy
o¢;|" K <e p< 1+|qbolac pl/n ) ¢ p( ¢0|x—L)> Vjg=r, Ay dt

(b(]lx L
exp |[A— ———7—— | —exp (A — ¢§,— Vg, dy dt| .
0¢§’|ZLZ—K< ( 1+|¢0|m Ll/n ( 0l L) lw=L
(4.41)

On veut montrer que pour tout d > 0, il existe ng tel que pour tout n > ng, le membre de
gauche de I'inégalité ci-dessus (4.41) soit plus petit que 9.
On commence par majorer le premier terme du membre de droite de (4.41), ce qui donne :

Soja=1 )
exp (A — ———7— | —exp (A= df_r ) | Vje=r dydt
0¢0|z L< < ( 1+ |¢0|$ L‘/n ( | ) |

(ZSO\ac L
exp | A — | B0 | [V2=L| dy dt
/ /¢82 <K ( L+ @y l/n ) 7 0=F |
+/ / exp(A — @) [Vjz=r| dy di.
0 g >k

Pour K suffisamment grand, on a :

¢0|m L
exp | A — —exp (A — @f,— V)p—g, dy dt
0Ggamr, <~ K( ( L+ G l/7 ( 0 L> o=t

On fixe K a cette valeur. Pour le second terme du membre de droite de (4.41), il suffit
d’utiliser le théoréme de convergence dominée de Lebesgue pour justifier, & K fixé, 'existence
d’un entier ng telle que pour tout n > ng,

Pl
exp (A Da=L —exp<A—¢8‘w:L> Vg dy dt| <
065" 2K 1+|¢0|x Ll/n

Comme exp | A — > est bornée dans L'(]0,7[x]0,I[) et est décroissante,

<

DO | >

o
-
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On a donc, pour tout n > ng,

¢mm L €
(exp( T ‘%‘m Tin ) — exp (A_%p;:L)) Vjp—r, dy dt

La convergence du terme de bord
Oofa=t Poja=t
— exp +¢q" | Vipg dydt.
/ / < ( 1+|¢0|$ L’/n 1+|¢0|x L\/n 0 @

T rl
/ / (1 —exp (A — qsg‘x:L)) Vg, dy dt.
o Jo
est donc acquise.

On a donc l'existence d’une fonction ¢ € W12(0, T, Vy, Hyp) telle que pour tout v € V; et
pour tout £ € H'(]0,T),

<.

vers

T
- / / (egf v + Oydf Oyv) & dydx dt
0 Q
+ / 96(T) v &(T) dydz + / 0,64(T) 0,0 &(T) dyd
Q Q

T T [l Ao
—|—l// / 8§¢8 8yv§dydxdt+2/ / (1 —e 7¢0\IZL) Vjp—r, § dy dt
o Ja 0o Jo
T
:/ / S v & dydxdt —I—/ Oygbftzo Oyv £(0) dydzx.
0o Ja Q
Ceci est la formulation faible du systéme d’évolution :
(Vv € 1,
d
/ €dh v + Dy df Oyv dyda + z// 0295 O dyd

dt
l
+ 2/ (1 — eA_d)O\I:L) Vjp=1 dY = / Swvdydx
0 Q

¢0“ 0 — ¢MM

(4.42)

L’unicité se prouve en utilisant la monotonie de x — —exp(A — z) (fonction croissante).
On a donc I'estimation :

€ €
§H¢O|t:TH%2( H3y¢0|t rlZ2i) + V105651720102 ()
T N
+2/ / 1—6 7%'1#) Dojo=r, & dy di
€ 1 2 €2
< lgimill3a() + 5 10uini 32y + 18l w(rn) 1961
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En reprenant la démonstration de I’étape 1 et d’aprés la majoration que 'on a supposée
pour |5 zee (), on a:

el o5 ()72 + 10,85 1720y + 16612071

) , (4.43)
< o(Qr,v) (1+ ellgimilZza + 10yimill 320y + 1Sz

o ¢(Q7,v) > 0 est indépendante de e.

4.3.1.2.4 FEtape 4 : On fait maintenant tendre € vers 0.

On remarque que (¢§)e est bornée dans L%(0,T,Vp) indépendamment de €, ce qui nous
permet d’affirmer que I'on a la convergence faible de ¢§ vers ¢g dans L%(Qr).

Comme d’habitude, le point le plus délicat est la convergence du terme non linéaire.

On va pour cela utiliser les hypotheses sur S et ¢g;—o pour prouver que exp(A — ¢8\$:L)
est borné indépendamment de e dans W11(]0, T[]0, 1[). En effet, comme on a pris v € H?({2),
on sait que vj,—p, € H%(]O,l[) C L>=(]0,1[) et £ € H'(]0,T[) c L*°(]0,T]). Donc le caractére
borné de exp(A — ¢6|1=L) dans W1(]0, T[x]0, [) nous assure sa convergence & une sous-suite

prés dans L'(]0, T[x]0,1[). On pourra donc utiliser le théoréme de convergence dominée de
Lebesgue pour montrer :

/OT /Ol (1 —exp(A — ¢6|x:L)> Vjp—r, §dy dt —> /OT /Ol (1 —exp(A — ¢0|z:L)) Vppr, € dy dt.

En reprenant la démonstration de I’étape 1, on prouve que :

T l
/0 /0 (1 _ eA*d’O\x:L) ¢6|m:L dy dt < c(Qp, v, dini),

ou ¢(Qp, v, dini) est indépendante de e.
On en déduit :

T l T l
A* € € €
! e gty layat+ [ 65| dy dt < (1, v, Gimi).
0 Od)am:LS_CA 0 0 ¢5 >—cA

O|lz=L

Ainsi on a :

T .l
CA/ / M P0e=1 dy dt < c(Qp, v, dini)-
0 0 6‘ L<7CA

Comme fOT fol —— R € dy dt est aussi borné indépendamment de €, on peut prou-
ver que (¢,y) — exp(A—g§(t, L,y)) est bien borné indépendamment de e dans L'(]0, T[x]0, I]).

