Modèles de mélange de von Mises-Fisher

par Wafia Parr Bouberima (Bouberima)

Thèse de doctorat en Intelligence artificielle et décision

Sous la direction de Mohamed Nadif et de Yamina Bencheikh.


  • Résumé

    Dans la vie actuelle, les données directionnelles sont présentes dans la majorité des domaines, sous plusieurs formes, différents aspects et de grandes tailles/dimensions, d'où le besoin de méthodes d'étude efficaces des problématiques posées dans ce domaine. Pour aborder le problème de la classification automatique, l'approche probabiliste est devenue une approche classique, reposant sur l'idée simple : étant donné que les g classes sont différentes entre elles, on suppose que chacune suit une loi de probabilité connue, dont les paramètres sont en général différents d'une classe à une autre; on parle alors de modèle de mélange de lois de probabilités. Sous cette hypothèse, les données initiales sont considérées comme un échantillon d'une variable aléatoire d-dimensionnelle dont la densité est un mélange de g distributions de probabilités spécifiques à chaque classe. Dans cette thèse nous nous sommes intéressés à la classification automatique de données directionnelles, en utilisant des méthodes de classification les mieux adaptées sous deux approches: géométrique et probabiliste. Dans la première, en explorant et comparant des algorithmes de type kmeans; dans la seconde, en s'attaquant directement à l'estimation des paramètres à partir desquels se déduit une partition à travers la maximisation de la log-vraisemblance, représentée par l'algorithme EM. Pour cette dernière approche, nous avons repris le modèle de mélange de distributions de von Mises-Fisher, nous avons proposé des variantes de l'algorithme EMvMF, soit CEMvMF, le SEMvMF et le SAEMvMF, dans le même contexte, nous avons traité le problème de recherche du nombre de composants et le choix du modèle de mélange, ceci en utilisant quelques critères d'information : Bic, Aic, Aic3, Aic4, Aicc, Aicu, Caic, Clc, Icl-Bic, Ll, Icl, Awe. Nous terminons notre étude par une comparaison du modèle vMF avec un modèle exponentiel plus simple ; à l'origine ce modèle part du principe que l'ensemble des données est distribué sur une hypersphère de rayon ρ prédéfini, supérieur ou égal à un. Nous proposons une amélioration du modèle exponentiel qui sera basé sur une étape estimation du rayon ρ au cours de l'algorithme NEM. Ceci nous a permis dans la plupart de nos applications de trouver de meilleurs résultats; en proposant de nouvelles variantes de l'algorithme NEM qui sont le NEMρ , NCEMρ et le NSEMρ. L'expérimentation des algorithmes proposés dans ce travail a été faite sur une variété de données textuelles, de données génétiques et de données simulées suivant le modèle de von Mises-Fisher (vMF). Ces applications nous ont permis une meilleure compréhension des différentes approches étudiées le long de cette thèse.

  • Titre traduit

    Von Mises-Fisher mixture models


  • Résumé

    In contemporary life directional data are present in most areas, in several forms, aspects and large sizes / dimensions; hence the need for effective methods of studying the existing problems in these fields. To solve the problem of clustering, the probabilistic approach has become a classic approach, based on the simple idea: since the g classes are different from each other, it is assumed that each class follows a distribution of probability, whose parameters are generally different from one class to another. We are concerned here with mixture modelling. Under this assumption, the initial data are considered as a sample of a d-dimensional random variable whose density is a mixture of g distributions of probability where each one is specific to a class. In this thesis we are interested in the clustering of directional data that has been treated using known classification methods which are the most appropriate for this case. In which both approaches the geometric and the probabilistic one have been considered. In the first, some kmeans like algorithms have been explored and considered. In the second, by directly handling the estimation of parameters from which is deduced the partition maximizing the log-likelihood, this approach is represented by the EM algorithm. For the latter approach, model mixtures of distributions of von Mises-Fisher have been used, proposing variants of the EM algorithm: EMvMF, the CEMvMF, the SEMvMF and the SAEMvMF. In the same context, the problem of finding the number of the components in the mixture and the choice of the model, using some information criteria {Bic, Aic, Aic3, Aic4, AICC, AICU, CAIC, Clc, Icl-Bic, LI, Icl, Awe} have been discussed. The study concludes with a comparison of the used vMF model with a simpler exponential model. In the latter, it is assumed that all data are distributed on a hypersphere of a predetermined radius greater than one, instead of a unit hypersphere in the case of the vMF model. An improvement of this method based on the estimation step of the radius in the algorithm NEMρ has been proposed: this allowed us in most of our applications to find the best partitions; we have developed also the NCEMρ and NSEMρ algorithms. The algorithms proposed in this work were performed on a variety of textual data, genetic data and simulated data according to the vMF model; these applications gave us a better understanding of the different studied approaches throughout this thesis.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Descartes-Bibliothèque électronique. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.