Visual tracking of articulated and flexible objects

par Daniel Wesierski

Thèse de doctorat en Informatique

Sous la direction de Bernadette Dorizzi.

  • Titre traduit

    Suivi par vision d’objets articulés et flexibles


  • Résumé

    Les humains sont capables de suivre visuellement des objets sans effort. Cependant les algorithmes de vision artificielle rencontrent des limitations pour suivre des objets en mouvement rapide, sous un éclairage variable, en présence d'occultations, dans un environnement complexe ou dont l'apparence varie à cause de déformations et de changements de point de vue. Parce que des systèmes génériques, précis, robustes et rapides sont nécessaires pour de nombreuses d’applications, le suivi d’objets reste un problème pratique important en vision par ordinateur. La première contribution de cette thèse est une approche calculatoire rapide pour le suivi d'objets de forme et de mouvement variable. Elle consiste en un système unifié et configurable pour estimer l'attitude d’un objet déformable dans un espace d'états de dimension petite ou grande. L’objet est décomposé en une suite de segments composés de parties et organisés selon une hiérarchie spatio-temporelle contrainte. L'efficacité et l’universalité de cette approche sont démontrées expérimentalement sur de nombreux exemples de suivi de divers objets flexibles et articulés. Les caractéristiques de Haar (HLF) sont abondement utilisées pour le suivi d’objets. La deuxième contribution est une méthode de décomposition des HLF permettant de les calculer de manière efficace. Ces caractéristiques sont décomposées en noyaux plus simples, éventuellement réutilisables, et reformulées comme des convolutions multi-passes. La recherche et l'alignement des noyaux dans et entre les passes permet de créer des arbres récursifs de noyaux qui nécessitent moins d’opérations en mémoire que les systèmes de calcul classiques, pour un résultat de convolution identique et une mise en œuvre plus efficace. Cette approche a été validée expérimentalement sur des exemples de HLF très utilisés


  • Résumé

    Humans can visually track objects mostly effortlessly. However, it is hard for a computer to track a fast moving object under varying illumination and occlusions, in clutter, and with varying appearance in camera projective space due to its relaxed rigidity or change in viewpoint. Since a generic, precise, robust, and fast tracker could trigger many applications, object tracking has been a fundamental problem of practical importance since the beginnings of computer vision. The first contribution of the thesis is a computationally efficient approach to tracking objects of various shapes and motions. It describes a unifying tracking system that can be configured to track the pose of a deformable object in a low or high-dimensional state-space. The object is decomposed into a chained assembly of segments of multiple parts that are arranged under a hierarchy of tailored spatio-temporal constraints. The robustness and generality of the approach is widely demonstrated on tracking various flexible and articulated objects. Haar-like features are widely used in tracking. The second contribution of the thesis is a parser of ensembles of Haar-like features to compute them efficiently. The features are decomposed into simpler kernels, possibly shared by subsets of features, thus forming multi-pass convolutions. Discovering and aligning these kernels within and between passes allows forming recursive trees of kernels that require fewer memory operations than the classic computation, thereby producing the same result but more efficiently. The approach is validated experimentally on popular examples of Haar-like features


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Télécom SudParis & Télécom Ecole de Management. Médiathèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.