Pour étendre le caractére borné de exp(A — ¢8|z:L) a W10, T[x]0,1[), on va maintenant
prouver qu’il en est de méme pour les dérivées 0, exp(A—¢glw:L) = —8ygz§6|$:L exp(A—qﬁg‘x:L)
et Oy exp(A— ¢(6)|x:L) = —atgbg‘x:L exp(A — ¢6|:{::L)' Pour cela, on va dériver formellement par
rapport & y, puis par rapport t, le systéme d’équation et, & chaque, fois étudier les propriétés.
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Etude du systéme pour dy¢j : On commence par définir I’espace :

Uo={f € H*(Q),0.f =0 dans Q, f = 0 sur ¥}

Pour une constante R €)0,1[ quelconque, on a le systéme sous forme faible, d’inconnue
9y € WL2(0,T, Uy, H) :

(Yu € Uop,

d
7 /Q (€0ydg u + Oy (Oyp)) Oyu dydx + y/ﬂ@g (Oy) 6§udyd:t
Lo Voo . (4.44)
—I—2/0 ay¢0\x:L exp A—/R Oydo(t, L,y') dy’ — ¢6(t, L, R) | ujp—r dy

:/OySudyd:B.
Q

Pour obtenir formellement le systéme (4.44), on a repris le probléme (4.42) avec pour fonction
test 831} = Oyu, o v € Vj telle que 821)|EH = 0.

On note que Up est caractéris¢ par des conditions aux limites de type Dirichlet sur 3
alors que V| fait apparaitre des conditions de type Robin.

On voit ici la nécessité d’avoir 9,5 € L%(Q7).

En reprenant le raisonnement des étapes précédentes on montre que dy¢f € Wh2(0,T, Uy, Ho)
est bien I'unique solution de (4.44).

On a alors I’égalité a priori :

€ 1
5!\3y¢5(T)||%2(m + 5119y (9y66(T) 172 + V1195 (8y86) 1720
T l
+2 /0 /O & Pola=r |0y b5 jp=r|” dy dt (4.45)
€ € 2 1 € 2 r €
= 519y 26(0)l[72(0) + 5118y (9y#6(0)) [[72(0) + o 0yS Oy dydz dt.

Comme ¢§ est uniformément borné dans L?(0, T, Vp) (i.e. indépendamment de €), on en déduit
que 9y¢§ est uniformément borné dans L?(Qr). En utilisant U'égalité (4.45) et I'inégalité de

Cauchy-Schwarz sur le terme fOT Jo 0yS 0y dydzx dt on obtient :

T pl
/ / eA_d)Olm:L ’ay¢6\z:L‘2 dydt S C(QT7 V7 ¢an)
0 0

ot ¢(Q7, v, ¢ini) est indépendante de e. On peut ainsi affirmer que 9, e P0e=L est borné dans

L'(j0,7[x]o,1)).
Il reste a faire de méme pour 9 eA_%lx:L, mais le traitement sera plus délicat.
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Etude du systéme pour 0¢¢f : On part du systéme (4.42) et on dérive formellement ’équa-
tion par rapport a t. Cela nous permet alors d’avoir le systéme :

Yv € Vp,

d
pn / €0 v + Oy (0rp) Oyv dydx + 1// 8; (Org) 821} dydx
Q Q

! t
+ 2/ O Phjp=1, XD <A - / Ayd5(t', L, y)dt” — o5 (T, L,y)> Vp—r, dy = / S v dyda
0 T Q
€ /Q 815(‘258\1&:0) v+ 00y Oyv dydz = /Q —v@iqﬁmi 857) + Sjy—o v dydx

l
\ 0

La condition initiale du systéme ci-dessus provient de ’équation d’évolution de (4.42) prise
en t = 0.
En prenant v = 0;¢f; comme fonction test, on obtient I'égalité a prior: :

€ € 1 € €
§”at</>o(T)H2L2(Q) + §Hayat¢o(T)H%2(Q) + 1020:8611 72 2
T l T
+ / / 10165j0- 2 exp (A = 6y, ) dyda dt = / / 0,S 0,0 dyda dt (4.46)
0 0 0 Q

€ € 1 €
+ §||6t¢0|t:0||%2(9) + §||ayat¢0\t:0”%2(ﬂ)'

Tous les termes du membre de gauche sont positifs, donc, pour les majorer, il suffit d’étudier
le membre de droite :
— Traitement du terme fOT Jo 05 01 dydzx dt - On commence par rappeler que, par inté-
gration par partie, on a :

T T T
/ / 04S 0196 dydx dt = — / / 028 ¢f dydzx dt + / / Sjt—1 G5 g dydax di
0 Q 0 Q 0 Q

T
—/ /S|t:0 Pini dydz dt.
o Ja
(4.47)

Comme 925 est supposé étre dans L?(€27), le premier terme du membre de droite de
(4.47) se majore a 'aide de l'inégalité de Cauchy-Schwarz. De méme, la majoration
du troisiéme terme du membre de droite de (4.47) ne pose pas de probléme. Il reste a
étudier H(bg‘t:THLQ(Q). Pour cela, on fait le produit scalaire dans L?(Qr) de 1’équation
du systéme initial (4.32) avec 0;¢f, ce qui donne :

€ € v €
el 05117207y + 18:0y B3] 72 2y + §||a§¢0\t:TH%2(Q)

T [l Ao T
+2 / / (1_e —¢0|x:L) Dby dy dt = — / / 0,8 ¢ dyda dt
0 0 0 Q

14
+ /Q S\t:T ¢(E)\t:T dyd:v - /QStO ¢zm dydx + §||a§¢zm”%2(g)
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Le terme non linéaire de ’équation vaut :

T l l
/ / (“eA‘%WIL) ey, dydt = / (¢5<T,L,y>+eA*¢3<T’y’L>) dy
0 0 0
l
— [ (6000, Lo+ o000 )

On utilise maintenant I'’hypothése [|S;—r[loc < Cs. Comme C; est & déterminer, on va
désormais la fixer en disant que c’est une constante suffisamment petite pour que l'on
ait (on rappelle que z 4+ e*~% > |z| dés que |z| > cp)

€ € v €
el 05117203y + 10:0y B3] 72 1) + §|’873¢0\t:T||%2(Q)
l
—I—/ |¢)8|t:T| dy < c(Qp,v, A, S, ¢ini) (indépendante de €).
0

D’aprés 'inégalité de Poincaré du lemme 4.3.1, on en déduit que H(bat:THLg(Q) est borné
indépendamment de e.
Montrons maintenant que

2 2
€|’at¢6|t=0”L2(Q) + Hayat¢g|t:0HL2(Q)
est majoré indépendamment de e. Pour faire cela, on remarque que :
68t¢6|t:0 - 853t¢8\t:o = (S\t:O - ag‘bzm) + ag2gqo-
On rappelle que 'on a la relation de compatibilité

l
0

/ (S|t:0 — 8§¢mz) dyd:r — 2/ (1 — eA_¢i7Li\w:L) dy =0.
Q

car cela est aussi égal a fQ —8,585(;50 dydx = —0; fE“ Oypodx = 0.
En faisant le produit scalaire sur Vj, on obtient :

Yv € V,
: A
/Qéat¢8t=o” + 0y 01— Oyv dy = /Q (Sjt=0 — 0y bini) v dydz — 2/0 (1 —e _%"”ZZL) dy.

