DRARS, a dynamic risk-aware recommender system

par Djallel Bouneffouf

Thèse de doctorat en Informatique

Sous la direction de Amel Bouzeghoub.

  • Titre traduit

    DRARS, un système de recommandation dynamique sensible au risque


  • Résumé

    L’immense quantité d'information générée et gérée au quotidien par les systèmes d'information et leurs utilisateurs conduit inéluctablement à la problématique de surcharge d'information. Dans ce contexte, les systèmes de recommandation traditionnels fournissent des informations pertinentes aux utilisateurs. Néanmoins, avec la propagation récente des dispositifs mobiles (smartphones et tablettes), nous constatons une migration progressive des utilisateurs vers la manipulation d'environnements pervasifs. Le problème avec les approches de recommandation traditionnelles est qu'elles n'utilisent pas toute l'information disponible pour produire des recommandations. Davantage d’informations contextuelles pourraient être utilisées dans le processus de recommandation pour aboutir à des recommandations plus précises. Les systèmes de recommandation sensibles au contexte (CARS) combinent les caractéristiques des systèmes sensibles au contexte et des systèmes de recommandation afin de fournir des informations personnalisées aux utilisateurs dans des environnements ubiquitaires. Dans cette perspective où tout ce qui concerne l'utilisateur est dynamique, les contenus qu’il manipule et son environnement, deux questions principales doivent être adressées : i) Comment prendre en compte l'évolution des contenus de l’utilisateur? et ii) Comment éviter d’être intrusif, en particulier dans des situations critiques? En réponse à ces questions, nous avons développé un système de recommandation dynamique et sensible au risque appelé DRARS (Dynamic Risk-Aware Recommender System), qui modélise la recommandation sensible au contexte comme un problème de bandit. Ce système combine une technique de filtrage basée sur le contenu et un algorithme de bandit contextuel. Nous avons montré que DRARS améliore la stratégie de l'algorithme UCB (Upper Confidence Bound), le meilleur algorithme actuellement disponible, en calculant la valeur d'exploration la plus optimale pour maintenir un bon compromis entre exploration et exploitation basé sur le niveau de risque de la situation courante de l'utilisateur. Nous avons mené des expériences dans un contexte industriel avec des données réelles et des utilisateurs réels et nous avons montré que la prise en compte du niveau de risque de la situation de l'utilisateur augmentait significativement la performance du système de recommandation


  • Résumé

    The vast amount of information generated and maintained everyday by information systems and their users leads to the increasingly important concern of overload information. In this context, traditional recommender systems provide relevant information to the users. Nevertheless, with the recent dissemination of mobile devices (smartphones and tablets), there is a gradual user migration to the use of pervasive computing environments. The problem with the traditional recommendation approaches is that they do not utilize all available information for producing recommendations. More contextual parameters could be used in the recommendation process to result in more accurate recommendations. Context-Aware Recommender Systems (CARS) combine characteristics from context-aware systems and recommender systems in order to provide personalized recommendations to users in ubiquitous environments. In this perspective where everything about the user is dynamic, his/her content and his/her environment, two main issues have to be addressed: i) How to consider content evolution? and ii) How to avoid disturbing the user in risky situations?. In response to these problems, we have developed a dynamic risk sensitive recommendation system called DRARS (Dynamic Risk-Aware Recommender System), which model the context-aware recommendation as a bandit problem. This system combines a content-based technique and a contextual bandit algorithm. We have shown that DRARS improves the Upper Confidence Bound (UCB) policy, the currently available best algorithm, by calculating the most optimal exploration value to maintain a trade-off between exploration and exploitation based on the risk level of the current user's situation. We conducted experiments in an industrial context with real data and real users and we have shown that taking into account the risk level of users' situations significantly increases the performance of the recommender system


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Télécom SudParis & Télécom Ecole de Management. Médiathèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.