Random fields and associated statistical inverse problems for uncertainty quantification : application to railway track geometries for high-speed trains dynamical responses and risk assessment

par Guillaume Perrin

Thèse de doctorat en Mécanique

Sous la direction de Denis Duhamel.

Le président du jury était Didier Clouteau.

Le jury était composé de Didier Clouteau, Christian Soize, Christine Funfschilling, Jean Giorla.

Les rapporteurs étaient Anthony Nouy, Olivier Le Maitre.


  • Résumé

    Les nouvelles attentes vis-à-vis des nouveaux trains à grande vitesse sont nombreuses: on les voudrait plus rapides, plus confortables, plus stables, tout en étant moins consommateur d'énergie, moins agressif vis-à-vis des voies, moins bruyants… Afin d'optimiser la conception de ces trains du futur, il est alors nécessaire de pouvoir se baser sur une connaissance précise de l'ensemble des conditions de circulations qu'ils sont susceptibles de rencontrer au cours de leur cycle de vie. Afin de relever ces défis, la simulation a un très grand rôle à jouer. Pour que la simulation puisse être utilisée dans des perspectives de conception, de certification et d'optimisation de la maintenance, elle doit alors être tout à fait représentative de l'ensemble des comportements physiques mis en jeu. Le modèle du train, du contact entre les roues et le rail, doivent ainsi être validés avec attention, et les simulations doivent être lancées sur des ensembles d'excitations qui sont réalistes et représentatifs de ces défauts de géométrie. En ce qui concerne la dynamique, la géométrie de la voie, et plus particulièrement les défauts de géométrie, représentent une des principales sources d'excitation du train, qui est un système mécanique fortement non linéaire. A partir de mesures de la géométrie d'un réseau ferroviaire, un paramétrage complet de la géométrie de la voie et de sa variabilité semblent alors nécessaires, afin d'analyser au mieux le lien entre la réponse dynamique du train et les propriétés physiques et statistiques de la géométrie de la voie. Dans ce contexte, une approche pertinente pour modéliser cette géométrie de la voie, est de la considérer comme un champ aléatoire multivarié, dont les propriétés sont a priori inconnues. En raison des interactions spécifiques entre le train et la voie, il s'avère que ce champ aléatoire n'est ni Gaussien ni stationnaire. Ce travail de thèse s'est alors particulièrement concentré sur le développement de méthodes numériques permettant l'identification en inverse, à partir de mesures expérimentales, de champs aléatoires non Gaussiens et non stationnaires. Le comportement du train étant très non linéaire, ainsi que très sensible vis-à-vis de la géométrie de la voie, la caractérisation du champ aléatoire correspondant aux défauts de géométrie doit être extrêmement fine, tant du point de vue fréquentiel que statistique. La dimension des espaces statistiques considérés est alors très importante. De ce fait, une attention toute particulière a été portée dans ces travaux aux méthodes de réduction statistique, ainsi qu'aux méthodes pouvant être généralisées à la très grande dimension. Une fois la variabilité de la géométrie de la voie caractérisée à partir de données expérimentales, elle doit ensuite être propagée au sein du modèle numérique ferroviaire. A cette fin, les propriétés mécaniques d'un modèle numérique de train à grande vitesse ont été identifiées à partir de mesures expérimentales. La réponse dynamique stochastique de ce train, soumis à un très grand nombre de conditions de circulation réalistes et représentatives générées à partir du modèle stochastique de la voie ferrée, a été ainsi évaluée. Enfin, afin d'illustrer les possibilités apportées par un tel couplage entre la variabilité de la géométrie de la voie et la réponse dynamique du train, ce travail de thèse aborde trois applications

  • Titre traduit

    Champs aléatoires et problèmes statistiques inverses associés pour la quantification des incertitudes : application à la modélisation de la géométrie des voies ferrées pour l'évaluation de la réponse dynamique des trains à grande vitesse et l'analyse


  • Résumé

    High speed trains are currently meant to run faster and to carry heavier loads, while being less energy consuming and still ensuring the safety and comfort certification criteria. In order to optimize the conception of such innovative trains, a precise knowledge of the realm of possibilities of track conditions that the train is likely to be confronted to during its life cycle is necessary. Simulation has therefore a big to play in this context. However, to face these challenges, it has to be very representative of the physical behavior of the system. From a general point of view, a railway simulation can be seen as the dynamic response of a non-linear mechanical system, the train, which is excited by a complex multivariate spatial function, the track geometry. Therefore, the models of the train, of the wheel/rail contact forces have thus to be fully validated and the simulations have to be raised on sets of excitations that are realistic and representative of the track geometry. Based on experimental measurements, a complete parametrization of the track geometry and of its variability would be of great concern to analyze the complex link between the train dynamics and the physical and statistical properties of the track geometry. A good approach to characterize this variability is to model the track geometry as a multivariate random field, for which statistical properties are only known through a set of independent realizations. Due to the specific interactions between the train and the track, this random field is neither stationary nor Gaussian. In order to propagate the track geometry variability to the train response, methods to identify in inverse, from a finite set of experimental data, the statistical properties of non-stationary and non-Gaussian random fields were analyzed in this thesis. The train behavior being very non-linear and very sensitive to the track geometry, the random field has to be described very precisely from frequency and statistical points of view. As a result, the statistical dimension of this random field is very high. Hence, a particular attention is paid in this thesis to statistical reduction methods and to statistical identification methods that can be numerically applied to the high dimensional case. Once the track geometry variability has been characterized from experimental data, it has to be propagated through the model. To this end, a normalized multibody model of a high speed train, whose mechanical parameters have been carefully identified from experimental measurements, has been made run on sets of realistic and representative running conditions. The commercial software Vampire was used to solve these dynamic equations. At last, three applications are proposed to illustrate to what extent such a railway stochastic modeling opens new possibilities in terms of virtual certification, predictive maintenance and optimization of the railway system


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Communautés d’Universités et d'Etablissements Université Paris-Est. Bibliothèque universitaire.
  • Bibliothèque : École des Ponts ParisTech (Marne-la-Vallée, Seine-et-Marne). Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.