Donc en prenant @tgbg'tzo comme fonction test, on a :

el 0ol F2 () + 1840tz F2() + 1820 bh—0lI 72 (0
—0 (par hypothése)
< |Sjm0 — By Binill L2(0) |06y —oll L2(e) + 20T — € Omile=r || 1230, 986 =0 | L2000
< (HS|t:0 — Oy biillr2(o) + 2c(Q)||1 — et Pinile=r ||L2(}0,l[)) 10:05)1—0 | 711 (02)-
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D’apres l'inégalité de Poincaré-Wirtinger (voir le lemme 4.1.3), pour des fonctions a
moyenne nulle sur un domaine borné et connexe, on a l'existence d’une constante
Cpw (92) > 0 (indépendante de ¢€) telle que :

CPW”at¢6|t:D”%2(Q)
< <Hs\t:0 — 0 binill L2 () + 2¢(Q)||1 — P Pimile=r HLZ(]O,H)) 10:05 ol 1(02)-
((1)n a donc montré que e|]8t¢6(0)H%2(Q) + Hf)yatqbg(O)H%g(Q) est borné indépendamment
e e.

On a donc tous les éléments pour affirmer que fOT fol |8t¢6|;r:L‘2 exp (A — ¢5|x:L> dydx dt
est borné indépendamment de e. D’aprés l'inégalité de Cauchy-Schwarz, on en déduit que :

T rl
/ / |8t¢8‘x:L| exp (A - ¢8‘x:L> dydzx dt
0o Jo

T rl ) T rl %
< (/ / ]8t¢8‘x:L| exp (A - ¢6|x=L) dydzx dt / / exp (A - d>6|x:L> dydzx dt) .
0o Jo 0o Jo

C’est a dire, étant donné que 'on vient de prouver le caractére borné de ses dérivées, que
exp (A — ¢6|w:L> est borné dans WH1(]0, T[x]0,1]).

On en déduit donc que exp (A — ¢8\x:L> converge fortement, quand € — 0, vers exp (A — ¢0|z=L)-

La convergence des autres termes de la formulation faible est immédiate en vertu de ’estima-
tion (4.43).

Pour I'unicité, le raisonnement est assez classique puisqu’il est basé sur le caractére crois-
sant de la fonction & — —e™%. En effet, si on prend ¢g1 et ¢g2 deux solutions du probléme
(4.36), vérifié par ¢p, on a alors :

1
3 19:0yP01j=r — do2=rllL2(2) + 107 (do1 — ¢o2) 220+

T
/ / (eA—‘bOm:L — eA_‘bOl'Z:L) (P01jz=1 — Po2je=1) dy dt = 0.
0 Jo

>0

On a alors ¢g1 = ¢go, c’est a dire 'unicité de ¢g. La proposition 4.3.2 est ainsi démontrée.
Il reste maintenant & montrer l'unicité et ’existence de qg, puis d’étudier la convergence

de ¢y, qy-

4.3.1.3 Unicité de qg

Pour cela, on va rechercher ¢o(t), non pas dans Vj) mais dans

Q={feL*),0.f € L*(Q), flo=—r = 0 sur |0, 1[},
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(rappel de la définition 4.3.1). Pour presque tout ¢ €]0,T[, on cherche ¢o(t) € @ solution du
probléme linéaire, avec ¢y € A, déja déterminé :

Yv eV,
!
/ 020 Ozv dydx = —/ (1 — eA*%IELL) (U|m=L + v|z:,L) dy
Q 0

+ / (S + ataj%) v — 1/8;1% v dydx
Q

dojlz=—L = 0.
Supposons que ’on ait deux solutions q(l] et q%, alors, on aurait, pour presque tout ¢ €]0,7[:

Yo eV,
/ 8z(qé — qg) Oxvdydr =0
Q

1 2
dojz=—1 — 4ojz=—L = 0.
Par densité, on en déduit que :
Yo € Q,

/ 02(gh — q3) Owv dydz =0
Q

1 2
Wle=—1, ~ Wje=—r = 0-

Clest a dire ||, (g} — q%)HLQ(Q) = 0 avec la condition qé|x:_L - qg‘x:_L = 0, par une inégalité
de type Poincaré, on en déduit 'unicité de gg dans Q.

4.3.1.4 Convergence quand n — 0

Nous allons montrer que ||g,l[z2(0,) €t |0z, 12y sont bornés indépendamment de n
afin de montrer la convergence faible de (g;)n>o0.

Pour cela nous allons commencer par montrer que :
Lemme 4.3.4

Sous les hypothéses du théoréme 4.3.1, on a (93(1)0 € L*(Qr).

Ce résultat sera utile dans les estimations qui seront faites pour |lg, |l z2(.) et 1024yl L2

Démonstration du lemme 4.3.4: Pour une constante R €]0,![ quelconque, on a le systéme
suivant sous forme faible, d’inconnue 9;¢§ € W'2(0,T, Vo, Hy) :

Yo € V,

d

o /Q €0; 95 v + 0y (0705) Oyv dydr + 1//985 (0266) Opv dyda

l / ’ € €
2 [ (050010~ Oty ) oA IR OB 0 RG-S gy

:/8y5vdydx,
Q
(4.48)
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obtenu formellement & partir de (4.42) en prenant pour fonction test 851) = Oyu, ot v € V)
telle que 62’0‘2“ =0.

En reprenant les étapes 1 & 3 de la démonstration de la proposition 4.3.2, on montre que le
systéme (4.48) admet une unique solution 82¢§5 € W'2(0,T, Vy, Hy) et que I'on a I'estimation
suivante :

€ € € €
§||a§¢o|t:T||2L2(Q) + 1058671720y + V1105 05]|72 ()

T l
”/o /0 10205 pr|? " P0le=L dy dt

€
= §||3§<f>im||%2(m + 1105 binil 2 (0 (4.49)

T
+/ /Saqugdxdydt
0 Q
T l .
w2 [ [ 10,06, 0265 e dy.
0 0

Il reste a étudier le second membre de I’égalité ci-dessus. On commence par étudier l'in-
tégrale qui contient le terme source, & ’aide d’intégrations par parties :

T T
/ / S 076 dydx dt = — / / 0,,S 0, 9% dydz dt.
0 Q 0 Q

Or, (0,95 22(0,) est borné indépendamment de e.

