Décélération Zeeman-Stern Gerlach d’un jet supersonique de particules paramagnétiques par une onde de champ magnétique progressive

par Azer Trimeche

Thèse de doctorat en Physique

Sous la direction de Jacques Robert.

Soutenue le 17-12-2013

à Paris 11 , dans le cadre de Ecole doctorale Ondes et Matière (1998-2015 ; Orsay, Essonne) , en partenariat avec Laboratoire Aimé Cotton (Orsay, Essonne) (laboratoire) et de Laboratoire Aimé Cotton (laboratoire) .

Le président du jury était Michèle Leduc.

Le jury était composé de Jacques Robert, Michèle Leduc, Carlo Rizzo, Francisco Perales, Danielle Dowek, Pierre Pillet.

Les rapporteurs étaient Carlo Rizzo, Francisco Perales.


  • Résumé

    Ce travail porte sur l’étude et la réalisation d’une nouvelle technique de décélération d’un jet supersonique de particules paramagnétiques en utilisant une onde de champ magnétique progressive co-mobile. Cette technique repose sur une méthode de ralentissement basée sur les forces de type Stern Gerlach agissant sur un système paramagnétique en mouvement en présence d’un champ magnétique co-propageant. Cette méthode très innovatrice a l’avantage de pouvoir s’appliquer à une grande palette d’espèces ouvrant ainsi de nouvelles possibilités d’applications. On décrit une approche théorique adaptée qui permet de faire un lien direct entre la théorie, la programmation des paramètres expérimentaux, les résultats obtenus et ce d’une manière systématique, rationnelle et prédictive.Ce mémoire est composé de trois parties. La première porte sur les forces décélératrices et le calcul des différentes forces, de type Stern Gerlach, utilisées dans nos expériences. Les formules établies dans cette partie sont essentielles pour l’interprétation des résultats expérimentaux. La deuxième partie porte sur le dispositif expérimental : le jet supersonique pré-refroidi, la zone d’interaction et la détection. On donne le détail de la réalisation des circuits créant les champs magnétiques nécessaires au guidage et à la décélération du jet. La troisième partie porte sur les résultats des expériences réalisées et leur interprétation directement à partir des équations du mouvement de l’effet Stern Gerlach. Des simulations sont présentées pour étayer les interprétations. On présente les résultats de décélération obtenus récemment sur l’argon et le néon métastables. Ces résultats valident clairement l’importance de l’ajout d’un champ magnétique uniforme qui définit un axe de quantification adiabatique global pour toutes les particules du jet et permet le découplage entre la précession des moments magnétiques et l’action des forces de gradient. Ces résultats mettent en évidence, aussi, l’effet de polarisation du jet qui dépend du sens relatif du champ magnétique uniforme ajouté par rapport à l’onde de champ magnétique progressive.Enfin, la compréhension et le contrôle de la dynamique du piégeage à une vitesse donnée, de l’accélération et de la décélération nécessitent le découplage entre les effets transverses et les effets longitudinaux de l’onde. Ces derniers sont clairement visibles quand le champ magnétique uniforme ajouté vient limiter les effets transverses de l’onde de champ magnétiques progressive. Les perspectives pour ce nouveau décélérateur Zeeman Stern Gerlach sont grandes. Un premier résultat de piégeage du di-azote métastable à 560m/s est présenté et ceci ouvre la voie pour décélérer les molécules paramagnétiques en jet supersonique pulsé. La décélération des radicaux libres et des neutrons est aussi envisageable.

  • Titre traduit

    Zeeman-Stern Gerlach deceleration of supersonic beams of paramagnetic particles with traveling waves of magnetic field


  • Résumé

    This work focuses on the study and implementation of a new technique of deceleration of a supersonic beam of paramagnetic particles using a co-moving progressive wave of magnetic field. This technique relies on a method of slowing based on Stern-Gerlach forces acting on a paramagnetic system in motion in the presence of a co-propagating magnetic field. This highly innovative approach has the advantage of being applicable to a wide range of species and opens up new opportunities. A suitable theoretical approach is followed, that allows for a direct link between theory, programming of experimental parameters, and experimental results in a systematic, rational and predictive manner.This thesis is composed of three parts. The first concerns the calculation of the various Stern Gerlach forces used in our experiments to decelerate the paramagnetic particles. Formulas established in this section are essential for the interpretation of experimental results. The second part is devoted to the experimental device: the creation of the cooled supersonic beam, interaction zone and detection. A separate chapter is devoted to the detailed description of the different setups of coils used to create the magnetic fields necessary to guide and to decelerate the particles of the beam.The third part is devoted to the experimental results and their direct interpretation using the equations of motion in Stern Gerlach forces. Simulations are presented to embody the interpretations. We present results about the deceleration of metastable argon and neon atoms. These results validate the significance of the addition of a uniform magnetic field defining a global adiabatic quantization axis for all the particles in the beam. This realizes the decoupling between the precession of the magnetic moments and Stern Gerlach forces. The results demonstrate the polarization effect of the beam that depends on the direction of the added uniform magnetic field relative to the progressive wave of the magnetic field.Finally, the understanding and control of the dynamics of trapping at a given speed, acceleration and deceleration require decoupling between the transverse and longitudinal effects of the wave. These effects are clearly visible when the added uniform magnetic field limits the transverse effects of the progressive wave of magnetic field. The outlooks for the new Zeeman Stern Gerlach decelerator are numerous. A first result of trapping di-nitrogen metastable at 560m/s is presented and the road is open to decelerate paramagnetic molecules in pulsed supersonic jet. Deceleration free radicals and neutrons are also possible.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.