Déviation des moyennes ergodiques

par José Luis González Villanueva

Thèse de doctorat en Mathématiques

Sous la direction de Pascal Hubert et de Xavier Bressaud.

Le président du jury était Fabien Durand.

Le jury était composé de Pascal Hubert, Luca Zamboni, Corinna Ulcigrai, Isabelle Liousse.

Les rapporteurs étaient Luca Zamboni, Corinna Ulcigrai.


  • Résumé

    Ce travail étudie les déviations de sommes ergodiques pour des systèmes dynamiques substitutifs avec une matrice qui admet des valeurs propres de module supérieur à 1. Précisément, nous nous concentrons sur les substitutions telle que ces valeurs propres ne sont pas conjuguées. Dans un premier temps, on défini les lettres a-minimales et dominantes d'un mot pour étudier sa ligne brisée associé. On défini la ligne brisée normalisée et sa fonction limite. Pour l'étude des sommes ergodiques, on défini le sous-automate des lettres minimales. On donne des conditions sur une substitution de sorte qu'il y ait un nombre infini des sommes ergodiques égales à zéro pour un point x 2 X. Enfin, en utilisant un boucle dans une classe de Rauzy, on prouve l'existence d'un nombre infini d'échanges d'intervalles auto-similaires, dont la matrice de Rauzy a deux valeurs propres non conjuguées de module supérieur à 1. Et tout échange d'intervalles affine semi-conjugué à cet échange d'intervalles est aussi conjugué.

  • Titre traduit

    Deviation of ergodic averages


  • Résumé

    This thesis focuses on the deviation of ergodic sums for a substitution dynamical systems with a matrix that admits eigenvalues of modulus larger than 1. Specifically, we concentrate on substitutions with non-conjugated eigenvalues. At first, we define the a-minimals letters and the dominant letters of a word to study its broken associated line. We define the normalize broken line and its limit function. For the study of ergodic sums, we define the sub-automaton of minimum letters. We give conditions on a substitution so that there is infinitely many zero sums ergodic for a point x 2 X. Finally, using a loop in a class of Rauzy, we prove the existence of infinitely many interval exchange transformation self-similar, whose Rauzy matrix has two non-conjugated eigenvalues larger than 1 and every affine interval exchange transformation that is semi-conjugated, is also conjugated.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?