On étudie maintenant le terme de bord fOT fol |8y¢6‘z:L|2 33% M %0e=L dy dt. Pour cela,
on remarque que 9y ¢ ,_; est dans H'(]0,T[x]0,[) :

- ¢8 € L2(07T7 VE]) - L2(07T7 H2(Q)) donc ¢8|m:L € L2(07T7 H%(EJ_ L))

016 € L*(0,T,Vp) C L*(0, T, H*()) donc d,g5,_; € L2(0,T, H* (31 1)).

Pour plus de détails, voir, par exemple, le livre de Lions-Magenes [42], page 9. A D'aide des
injections de Sobolev, on en déduit que pour tout r € N*, 9y¢5,,_, € L"(]0, T[x]0,I[). De
plus, les injections étant continues et comme ¢f et 0;¢f sont bornés indépendamment de
e dans L2(0,T, H*(9)), on sait que, pour tout r € N*, 10y #6j0=rllLr(0,7[x]0,) €st borne

indépendamment de e. De plus, on peut montrer que || e Pore=r 2o, 7ixj0.p < c(Qr, A, v)
est borné indépendamment de e, d’aprés 'inégalité de Young et le théoréme de Trudinger (voir
le lemme 4.3.3). Donc on aboutit & :

T l
| / / 1000y > 0205 A= %1e=t dy ]
0 0

T l T

T l
<10y b5 1e=rl1 75 q0.21x10.4p I €202 || L2 g0, T1x10,0) (/O /O T dt)

1
2
1
2

T l 2
=9 A </ / 1026 |2 A e dydt> ,
0 0

ot ¢(Qp, A, v) est indépendante de e.
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Donc, suite & une inégalité de Young, on a l’estimation suivante : On réinjecte ce qui
précede dans (4.49) et on utilise 'inégalité de Young pour absorber

T l
o A v) </ / 02650y P A 0010s dydt>
0 0

On a alors 'estimation suivante :

1
2

10580171120y + 105 80=r 1720y + VI8 51|72 (02

T rl
+/ / |a§¢8\z=L‘2 eA7¢mw:L dy dt
0 0

€
< (T, 1, A, (bO\r:L) + 5”83¢1m||%2(9) + ||a§¢ini”%2(g)
+ 10y Sl L2 () 10y 86 M| L2 (2) -

‘|
2

Le second membre étant borné indépendamment de €, on en déduit que (6§¢6)€>0 est
borné indépendamment de € dans L?(27). On peut alors faire tendre € vers 0.

Donc on a, (93(250 € L*(0,T,Vp) et en particulier, 5;;(1)0 € L*(Q7). [ |

Le fait que 8;% est dans L%(Qr) va s’avérer important pour montrer l'existence de qq.
Pour montrer ’existence de go et la convergence de ¢, nous allons adapter la démonstration
du théoréeme 3 de 'article de Degond et al. |27]; cette derniére concerne uniquement un
probléme elliptique linéaire.

On prend les systémes vérifiés par ¢, (4.32) et ¢o (4.36), on en fait la différence, puis
on effectue le produit scalaire avec la fonction test ¢, — ng, — ¢o € AL. On remarque que
Oy — Ny — G0 € L?(0,T,V), d’aprés le lemme 4.3.2. On obtient alors :

T
/ / 9:0y(dn — o) ay(¢77 — Ndn — ¢o) dydx dt
0 Q
T
t 1//0 /Qag(qbn — o) 85(@?7 — Nqy — ¢o) dydz dt
T pl
+ A /(; (eA*QbO\r:*L _ eAf¢n\I:7L> (¢77 —Naqn — ¢0)|I:7L dy dt

T 1
+ /0 /0 (GA_%‘”:L — eA_¢"‘”:L> (b — nany — ¢0)|$:L dydt = 0.

En se rappelant que, g;—_7 =0, on a alors
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T
/0 /Qﬁtay(¢77 — ¢0) Oy(Py — ¢0) dydx dt + 1/”85(% — ¢0)HL2(QT)
T rl
"‘/0 /0 (eA—d)O\x:—L —eA—¢n\%:—L> (¢n o ¢0)|z:_L dy dt

T l
a [ (et e tes) (0, — ),y dyd
0 0

T T
_77( / / 0,0y v D@y dydax dt + v / / 02,y 02q, dydz dt
0 Q 0 Q
T rl
—I—/ / <1 — eA_‘bﬂlx:L) Qyla=1 dy dt
0 0
T T
— / / 9,0y 00y qn dydzx dt — v / / D20 D2 ay dyda dt
0 Q 0 Q
T l
/ / <1 7eA—¢0\x:—L> Tplaem1. dydt
0 0
T rl
—/ / (1 — eA_¢0\Z:L> Iyle=r dy dt | = 0.
0 0

En utilisant argument de monotonie, on en déduit que :
4 2
| [ 0006, = 00) 0,6, — o) duda i + 1350, — 0120+
0

T pl
(et e it} (6~ oy dyie+
0 0

>0
T rl
A=ole=r — A =Pne=1) ($, — )., dydt+n|dsqn|?
. e e n 0)|z=1 Y M%zqn 1 L2(Qr)

>0

T T T
< 17/ / S g, dydx dt — 77(/ / 8t6§q§0 qn dydx dt + 1// / 8‘3(/50 qn dydx dt
0 Q 0 Q 0 Q

+ /T /l (1 — eA_¢°"“:L) Unla=L Y dt)-
o Jo (4.50)

Par des inégalités de type Poincaré, on montre qu'il existe une constante ¢(€27) indépendante

de o, ¢y, gy telle que [|lgyl| 22(p) < (Q0)10295 L2 (07 €t | anje=r 20, 71x]0,0p) < Q) 102y |l L2000
On obtient alors 'estimation suivante :

10240172120y < 1SN L2 1anll 207y + 118505 b0 + 10,0l L2(0r) 9l L2 21

+ |1 — e Pola=r 1220, 71x70,40 190200 | L2 (1)
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ce qui donne :

||q77||L2(QT) < C(QT7¢07 Sv A) et ||8$q7]||L2(QT) < C(QT3¢0357 A)

ot ¢(Qr, ¢o, S, A) est indépendante de ¢, ¢,. A une sous-suite prés, (g,)y>0 converge alors
faiblement dans L?(Qr) vers une fonction go. Il en est de méme pour (9,4 )y>0-
On reprend maintenant l'inégalité (4.50), & Iaide du caractére borné de ||q; || £2(q,), on a

18y (6 — $0)ji=r | 72y + V1|05 (b5 — P0) | 720y +
T
/O /0 (eA—¢O|w:—L _ eA—¢n\m:—L> (¢77 _ ¢O)|g;:—L dy dt +

(4.51)

T -
/0 /0 (eA_%lf:L —eA_%\-f:L) (¢n qbo) ;. dydt < c(Qr, o, S, A)n.

