Étude des solutions stationnaires d'un modèle de champs de phase cristallin

par Appolinaire Abourou Ella

Thèse de doctorat en Mathématiques et leurs interactions

Sous la direction de Arnaud Rougirel.

Le président du jury était Danielle Hilhorst.

Le jury était composé de Hassan Emamirad, Mokhtar Kirane, Morgan Pierre.

Les rapporteurs étaient Mariana Haragus, Edgar Knobloch.


  • Résumé

    Cette thèse porte essentiellement sur l'étude des solutions stationnaires, en dimension 1 d'espace, d'unmodèle de champs de phase cristallin introduit par Elder en 2002. Ainsi, nous prouvons, par la méthode deréduction de Lyapunov-Schmidt et la technique des multiparamètres, l'existence de courbes de solutionsbifurquantes stationnaires lorsque le noyau de l'opérateur linéarisé, au voisinage de la solution triviale estde dimension 2. Une parenthèse est ouverte pour la comparaison de l'énergie de la solution bifurquantepar rapport à celle la solution triviale. Aussi, grâce au principe de la stabilité réduite, nous fournissonsdes ensembles précis de valeurs des paramètres de bifurcation pour lesquelles les solutions obtenues sontstables ou instables. Ces résultats théoriques sont corroborés par plusieurs tests numériques.Par ailleurs, dans le cas classique du noyau unidimensionel, nous établissons des diagrammes de phasespermettant de comprendre les différentes orientations de courbes de solutions non triviales au voisinage dechaque point de bifurcation.

  • Titre traduit

    Study of stationary solutions of a phase field crystal model


  • Résumé

    This thesis is devoted to the study of stationary solutions of a Phase Field Crystal model, in one spacedimension, introduced by Elder in 2002. Thus, we prove by the Lyapunov-Schmidt method of reductionand the multiparameter technique, the existence of the curves of bifurcating stationary solutions whenthe kernel of the linearized operator near to trivial solution is of two dimension. A parenthesis is open forcomparing the energies of the bifurcating solution and the trivial solution. Also, thanks to the principle ofreduced stability, we provide specific sets of parameter values for wich the obtained solutions are stable orunstable. These theoretical results are confirmed by several numerical tests.Moreover, in the classical case of a one dimensional kernel, we establish the phase diagrams allowing tounderstand the different orientations of non-trivial solutions curves near to of each bifurcation point.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Poitiers. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.