Deux aspects de la géométrie birationnelle des variétés algébriques : la formule du fibré canonique et la décomposition de Zariski

par Enrica Floris

Thèse de doctorat en Mathématiques

Sous la direction de Gianluca Pacienza.

Le président du jury était Claire Voisin.

Le jury était composé de Sébastien Boucksom, Carlo Gasbarri.

Les rapporteurs étaient Caucher Birkar, Olivier Debarre.


  • Résumé

    La formule du fibré canonique et la décomposition de Fujita-Zariski sont deux outils très importants en géométrie birationnelle. La formule du fibré canonique pour une fibration f:(X,B)→ Z consiste à écrire K_X+Bcomme le tiré en arrière de K_Z+B_Z+M_Z o* K_Z est le diviseur canonique, B_Z contient des informations sur les fibres singulières et M_Z est appelé partie modulaire. Il a été conjecturé qu’il existe une modification birationnelle Z' de Z telle que M_Z' est semi ample sur Z' , o* M_Z' est la partie modulaire induite par le changement de base. Un diviseur pseudo effectif D admet une décomposition de Fujita-Zariski s’il existent un diviseur nef P et un diviseur effectif N tels que D=P+N et P est "le plus grand diviseur nef" avec la propriété que D−P est effectif.

  • Titre traduit

    Two aspects of birational geometry of algebraic varieties : The canonical bundle formula and the Zariski decomposition


  • Résumé

    The canonical bundle formula and the Fujita-Zariski decomposition are two very important tools in birational geometry. The canonical bundle formula for a fibration f:(X, B)→Z consists in writing K_X+B as the pul lback of K_Z+B_Z+M_Z where K_Z is the canonical divisor, B_Z contains informations on the singular fibres andM_Z is called moduli part. It was conjectured that there exists a birational modification Z' of Z such that M_Z'is semi ample on Z', where M_Z' is the moduli part induced by the base change. A pseudo effective divisor Dadmits a Fujita-Zariski decomposition if there exist a nef divisor P and an effective divisor N such that D=P+N and P is "the biggest nef divisor" such that D−P is effectve.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque électronique 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.