>0

On en déduit que

10 (dy — d0) | 22007y 1103 (D5 — d0) | 22 (0) < (Qp, o, S, A) /7.

:77||8IQWHL2(QT)

Nous allons alors minorer les termes de bords non-linéaires.
En étudiant la fonction p : z — (1 —e™?) z, on remarque que, pour tout z € R, u(z) >

w(z) ot :
w(z) = {

En considérant, e~ ®ole=L 7 (¢n|x=L—¢0|x=L) on obtient 'inégalité :

22 siz<1
z stz>1.

DO =

(eA_¢OIx:L _eA_¢ﬁ\$:L) (Qﬁn—qso)‘x:L = eA_QSO"J:L (1 — ei(d)nlz:Li(zbOlI:L)) (¢77|3::L - ¢0|$:L)

1 . .
56 Pola=L ‘¢n\x:L_¢0|x:L‘2 S1 ¢n\aj:L_¢0\z:L <1
>

1 4 .
ieA Pola=L |¢n\x:L_¢0|x:L‘ S1 ¢n\ac:L_¢O\a::L > L

En intégrant sur Qr, il vient alors :

/ /0 At gy~ e dy e+ / /0 Aot |10, — G| dy dt

¢7]\a: L— (z)O\z < ¢7]|a: L— ¢O\z >1

0 0

S C(QTa ¢05 S) A) n
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D’aprés I'inégalité de Cauchy-Schwarz, on a

1
2
// A Gy, — oyt < < // Abuiemt gy — qsOw:Ldedt)
d)n\z L— ¢0|z L Od)n\z L— ¢0|z L> 1
3
/ / A—dojp=L dydt| .
¢n|L L—=%0|e=1=1

Cela permet d’obtenir, en vertu de I'inégalité (4.51) :

T
1
/0 /0 5 OXP(A = Gop=r) [Pyja=1 — doja=r| dy dt < c(Qr, ¢, 5, A) /1.

On va montrer ci-aprés que U'on a I'inégalité de type Poincaré suivante :
Lemme 4.3.5

Pour tout ¢ € L?(0,T;V), on a Iestimation :

ol L0020 < C(Q) (H%«:L e P0le=L || 1o rxqoup + 1020 L2ar) + \\3§¢!\L2(QT)> :

ou C(Q) ne dépend que de Q.

Démonstration du lemme 4.3.5: On peut d’abord montrer que pour tout ¢ € V et pour tout
t €]0,T[, on a :

18]l 20) < () (II%:L e 0o=r O | 1y g0 + 11026 L2 () + ||3§¢HL2<Q)) :

La démonstration est similaire a celle I'inégalité de type Poincaré donnée dans dans [45].

On obtient ensuite le résultat du lemme 4.3.5 en intégrant 'inégalité ci-dessus et en utili-
sant I'inégalité de Cauchy-Schwarz. ]

A partir de V'inégalité (4.51), on en déduit :

Pn = dollLr0,7522(0)) < C(Q)<H(¢n\m:L — Pojg=r,) € P0l=L lzrqorixs . 1)

+ 10269 = @0}l 2021 + 192(6n = 60) 2
C(QTv ¢07 Sa A) \/’7]

Remarquons que nous avons une estimation de ¢, — ¢o en norme L'(0,T; L%(2)) mais pas
en norme L2(Q7). En effet, I'estimation de ¢y — ¢o en norme L?(927) ne nous a pas semblé
accessible.

On souhaite maintenant prouver que l'on peut passer & la limite dans la formulation
faible du probléme avec décomposition micro-macro (4.34). En reprenant la démonstration
de 'estimation d’énergie de I’étape 1 (démonstration de la proposition 4.3.2), on peut montrer
que ||yl z2(0,7,v) est borné indépendamment de 7.
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Par ailleurs, on sait que I'on a la convergence de aggbn vers a§¢o quand 7 — 0. En reprenant
la démonstration de I’étape 4, on peut montrer que

1 1
2100bnerliiz) + 3 100l 2y + V10 Ounll 12
T l . l
0 0 0 .
T 1 2
_ /0 /Q 015 Dy dydz dt + 5 10,Dutr1—o 32

On en déduit que |99yl 12(0,7,v) est borné indépendamment de 7. On en déduit que ¢y.—r,
est borné dans H'(]0,T[x]0,1[) indépendamment de 7 et donc que e~ ®nl==L est borné dans
L%(]0, T[x]0,1]).

De plus, 0;0,¢y, 8§¢n et g, sont bornés dans L?(Qr) indépendamment de 7.

Donc a une sous-suite prés, on peut passer a la limite dans la formulation faible du
probléme avec décomposition micro-macro (4.34) pour obtenir le probléme faible (4.35), dont
I'unicité de la solution (¢g, qo) a été prouvée. On en déduit que :

Gy — Qo Oy — ¢o faiblement dans L?(Qr).

Cela clot la démonstration du théoréme 4.3.1.

