Émissions biogéniques de composés organiques volatils en région méditerranéenne : développement instrumental, mesures et modélisation

par Romain Baghi

Thèse de doctorat en Physique et chimie de l'atmosphère

Sous la direction de Pierre Durand, Corinne Jambert et de Claire Delon.

Soutenue en 2013

à Toulouse 3 .


  • Résumé

    Les Composés Organiques Volatils (COV) jouent un rôle important dans la chimie de l'atmosphère et participent à la formation de polluants secondaires comme l'ozone et les aérosols organiques. Les émissions biogéniques de COV dominent d'un facteur dix les émissions anthropiques à l'échelle globale mais leur caractérisation à l'échelle régionale est incertaine. Les progrès en modélisation de la chimie atmosphérique passent par l'amélioration des inventaires d'émissions, ce qui nécessite des mesures de flux in situ. Ces travaux portent sur l'étude des émissions de COV biogéniques par les végétations méditerranéennes dans le cadre du programme ChArMEx (Chemistry and Aerosol Mediterranean Experiment) qui vise à concentrer les efforts scientifiques sur l'étude de la chimie et des aérosols de l'atmosphère du bassin méditerranéen. La méthode Eddy Covariance (EC) permet de quantifier directement les échanges d'espèces chimiques entre la surface et l'atmosphère. Cette méthode constitue une référence pour les mesures de flux mais n'est applicable qu'à un nombre limité d'espèces car elle requiert la mesure rapide (~ 0,1 s) et simultanée de la concentration du composé étudié ainsi que de la vitesse du vent vertical. Afin d'élargir le champ de mise en œuvre de cette technique d'autres solutions dérivées de l'EC ont été proposées, dont la méthode Disjunct Eddy Covariance (DEC) qui a pour particularité de réduire la contrainte sur la mesure rapide de l'espèce chimique tout en gardant une précision acceptable sur le calcul du flux. Dans le cadre de ces travaux de thèse un système de prélèvement a été développé pour mettre en œuvre la mesure de flux de COV par la méthode DEC. Ce dispositif appelé MEDEE (Mesures par Échantillonnage Disjoint des Échanges d'Espèces en trace) repose sur une technologie nouvelle qui permet une capture rapide d'un échantillon d'air et assure son transfert à pression constante vers un analyseur connecté en ligne. Il est composé de deux "seringues mécaniques" actionnées par des vérins électriques dont le fonctionnement est alterné pour alimenter en continu l'analyseur. Trois électrovannes disposées à l'entrée de chaque réservoir dirigent le flux d'air en fonction du cycle de fonctionnement. L'ensemble du système est cadencé par un microcontrôleur avec une précision à la milliseconde. Le système de prélèvement a été réalisé en matériaux inertes chimiquement pour éviter la dégradation de l'échantillon et être compatible avec les espèces en trace réactives. MEDEE a été testé et validé pour les mesures de flux au sol et en avion lors de deux campagnes de terrain. Le système MEDEE a ainsi permis, lors de deux campagnes de mesures pendant les étés 2010 et 2011 au-dessus d'une forêt de chênes pubescents, de mesurer les flux d'isoprène grâce à un couplage avec un analyseur adapté (Fast Isoprene Sensor). Un réseau de neurones artificiels (RNA) a ensuite été utilisé pour déterminer une paramétrisation des flux d'isoprène en fonction des paramètres environnementaux à partir des observations des campagnes de mesures. La modélisation des émissions d'isoprène a été validée pour les conditions environnementales rencontrées. Cette paramétrisation servira dans un modèle de chimie atmosphérique à l'étude de l'impact des émissions de COV biogéniques sur la qualité de l'air.

  • Titre traduit

    Biogenic volatile organic compounds emissions in the Mediterranean area : instrumental development, measurement and modeling


  • Résumé

    Volatile Organic Compounds (VOC) play an important role in atmospheric chemistry and are involved in the formation of secondary atmospheric pollutants as ozone and organic aerosols. Biogenic emissions of volatile organic compounds are tenfold greater than anthropogenic emissions on a global scale but their characterization remains uncertain regionally. Advances in atmospheric chemistry modeling rely on better emission inventory which needs in situ flux measurement. This work focuses on biogenic VOC emissions from Mediterranean vegetation in the frame of ChArMEx (Chemistry and Aerosol Mediterranean Experiment) that aims to concentrate scientific effort to study atmospheric chemistry and aerosols in the Mediterranean region. The Eddy Covariance (EC) method allows direct measurement of trace gas exchange between the surface and the atmosphere. EC is a reference method for flux measurement but is adapted to only a limited number of trace gas species because it requires simultaneous fast measurement (~ 0. 1 s) of the species concentration and vertical wind speed. In order to broaden the range of applicability of this method, several other methods derived from EC have been proposed. Among these, the Disjunct Eddy Covariance (DEC) method relaxes the constraint on fast concentration measurement while preserving good accuracy on the flux calculation. In the frame of this PhD work, a sampling system dedicated to the DEC method for VOC flux measurement was developed. This device called MEDEE (Mesures par Échantillonnage Disjoint des Échanges d'Espèces en trace) relies on a novel technology that allows the rapid capture of an air parcel and insures its transfer at a constant pressure towards an on-line analyzer. It is composed of two mechanical syringes moved by electric actuators with an alternated functioning to supply continuously the analyzer. Three solenoid valves are installed on each reservoir to drive the sample flow depending on the cycle. A micro controller chip is used to give the rhythm of the whole system with millisecond accuracy. This sampling system has been built in chemically inert materials to avoid sample contamination or destruction; this makes MEDEE fully compatible with reactive species. MEDEE has been tested and validated on ground and aboard an aircraft, during two field campaigns. It was coupled to a fast isoprene sensor for BVOC flux measurements during two field campaigns in summers 2010 and 2011 above a downy oak forest. A Neural Network (NN) approach has been used to derive a biogenic VOC emission algorithm from these canopy level measured fluxes and concurrent environmental parameters. Isoprene emission modeling has been validated for the observed environmental conditions. In the future, such emission parameterization will be implemented in a coupled chemistry-dynamics model to study the impact of biogenic VOC emissions on air quality.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (211 p.)
  • Annexes : Bibliogr. p. 145-158

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2013 TOU3 0132
  • Bibliothèque : Observatoire Midi-Pyrénées. Centre de documentation Sciences de l'univers, de la planète et de l'environnement.
  • Non disponible pour le PEB
  • Cote : 2013/OMP/13325
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.