Conception et réalisation des performances d'un spectro-imageur à transformée de Fourier dans l'UV lointain (IFTSUV)

par Claudia Ruiz de galarreta fanjul

Thèse de doctorat en Physique

Sous la direction de Thierry Appourchaux.

Soutenue le 29-03-2013

à Paris 11 , dans le cadre de Ecole doctorale Ondes et Matière (1998-2015 ; Orsay, Essonne) , en partenariat avec Institut d'Astrophysique spatiale (Orsay) (Institut) .


  • Résumé

    L’origine et l’évolution des différentes structures qui peuplent l’au-delà de la photosphère du Soleil, ainsi que les processus qui interviennent dans la dynamique et le chauffage de sa couronne demeurent de nos jours assez peu compris. L’inextricable complexité inhérente aux phénomènes physiques qui gouvernent l’atmosphère externe solaire s’accompagne de l’absence de données adaptées au besoin scientifique. En effet, l’interprétation et la modélisation des « mécanismes » qui raccordent les échanges entre la chromosphère et la couronne dépendent de paramètres d’observation critiques. Il est par exemple essentiel de pouvoir mesurer de larges bandes de températures et densités verticales s’adaptant aux multiples échelles spatiales et temporelles caractéristiques des différents évènements qui se déroulent dans le Soleil. La compréhension de la dynamique des plasmas repose aussi sur l’analyse Doppler de la scène observée. Ceci implique notamment la capacité de combiner des techniques de spectroscopie et d’imagerie simultanément dans le temps. Pour la couronne, le passage à l’UV spatial est incontournable, et relève d’un véritable défi technique. Malgré les excellents progrès technologiques, l’étude UV du Soleil est une science relativement récente, et aucune mission spatiale solaire n’a pu fournir jusqu’à présent une spectro-imagerie combinée et simultanée dans le domaine spectral qui nous intéresse. C’est pour répondre à cette attente que l’étude d’un nouveau dispositif appelé IFTSUV (abréviation de Imaging Fourier Transform Spectrometer working in the far UV), est présentée dans cette recherche. Malgré l’absence de missions d’opportunité dans l’horizon proche, les travaux de thèse se sont déroulés suivant le plan de l’action R&T du CNES R-S11/OT-0004-040, concernant la définition d’un spectro-imageur à transformée de Fourier dans l’UV lointain, et la réalisation en laboratoire d’un démonstrateur de métrologie dédié, pierre angulaire de la faisabilité technique de l’instrument. Ainsi, partant de la détermination du besoin scientifique et de la justification du choix technique, le premier objectif de cette étude est de concevoir un modèle instrumental préliminaire complet de l’IFTSUV. La spécification technique est fondée sur le calcul de dimensionnement et l’évaluation théorique des spécifications en termes de précision spectrale, qualité de l’image et rapport signal sur bruit. A travers l’identification des points durs, la réalisation d’une métrologie d’asservissement du miroir d’échantillonnage apparait tout naturellement, comme un besoin intrinsèque de la validation du concept. En effet, l’acquisition de l’interférogramme doit se faire de manière rigoureusement constante et le pas d’échantillonnage doit être connu avec une grande exactitude, car il fixe les nombres d’onde pour lesquels les spectres bruts sont calculés. Le maquettage d’une solution métrologique constitue donc le deuxième objectif de ce travail. L’architecture optique mise en place a été choisie afin de satisfaire les besoins de stabilité angulaire (< 2.5 μrad) et de précision linéaire (< 8 nm) discernés, et testée en laboratoire. Les résultats sur la maquette valident le concept, même si ses performances s’éloignent des prédictions théoriques. L’évaluation expérimentale des performances permet d’établir des solutions aux problèmes rencontrés qui convergent vers l’optimisation et le prototypage d’un système pouvant être intégré dans une application spatiale.

  • Titre traduit

    design and performances of an imaging Fourier transform spectrometer working in the far UV (IFTSUV)


  • Résumé

    The origin and evolution of the different structures that inhabit beyond the Sun’s photosphere, as well as the processes involved in the dynamics and the heating of the corona remain quite unknown. The inextricable complexity of the physical phenomena that govern the solar outer atmosphere is accompanied by the lack of suitable data adapted to the scientific need. Indeed, the interpretation and the models of the mechanisms that connect the exchanges between the chromosphere and the corona depend on critical observational parameters. It is for example essential to measure broad bands of vertical temperature and density ranges that fit the multiple spatial and temporal scales that are characteristic of the different events that take place in the Sun. The understanding of the dynamics of the plasma must be also based on the Doppler analysis of the observed scene. That implies the ability to combine time resolved spectroscopic and imaging technologies. Moreover, space is the place to observe the far UV corona and that implies a real technical challenge. Despite excellent advances in technology and instrumentation, the study of the Sun in the far UV is a fairly recent. To date, no solar space mission could provide a combined and simultaneous diagnostic of both observable in the spectral range of interest. It is because of these expectations that the study of a new device called IFTSUV (the acronym of Imaging Fourier Transform Spectrometer working in the far UV) is presented in this research. Despite the lack of opportunity missions on the near horizon, these thesis works have been conducted thanks to the R&D funding R-S11/OT-0004-040 from the CNES, concerning either the definition of an imaging Fourier transform spectrometer in the far UV, or the realization of a laboratory metrology demonstrator that is the cornerstone of the instrument’s feasibility. Thus, starting from the definition of the scientific requirements that lead to the technical choice, the first objective of this study is to develop a preliminary instrumental model of the IFTSUV. The overall technical and design specifications are based in theoreticalcalculations that have been expressed in terms of spectral accuracy, image quality and signal to noise ratio. Throughout the identification of difficult points, the realization of a servo-metrology system dedicated to the sampling mirror appears naturally as an intrinsic need of proof of concept. Indeed, the wavenumbers from the raw spectra are set by the interferogram. That implies that acquisition must be rigorously constant and that the sampling steps must be known with high accuracy. The mockup of a metrological solution is therefore the second objective of this work. The optical breadboard architecture under test has been chosen to meet the needs of angular stability (< 2.5 μrad) and linear accuracy (< 8 nm). The results on the demonstrator validate the concept even if its performances are away from the theoretical predictions. The experimental performance evaluation is used to establish solutions to the instrumental problems encountered. That converge to the optimization and prototyping of a system that could be integrated in a space based application.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.