4.3.2 Aspects numériques

Dans cette partie, nous allons faire des tests numériques sur le systéme (4.32) obtenu
avec la méthode AP basée sur la décomposition micro-macro de Degond et al. [27] (voir
sous-section 4.3.1). Nous avons opté pour un schéma de type différences finies centrées en
espace avec une discrétisation en temps de type Euler. La mise en place d'une méthode de
splitting directionnel aurait grandement facilité les calculs, hélas, les problémes obtenus en
regardant chaque direction (z et y) pris individuellement ne sont pas inversibles. Le choix a
donc été de discrétiser le probléme (4.32) de facon complétement implicite, excepté le terme
non linéaire. Ainsi, on résout un systéme linéaire a chaque pas de temps afin de trouver les
approximations de ¢, et ¢,. A premiére vue, on pourrait noter qu’un schéma aux différences
finies est peu adapté & la décomposition micro-macro établie ici puisque ¢g n’est pas solution
d’un probléme continu, mais seulement d’un probléme faible. En effet, le probléme continu
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sur ¢g, qo est sous-déterminé :

— 3t3§¢0 — @%qo + Va;lqﬁo =S5 dans Qr

qojz=—1 =0 sur |0, T[x¥, 1
dyops, =0 sur |0, T[x%

82¢0|2H =0 sur 10, T[x %

Pylt=0 = Pini at=0

o =0 dans Qp

Oz Polz=—05 =0 sur 10, T[x{—0.5}x]I, 1] (4.52)
Oz Poje=—1, = 0 sur |0, T[x{—-L}x]0,[
OzPojz=1 =0 sur |0, T[x{L}x]0,[
Ozpojz=05 =0 ur 10, T[x{0.5} x]I, 1]
Onojz=—1 = (1 - eA_%"“‘:*L) ur |0, T[x{—L}x]0,{]
O Poje=L = — (1 — eA*‘f’OlI:L) sur |0, T[x{L}x]0,]

La mise en place d’une discrétisation en espace de type éléments finis, plus adaptée a la
formulation variationnelle (4.34), pourra faire 'objet de développements futurs. On considére
un maillage rectangulaire de l'espace de pas constant dx (selon la direction (Oz)) et oy
(selon la direction (Oy)). Le pas en temps est noté dt. Si ¢;'; est une approximation de
¢n(not, —0.5 + idz, joy), et g;'; est une approximation de qn(ndt, —0.5 + idx, joy), alors on
a discrétisé le terme de condition & la limite de la maniére suivante, en prenant I; tel que
—05+ hHox=—-L=-04:

n+1 n+1

9n+1, — 91,5 _ gl = RS —o7
281 Ii,j g )~

On fait de méme en x = L. Cette linéarisation temporelle nous permet d’avoir une matrice
inversible (identique & chaque pas de temps).

Dans la figure 4.15, on observe que le conditionnement de la matrice obtenue avec la
méthode AP est trés mauvais, quelque soit 17 > 0. Néanmoins, on remarquera qu’il est borné
indépendamment de 7, ce qui n’est pas le cas pour la matrice correspondant & la résolution
du probléme sans la méthode AP. Pour éviter les problémes de convergence liés & ce mauvais
préconditionnement, nous avons choisi de résoudre le probléme linéaire par une méthode de
type LU, qui semblait étre plus rapide que GMRES, tout du moins avec la bibliothéque
PETSc. La construction d’un préconditionneur efficace en vue de 'utilisation d’une méthode
itérative, pourrait étre un développement futur pour les aspects numériques.

Pour le test de convergence, nous avons choisi une configuration ou le limiteur remonte
jusqu’en haut du domaine de calcul, ¢’est a dire [ = 1. On rappelle que le domaine de calcul est
représenté dans la figure 4.1. Cela ne change pas les propriétés démontrées dans la sous-section
4.3.1. On a pris 4 nouveau L = 0.4. La solution manufacturée choisie est la suivante :

2 1.25¢2
on(t,z,y) =n (;) cos(my) cos(1.257z) — In <1 - 7rcos(fry)> + A. (4.53)
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Conditionnement vs eta (dx=dy=0.025, dt= 0.01)

L—/5x—/\ Avec méthode AP (phi et q)
O—C—=< Sans méthode AP

T 15
© 10 3§
GE) 10147;
c 3
c 3 —
o 13 AN
= 10 3
© |
5 12]
o 10 3
11
10 3
10
10§
9
10 3
8 ]
10 3
7] T T T T T T T T T T T T
10 14 13 12 11 -10 - 5 4 3 2 1
10 10 10 10 10 10 10 10 10 10 10 10 10 10
eta

FiqurEe 4.15 — Conditionnement en norme 2 en fonction de la résistivité paralléle n pour le
systéme linéaire (identique a chaque pas de temps) approchant la solution (4.53). On a un
pris dx = dy = 0.025 et 4t = 0.001.

On remarquera que le terme source S associé a la solution manufacturée (4.53) dépend de 7
mais n’est pas singulier quand n — 0. Cela différe légerement du cadre de I’étude théorique
de la sous section 4.3.1. Le tracé de la solution approchée par le schéma numérique est
représenté dans la figure 4.17. En étudiant Ierreur en norme L2, voir la figure 4.16, on observe
que le schéma numérique est bien d’ordre 2 en espace, en accord avec ce qui était attendu.
Pour la convergence quand n — 0, on remarque avec la figure 4.18 que la décroissance de
|| papproche _ doll2(q) est en O(n) avant de stagner au niveau de I'erreur de discrétisation.
Cette décroissance en O(n) est en accord avec l'expression de ¢, dans (4.53). ¢o est obtenue
en prenant n = 0 dans I’équation (4.53).

4.4 Conclusion du chapitre

Dans ce chapitre, nous avons étudié un probléme modélisant le potentiel électrique dans le
plasma de bord d’un tokamak. L’essentiel du travail réalisé consiste & étudier le comportement
du probléme quand la résistivité paralléle aux lignes de champ magnétique n tend vers 0. Le
fait de passer directement & la limite  — 0 dans les équations rend le systéme mal posé.
Numériquement, ce phénoméne se traduit par un conditionnement non borné des matrices
considérées quand n < 1. L’utilisation de méthodes préservant Pasymptotique (AP) permet
d’éviter ce probléme. Nous avons d’abord étudié la méthode décomposant la solution en
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Erreur L2 (phi_eta approx - phi_eta exact) versus dx (=dy) ; t=1

Erreur L2
Ll Ll L

dt=0.1
dt=0.01
dt=0.001
dt=0.0001
— — — ordre2

-2
10 10 10
dx

FIGURE 4.16 — H(bf]ppm(:he — ¢nllr2) @ t = 1 en fonction du pas dz = dy pour différents pas
de temps et 7 = 0.001. La solution de référence est celle donnée par l'équation (4.53).

sa partie moyenne et sa partie fluctuante, pour un probléme elliptique avec des conditions
aux limites non linéaires de type Fourier. Nous avons ensuite appliqué les résultats obtenus
au probléme modélisant le potentiel électrique dans un cadre 1D et montré que 'on avait
Vestimation |[¢y — dollz2-r 2y = O0).

