Small eigenvalues of hyperbolic surfaces

par Sugata Mondal

Thèse de doctorat en Mathématiques fondamentales

Sous la direction de Jean-Pierre Otal.

Soutenue en 2013

à Toulouse 3 .

  • Titre traduit

    Sur les petites valeurs propres des surfaces hyperboliques


  • Résumé

    Une surface hyperbolique est une variete complete S de dimension 2 de courbure Sectionnelle egale a -1. Dans cette these on considere l'action du Laplacien de cette metrique. On appelle petite valeur propre toute valeur propre inferieure ou egale a 1/4. Notre theme general de recherche est de borner le nombre de valeurs propres en fonction de la topologie de S lorsque S est d'aire finie. Un theoreme d'Otal-Rosas qui dit que le nombre de petites valeurs propres d'une surface hyperbolique de genre g est au plus 2g-2, confirmant une conjecture de Buser. Nous donnons une version quantitative de ce resultat en donnant la minoration {\lambda_{2g-2}}(S)> 1/4 +{\epsilon_0}(S) pour une fonction {\epsilon_0}(S) > 0 explicite qui ne depend que de la geometrie de S. Notre demonstration utilise des inegalites geometriques comme celle de Faber-Krahn ou celle de Cheeger. Il est conjecture d'autre part que pour une surface hyperbolique non compacte de type (g, n), le nombre de petites valeurs propres paraboliques est ><=2g- 3. Nous montrons que sur un ouvert non-vide de l'espace modulaire Mg;n, ce nombre de valeurs propres est <= 2g- 2. Notre demonstration est basee sur un theoreme decrivant le comportement d'une suite de petites fonctions propres paraboliques sur des surfaces Sm qui tendent vers le bord de l'espace modulaire, et qui est motive par des des resultats de Lizhen Ji et de Scott Wolpert. Nous utilisons aussi ce theoreme pour donner une demonstration nouvelle et elementaire d'un resultat de D. Hejhal. Dans le dernier chapitre, nous etudions le maximum de {\lambda_1} vue comme fonction sur Mg, plus precisement nous nous demandons si ce maximum est superieur a 1/4. En utilisant des arguments topologiques, nous montrons que c'est bien le cas en genre 2 : il y a des surfaces dans M2 pour lesquelles {\lambda_1} > 1/4


  • Résumé

    A hyperbolic surface S is a complete two dimensional manifold of sectional curvature -1. In this thesis we consider the Laplace operator associated to this metric (acting on functions). Any eigenvalue below 1/4 is called a small eigenvalue. The general theme of our research is to bound the number of small eigenvalues of S in terms of the topology of S when S has finite area. A theorem of Otal-Rosas says that the number of small eigenvalues of a closed hyperbolic surface of genus g is not more than 2g -2, confirming a conjecture of P. Buser. We prove a quantitative version of this result by giving the lower bound for the (2g- 2)-th eigenvalue : {\lambda_{2g-2}}(S) > 1/4 +{\epsilon_0}(S) where {\epsilon_0}(S) > 0 is an explicit function that depends only on the geometry of S. Our proof uses geometric inequalities of Faber-Krahn and of Cheeger. For a hyperbolic surface of finite area and type (g, n) it is a conjecture that the number of small cuspidal eigenvalues is <= 2g- 3. We show that on a non-empty open unbounded subset of the moduli space Mg;n, this number of eigenvalues is <= 2g -2. The proof is based on a theorem, motivated by results of Lizhen Ji and Scott Wolpert, that describes the behavior of small cuspidal eigenfunctions of surfaces Sm when the sequence (Sm) tends to the boundary of the moduli space. We use this theorem to give a new and elementary proof of a result of D. Hejhal also. In the last chapter, we study the maximum of {\lambda_1} viewed as a function on Mg. More precisely, we ask if the maximum is more than 1/4. Using topological arguments, we prove that in the case for genus two : there exist surfaces in Mg for which {\lambda_1} > 1/4

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (64 p.)
  • Annexes : Bibliogr. p. 63-64

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2013 TOU3 0248
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.