Assemblage contrôlé de graphène et de nanotubes de carbone par transfert de films de tensioactifs pour le photovoltaïque

par Joël Azevedo

Thèse de doctorat en Physique

Sous la direction de Christophe Colbeau-Justin.

Soutenue le 28-06-2013

à Paris 11 , dans le cadre de Ecole doctorale Physique de la Région Parisienne (....-2013) , en partenariat avec Laboratoire d'Electronique Moléculaire (Gif sur Yvette) (laboratoire) .


  • Résumé

    Cette thèse est dédiée à l'étude d'une nouvelle méthode de formation de films ultra-minces de nanomatériaux carbonés sur surface. Basée sur le transfert d'un film d'eau stabilisé par des tensioactifs, elle permet notamment la réalisation et l'étude de films de nanotubes de carbone et d'oxyde de graphène (GO) aux propriétés remarquables. L’efficacité de l’approche développée est prouvée au travers de l’ajustement précis des caractéristiques des films. Pour l’assemblage d’objets bidimensionnels cette approche est particulièrement pertinente puisque la planéité des feuillets de GO est conservée quelle que soit leur taille. Les avantages de l’approche ne se limitent pas à la réalisation de monocouches à morphologie contrôlée mais s’étendent à la réalisation de films multicouches d’épaisseur ajustée et de très faible rugosité. De plus, cette approche est modulable et permet le transfert de films de nano-objets sur des surfaces de différentes mouillabilités et de grandes dimensions (transfert à l’échelle de wafers). L’intérêt du graphène oxydé en tant qu’analogue du graphene ne se justifie que par une désoxygénation (réduction) efficace du matériau idéalement complétée par une réparation de sa structure sp². Cette thèse aborde ces deux aspects. Les électrodes transparentes à base d'oxyde de graphène réduit (rGO) réalisées au cours de cette thèse sont parmi les plus performantes du domaine. Les résultats présentés incluent également un travail important sur les caractérisations électriques des feuillets individuels et des films de GO et de rGO. Ainsi, nous avons prouvé qu’il est possible de mesurer leur conductivité sans contact, par voie électrochimique (Scanning Electrochemical Microscopy). Même si les performances des électrodes en rGO n'atteignent pas celles des électrodes en graphène, les films réalisés peuvent d’ores et déjà être intégrés dans des dispositifs photovoltaïques. Nos travaux permettent de contribuer au domaine émergeant des cellules basées sur l’hétérojonction entre film de nano-objets carbonés et silicium. Dans le cadre de cette thèse nous montrons en particulier que les analyses par Time Resolved Microwave Conductivity sont complémentaires des mesures effectuées à l’échelle des cellules photovoltaïques, chacune permettant de caractériser, sous des angles différents, l’efficacité de séparation des charges photo-induites. Les travaux réalisés au cours de cette thèse contribuent aux problématiques dépendantes d’assemblage et d’intégration des nano-objets carbonés dans des dispositifs en ouvrant de nombreuses perspectives dans ces domaines en rapide évolution.

  • Titre traduit

    Controlled assembly of graphene and carbon nanotubes by surfactant film transfer toward photovoltaic applications


  • Résumé

    This thesis concerns the study of a new solution-based deposition method for the formation of ultrathin carbon nano-object films on surfaces. Based on the transfer of a surfactant-stabilized water film, this method enables the formation and the study of carbon nanotubes and graphene oxide (GO) films with remarkable properties. The efficiency of the developed approach is proven through the fine-tuning of the film properties. This method is particularly well-suited for the assembly of bidimensional nano-objects such as GO sheets, the flatness of which is preserved whatever their dimensions. The advantages of the approach are not limited to the morphological control of monolayer assemblies but extend to the realization of multilayer films of adjustable thickness and extremely low roughness. Besides, it enables the transfer of nano-object films on large (wafer-scale) surfaces of various wettability. The use of graphene oxide as an intermediate step toward graphene only makes sense if it is efficiently deoxygenated (reduced) and, ideally, repaired at the level of sp² domains. This thesis addresses these aspects. The realized transparent electrodes made of reduced graphene oxide (rGO) are among the most efficient in this field. The presented results also include an important work on the electrical characterization of graphene oxide sheets and films. We notably prove that conductivity can be measured without contact by an electrochemical way using Scanning Electrochemical Microscopy. While the performances of rGO electrodes are below those of graphene electrodes, the studied films can already be integrated into photovoltaic devices allowing to contribute to the emerging field of solar cells based on carbon/silicon heterojunctions. We particularly demonstrate that Time Resolved Microwave Conductivity analysis and photovoltaic cell measurements are complementary. Each of these techniques allows evaluating the efficiency of the separation of photo-induced charges. This thesis contributes to the dependent problematics of nano-object assembly and nano-object integration into devices, which are central for the development of nanotechnologies based on the bottom-up strategy.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.