Pour le modéle 2D anisotrope du potentiel électrique, la difficulté liée & la faible résistivité
paralléle est de méme nature. Cependant, pour éviter les difficultés numériques provenant de la
présence de termes non locaux dans les conditions aux limites, une autre méthode préservant
I’asymptotique a été proposée a partir de la décomposition micro-macro introduite par Degond
el al. pour un probléme elliptique linéaire anisotrope. Comme pour le modéle 1D, nous avons
pu définir de maniére unique la limite ¢g. Il convient d’insister sur le fait que le probléme limite
obtenu n’est bien posé que sous sa forme faible. Nous avons aussi obtenu une estimation de
¢y — ¢o pour la norme L1(0, T, L*(Q2)) (mais pas pour la norme L?(Qr)). Des tests numériques
ont permis de vérifier que la matrice associée au systéme linéaire & inverser posséde bien un
conditionnement borné indépendamment de 7.

Enfin des essais numériques de pénalisation encourageants ont été réalisés avec le modéle
1D. Ces travaux correspondent aux objectifs de 'ANR ESPOIR. L’analyse théorique de la
méthode de pénalisation proposée pourrait faire I’objet de travaux ultérieurs.
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phi eta approche vs x,y (dx=dy=0.003125 , dt=0.0001, eta=0.001, t=1)
1

0.8
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-05 -04 -03 -02 -0.1 0 01 02 03 04

q eta approche vs x,y (dx=dy=0.003125 , dt=0.0001, eta=0.001, t=1)
1
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04 —
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FIGURE 4.17 — Approximation de ¢,, et g, pour dx = dy = 0.003125, dt = 0.0001 et n = 0.001.
La solution de référence est celle donnée par (4.53). On rappelle que les zones z < —0.4 et
x > 0.4 correspondent au limiteur et les valeurs de ¢, dans cette zone n’ont pas de sens
physique.
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Norme L2 (phi_eta approx - phi_0 exact) versus eta ; dx=dy=0.0015625 ; dt=0.0001 ; t=1
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FIGURE 4.18 H(bfippm(:he — ¢ollz2 en fonction de n pour dz = dy = 0.0015625, dt = 0.0001.
La solution de référence est celle donnée par ’équation (4.53).



Chapitre 5

Conclusions de la thése et perspectives

Dans cette thése, nous avons étudié deux problémes différents. Pour un probléme hyperbo-
lique non linéaire a bord non caractéristique et conditions aux limites maximales strictement
dissipatives, nous avons proposé une méthode de pénalisation qui ne génére pas de couche
limite, au sens ou la décroissance de I'erreur en fonction du paramétre de pénalisation € est
optimale, en O(g), pour toutes les normes H®, s > 0. L’idée de cette méthode consiste a ne
pénaliser que les champs impliqués dans les conditions aux limites, aprés un changement d’in-
connue adapté. Le résultat de convergence a été démontré dans le cadre de solutions réguliéres
définies dans le passé. Des tests numériques ont été réalisés sur un modeéle 1D pour la densité
et le moment du plasma.

Le deuxiéme probléme concerne la prise en compte du courant électrique (ou du potentiel
électrique). La demande établie par les physiciens du CEA impliqués dans PTANR ESPOIR
concernait la pénalisation des conditions aux limites non linéaires du potentiel électrique avec
la difficulté provenant de la faible résistivité paralléle aux lignes de champ magnétique, notée
n.Pour traiter cette difficulté, nous avons fait appel & des méthodes préservant 'asymptotique
(asymptotic-preserving, en anglais). Sur le modeéle 1D du potentiel électrique, nous avons opté
pour la méthode consistant a découpler la partie moyenne de la partie fluctuante, qui semblait
naturelle. Pour le modéle 2D, nous avons opté pour une décomposition de type micro-macro
qui permet d’éviter la présence de termes non locaux dans les équations. Dans les deux
modeéles, on a étudié théoriquement la convergence quand la résistivité paralléle n tend vers
0. Des essais numériques de méthodes de pénalisation encourageants ont été proposés : comme
pour la premiére pour le chapitre 2, il s’agit d’étudier des modéles simplifiés du plasma. Un
cadre théorique et des tests numériques plus complets restent encore a faire pour cette méthode
de pénalisation.

Les travaux réalisés dans cette thése ont permis d’isoler deux difficultés pour la simulation
numérique du plasma de bord d’un tokamak et d’y apporter des solutions. La premiére des
difficultés concernait la mise en place d’'une méthode de pénalisation volumique pour un
systéme d’équations hyperboliques non linéaires. La seconde était liée a la forte anisotropie
du plasma due au fort confinement magnétique. Pour chacune de ces difficultés un modéle
jouet a été étudié.

Il serait intéressant d’essayer d’étendre la méthode de pénalisation & des problémes hy-

184
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perboliques linéaires & bord caractéristique. On remarque aussi que 'on s’est focalisé sur
I'approximation par pénalisation d’un probléme aux limites hyperbolique continu. Des tra-
vaux pourraient étres menés pour étudier les propriétés du probléme pénalisé discrétisé par
un schéma volumes finis.

Pour les modéles de potentiel électrique dans le plasma de bord, il conviendrait d’essayer
d’affaiblir les hypothéses sur la fonction h représentant le terme non linéaire dans la condition
& la limite du probléme elliptique. Pour le modéle 2D anisotrope du potentiel électrique, il
serait intéressant de parvenir a avoir une estimation de ¢, — ¢ pour la norme L?(Qr) (et pas
seulement en norme L'(0, T, L?(2))).

Il reste aussi & faire la synthése des travaux précédents pour un modéle plus réaliste en
bord de tokamak. Il faudra donc intégrer ces résultats dans un modéle plus complet prenant
en compte toutes les variables physiques ainsi que les termes de courbure dans un cadre mul-
tidimensionnel. Des travaux ont déja été réalisés dans ce sens : on pourra notamment citer
larticle de Paredes et al. [47] qui présente des résultats numériques, sans analyse mathé-
matique, pour une méthode de pénalisation sur la densité, le moment et la température du
plasma. Il y a aussi larticle de Bufferand et al. [21] qui applique la méthode de pénalisation
a des géométries courbes; via le code SolEdge2D.

Cela permettra une meilleure compréhension des interactions plasma-paroi a l'intérieur
d’un tokamak.



Annexe A

Rappels pour un probléme d’évolution
du premier ordre

On rappelle ici le théoréme donnant I’existence et I'unicité d’une solution pour un probléme
d’évolution du premier ordre. Ce théoréme est donné dans le livre de Zeidler et Boron [66],
page 424 et suivantes. Ce théoréme est basé sur la méthode de Galerkin.

