Atteinte différentielle de deux populations de motoneurones spinaux chez le souriceau SOD1 G93A (modèle de la maladie de Charcot)

par Félix Leroy

Thèse de doctorat en Neurosciences

Sous la direction de Daniel Zytnicki.

Soutenue le 06-12-2013

à Paris 5 , dans le cadre de École doctorale Cerveau, cognition, comportement (Paris) .


  • Résumé

    La deuxième semaine qui suit la naissance est critique pour le développement du système locomoteur de la souris. C’est pendant cette semaine que les souriceaux acquièrent leur posture et commencent à marcher. Cette transformation implique une réorganisation en profondeur des éléments composant les unités motrices. Cependant, nous ne savons encore que peu de choses sur la différenciation des propriétés intrinsèques des motoneurones innervant les fibres musculaires. Contrairement à l’adulte, où la décharge démarre au début de la stimulation, les motoneurones de souriceaux déchargent de façon hétérogène. En effet, une stimulation au seuil induit chez certains motoneurones une décharge commençant au début du créneau alors que la décharge est retardée dans d’autres motoneurones. Par des enregistrements de motoneurones sur des tranches de moelle épinière à P6-P10, j’ai dans un premier temps caractérisé les courants sous‐tendant la décharge retardée et j’ai constaté que deux conductances potassiques (l’une ressemblant au courant de type A et l’autre très lente) étaient activées autour du seuil de décharge. Lorsqu’elles s’activent, ces conductances sont capables d’hyperpolariser le potentiel de membrane et d’empêcher le motoneurone de décharger. Puis, en s’inactivant, la membrane se dépolarise et le neurone commence à décharger avec un retard pouvant aller jusqu’à plusieurs secondes après le début du créneau. En outre, les deux populations de motoneurones présentent des propriétés électro-physiologiques et morphologiques différentes. Les motoneurones à décharge retardée possèdent un arbre dendritique plus ramifié que ceux à décharge immédiate. En conséquence, les motoneurones à décharge retardée possèdent une conductance d’entrée et un seuil de recrutement plus faible. De plus le temps de relaxation de l’hyperpolarisation suivant chaque potentiel d’action (AHP) est plus long dans les motoneurones à décharge immédiate. Enfin, une partie des motoneurones à décharge retardée exprime la protéine chondrolectine récemment décrite comme un marqueur moléculaire des motoneurones de type rapide. L’ensemble de nos résultats nous permet de faire l’hypothèse que les motoneurones à décharge retardée sont des motoneurones innervant les unités motrices de type rapide alors que ceux à décharge immédiate innervent les unités motrices de type lent. Dans un second temps, j’ai étudié l’effet de la mutation SOD1 G93A, un modèle murin de la sclérose latérale amyotrophique, sur les motoneurones spinaux à P6‐P10. Sachant que cette maladie affecte les motoneurones de façon différente à l’âge adulte, j’ai cherché à savoir si, chez les souriceaux SOD1 G93A, les motoneurones à décharge retardée et immédiate étaient affectés de la même façon. Mes résultats montrent que seuls les motoneurones à décharge immédiate sont hyperexcitables. Pour ces motoneurones, le seuil de décharge est plus hyperpolarisé et leurs dendrites sont plus courtes de 35%. Ces résultats amènent à reconsidérer le lien supposé entre hyperexcitabilité et dégénérescence des motoneurones.

  • Titre traduit

    Differential abnormalities of two spinal motoneuron populations in the SOD1 G93A neonatal mouse (model of the amyotrophic lateral sclerosis)


  • Résumé

    In the second postnatal week, the locomotor behavior of mice changes from crawling to walking. This is made possible by profound changes in motor units. Yet, how the discharge properties of spinal motoneurons evolve during post-­‐natal maturation and whether they have an effect on the motor unit maturation remains an open question. In neonates, the spinal motoneurons display two modes of discharge. For threshold pulses, 33% of the motoneurons have a discharge that start at the current onset and adapts during the pulse (“immediate firing motoneurons”). The remaining 66% motoneurons fire with a large delay and the discharge then accelerates throughout the pulse (“delayed firing motoneurons”). Though the delayed firing pattern is quite common in spinal motoneurons of neonates, the ionic mechanisms that elicit this mode of discharge have received little attention. Using the patch-clamp technique to record P6‐P10 mouse motoneurons in a spinal cord slice preparation, I characterized the ionic currents that underlie the delayed firing pattern. This is caused by a combination of an A-like potassium current that acts on a short time scale and a slow‐inactivating potassium current that delays the discharge on a much longer time scale. I then investigated how these two potassium currents contribute to the recruitment threshold and how they shape the F-I function of delayed motoneurons in neonatal mice. The slow inactivating potassium current induces memory effects that have a strong impact on motoneuron excitability and on its discharge. Building on these results, I tried to correlate the discharge pattern to known physiological sub‐types. The delayed firing motoneurons have a larger input conductance, a higher rheobase, a narrower action potential, a shorter AHP and a more complex dendritic arbor than the immediate firing motoneurons. Additionally, only a sub-­‐population of the delayed firing motoneurons expressed the chondrolectin protein, a fast motoneuron marker. Based on this body of corroborating evidence, the immediate firing motoneurons would be slow type motoneurons whereas the delayed firing motoneurons would be fast type motoneurons. Finally, numerous electrical and geometrical abnormalities have been observed in spinal motoneurons of SOD1 G934 mice (model of the amyotrophic lateral sclerosis) during the second post-natal week but the results were somehow contradictory. In relation to the known differential sensitivity to the disease exhibited by slow and fast motoneurons, I investigated whether the immediate and delayed firing motoneurons are equally affected by the SOD1 mutation. This is not the case. I found that the SOD1 mutation induced a decrease in the rheobase and a hyperpolarization of the voltage threshold only in the immediate firing motoneurons, thereby making them more excitable than in WT mice. Furthermore, the dendrites of the immediate firing motoneurons are substantially shorter (about 35%) in the mutant than in the WT. In sharp contrast, the excitability of the delayed firing motoneurons is unchanged and the dendritic tree is nearly unaffected (the dendrites only undergo a 10% elongation). These results allow for reconsidering the link between hyperexcitability and degenerescence of the motoneurons


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2013 par Université Paris Descartes à Paris

Atteinte différentielle de deux populations de motoneurones spinaux chez le souriceau SOD1 G93A (modèle de la maladie de Charcot)


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Descartes-Bibliothèque électronique. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2013 par Université Paris Descartes à Paris

Informations

  • Sous le titre : Atteinte différentielle de deux populations de motoneurones spinaux chez le souriceau SOD1 G93A (modèle de la maladie de Charcot)
  • Détails : 1 vol. (96 p.)
  • Notes : Thèse soutenue sur un ensemble de travaux. A subpopulation of neonatal mouse spinal motoneurones displays a delayed firing profile due to an A-like and a slow-inactivating potassium currents / Leroy, Félix, Lamotte d’Incamps, Boris, Zytnicki, Daniel. - ,. . Only spinal motoneurons that display the “immediate firing” profile are hyperexcitable in SOD1 G93A neonatal mice / Leroy, Félix, Lamotte d’Incamps, Boris, Zytnicki, Daniel. - ,.
  • Annexes : Bibliogr. p. 73-88.
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.