Reconstruction en tomographie dynamique par approche inverse sans compensation de mouvement

par Fabien Momey

Thèse de doctorat en Image, Vision, Signal

Sous la direction de Jean-Marie Becker et de Catherine Burnier-Mennessier.

Le président du jury était Laure Blanc-Féraud.

Le jury était composé de Éric Thiébaut, Jean-François Giovannelli, Dimitris Visvikis.


  • Résumé

    La tomographie est la discipline qui cherche à reconstruire une donnée physique dans son volume, à partir de l’information indirecte de projections intégrées de l’objet, à différents angles de vue. L’une de ses applications les plus répandues, et qui constitue le cadre de cette thèse, est l’imagerie scanner par rayons X pour le médical. Or, les mouvements inhérents à tout être vivant, typiquement le mouvement respiratoire et les battements cardiaques, posent de sérieux problèmes dans une reconstruction classique. Il est donc impératif d’en tenir compte, i.e. de reconstruire le sujet imagé comme une séquence spatio-temporelle traduisant son “évolution anatomique” au cours du temps : c’est la tomographie dynamique. Élaborer une méthode de reconstruction spécifique à ce problème est un enjeu majeur en radiothérapie, où la localisation précise de la tumeur dans le temps est un prérequis afin d’irradier les cellules cancéreuses en protégeant au mieux les tissus sains environnants. Des méthodes usuelles de reconstruction augmentent le nombre de projections acquises, permettant des reconstructions indépendantes de plusieurs phases de la séquence échantillonnée en temps. D’autres compensent directement le mouvement dans la reconstruction, en modélisant ce dernier comme un champ de déformation, estimé à partir d’un jeu de données d’acquisition antérieur. Nous proposons dans ce travail de thèse une approche nouvelle ; se basant sur la théorie des problèmes inverses, nous affranchissons la reconstruction dynamique du besoin d’accroissement de la quantité de données, ainsi que de la recherche explicite du mouvement, elle aussi consommatrice d’un surplus d’information. Nous reconstruisons la séquence dynamique à partir du seul jeu de projections courant, avec pour seules hypothèses a priori la continuité et la périodicité du mouvement. Le problème inverse est alors traité rigoureusement comme la minimisation d’un terme d’attache aux données et d’une régularisation. Nos contributions portent sur la mise au point d’une méthode de reconstruction adaptée à l’extraction optimale de l’information compte tenu de la parcimonie des données — un aspect typique du problème dynamique — en utilisant notamment la variation totale (TV) comme régularisation. Nous élaborons un nouveau modèle de projection tomographique précis et compétitif en temps de calcul, basé sur des fonctions B-splines séparables, permettant de repousser encore la limite de reconstruction imposée par la parcimonie. Ces développements sont ensuite insérés dans un schéma de reconstruction dynamique cohérent, appliquant notamment une régularisation TV spatio-temporelle efficace. Notre méthode exploite ainsi de façon optimale la seule information courante à disposition ; de plus sa mise en oeuvre fait preuve d’une grande simplicité. Nous faisons premièrement la démonstration de la force de notre approche sur des reconstructions 2-D+t à partir de données simulées numériquement. La faisabilité pratique de notre méthode est ensuite établie sur des reconstructions 2-D et 3-D+t à partir de données physiques “réelles”, acquises sur un fantôme mécanique et sur un patient

  • Titre traduit

    Reconstruction in dynamic tomography by an inverse approach without motion compensation


  • Résumé

    Computerized tomography (CT) aims at the retrieval of 3-D information from a set of projections acquired at different angles around the object of interest (OOI). One of its most common applications, which is the framework of this Ph.D. thesis, is X-ray CT medical imaging. This reconstruction can be severely impaired by the patient’s breath (respiratory) motion and cardiac beating. This is a major challenge in radiotherapy, where the precise localization of the tumor is a prerequisite for cancer cells irradiation with preservation of surrounding healthy tissues. The field of methods dealing with the reconstruction of a dynamic sequence of the OOI is called Dynamic CT. Some state-of-the-art methods increase the number of projections, allowing an independent reconstruction of several phases of the time sampled sequence. Other methods use motion compensation in the reconstruction, by a beforehand estimation on a previous data set, getting the explicit motion through a deformation model. Our work takes a different path ; it uses dynamic reconstruction, based on inverse problems theory, without any additional information, nor explicit knowledge of the motion. The dynamic sequence is reconstructed out of a single data set, only assuming the motion’s continuity and periodicity. This inverse problem is considered as a minimization of an error term combined with a regularization. One of the most original features of this Ph.D. thesis, typical of dynamic CT, is the elaboration of a reconstruction method from very sparse data, using Total Variation (TV) as a very efficient regularization term. We also implement a new rigorously defined and computationally efficient tomographic projector, based on B-splines separable functions, outperforming usual reconstruction quality in a data sparsity context. This reconstruction method is then inserted into a coherent dynamic reconstruction scheme, applying an efficient spatio-temporal TV regularization. Our method exploits current data information only, in an optimal way ; moreover, its implementation is rather straightforward. We first demonstrate the strength of our approach on 2-D+t reconstructions from numerically simulated dynamic data. Then the practical feasibility of our method is established on 2-D and 3-D+t reconstructions of a mechanical phantom and real patient data


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?