Définition A.0.1 (Triplet d’évolution)

On définit un triplet d’évolution, noté par la suite "V — H — V*" par la donnée de deux
espaces V et H tels que
— V est un espace de Banach réel, séparable et réflexif.
— H est un espace de Hilbert réel et séparable.
L’injection — est continue, c’est a dire qu’il existe ¢ > 0 tel que pour tout v €
Vol < ellolly-
V est dense dans H.

Dans la définition du triplet d’évolution, on confond H et son dual topologique H*.
Définition A.0.2 (L’espace W2(0,T;V, H))
Soit le triplet d’évolution V — H — V™.
On définit Pespace W12(0,T;V,H) = {f € L*(0,T;V),d,f € L?>(0,T; V*)}.
C’est un espace de Banach pour la norme :

lullwr20,m5v,m) = [[wll2o,mvy + 10kl L2077+

Remarque : on rappelle que I'on a WH2(0,T;V, H) C C([0,T], H) avec injection conti-
nue. C'est & dire que, pour toute fonction u € WH2(0,T;V, H), il existe une unique fonction
ut € C([0,T7, H) qui coincide avec u pour presque tout point de [0,7]. De plus, on a l'exis-
tence d’une constante ¢(T) > 0, indépendante de u et u?, telle que maxye(o,7] |uf ()| <
o(T)|ullwr.2(0,7,v,m)- Ainsi, en pratique, on utilisera la notation u(t) (pour ¢t € [0,T]) pour
désigner en fait uf(t) € H.
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Théoréme A.0.1

Soient T' > 0 et un triplet d’évolution V. C H C V*. Soit a une forme bilinéaire définie
sur V x V, be L*0,T;V*) et ug € H. On considére le probléme d’évolution suivant :

Trouver v € WY2(0,T;V, H) tel que,

Vv € V,pp. t €]0,T],
p (A1)
(), o) + alt u(t), v) = (b(), v}y

& prendre au sens de

Trouver v € WY2(0,T;V, H) tel que,
V€ € C°(]0,T),Yv € V. pp. t €]0,T7,

T T T
—/‘w@mm&ww+/(wmwwﬁwwzj'wmwﬁww
0 0 0

Ug=0 = Ug € H.

On fait les hypothéses suivantes :

1. Le triplet d’évolution V. C H C V* est tel que : V et H sont deux espaces de Hilbert
réels et V est de dimension Infinie.

2. Pour tout t, Papplication a(t,.,.): V xV — R est
— bilinéaire.
continue uniformément par rapport a t :

dey > 0,Vo,w € V,a(t,v,w) < ci||lv]|v|w]v.
— coercive uniformément par rapport at :
Jea > 0,%v € V,alt, v,v) > cal|vlf}.

O11 ¢y et ¢y sont indépendants de t.

3. {w1,wy,...} est une base hilbertienne de V' et w,, est une suite de
Vect{w,...,w,} C H

telle que ug, — ug dans H (quand n — +00).

Alors, le probléme (A.1) admet une unique solution. De plus, (ug,b) — u est une
application linéaire et continue de H x L?(0,T;V*) vers W12(0,T;V,H). C’est a dire
qu'il existe une constante cs(a) (indépendante de ug et b) telle que :

lullwr2or:v,m) < e3(a) ([[uollz + 16l 20, 7v+)) -
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Dans le cadre donné par le théoréme A.0.1, on peut aussi montrer la convergence de la
méthode de Galerkin, mais cela ne nous servira pas dans le cadre de cette thése.
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Résumé

Cette thése concerne 1’étude des interactions entre le plasma et la paroi d'un réacteur a
fusion nucléaire de type tokamak. L’objectif est de proposer des méthodes de résolution des
systémes d’équations issus de modéles de plasma de bord. Nous nous sommes intéressés au
traitement de deux difficultés qui apparaissent lors de la résolution numeérique de ces modéles.
La premiére difficulté est liée a la forme complexe de la paroi du tokamak. Pour cela, il a été
choisi d’utiliser des méthodes de pénalisation volumique. Des tests numériques de plusieurs
méthodes de pénalisation ont été réalisés sur un probléme hyperbolique non linéaire avec un
domaine 1D. Une de ces méthodes a été étendue a un systéme hyperbolique quasilinéaire
avec bord non caractéristique et conditions aux limites maximales strictement dissipatives
sur un domaine multidimensionnel : il est alors démontré que cette méthode de pénalisation
ne génére pas de couche limite. La deuxiéme difficulté provient de la forte anisotropie du
plasma, entre la direction paralléle aux lignes de champ magnétique et la direction radiale.
Pour le potentiel électrique, cela se traduit par une résistivité paralléle trés faible. Afin
d’éviter les difficultés liées au fait que le probléme devient mal posé quand la résistivité
paralléle tend vers 0, nous avons utilisé des méthodes de type asymptotic-preserving (AP).
Pour les problémes non linéaires modélisant le potentiel électrique avec un domaine 1D et
2D, nous avons fait 'analyse théorique ainsi que des tests numériques pour deux méthodes
AP. Des tests numériques sur le cas 1D ont permis une étude préliminaire du couplage entre
les méthodes de pénalisation volumique et AP.

Abstract

Title: Analysis of models for ITER: treatment of boundary conditions for the edge plasma
in a tokamak

This thesis deals with the study of wall plasma interactions in a nuclear fusion reactor such
as a tokamak. The goal is to propose methods to solve partial differential equations issued
from edge plasma models. We focus on two difficulties for the numerical resolution of these
models. The first issue concerns the complex shape of the tokamak wall: we choose volume
penalty methods. Numerical tests on several penalization methods have been performed on
a nonlinear hyperbolic problem. One of these methods has been extended to a quasilin-
ear hyperbolic system with a non characteristic boundary and maximally strictly dissipative
boundary conditions on a multidimensional domain: it is proven that this penalty method
does not generate any boundary layer. The second question comes from the strong plasma
anisotropy between the direction parallel to the magnetic field lines and the radial one. Con-
cerning the electrical potential, this results in a very low parallel resistivity. In order to avoid
the troubles due to the ill-posedness of the equations when the parallel resistivity tends to
0, we study asymptotic preserving (AP) methods. For 1D and 2D nonlinear models of the
electrical potential, we performed the theoretical analysis and numerical simulations for two
AP methods. A preliminary study of the coupling between volume penalty and AP methods
is also presented.



