Introduction d’une théorie des jeux dans des topologies dynamiques

par Olivier Maurice

Thèse de doctorat en Electronique des Hautes Fréquences, Photonique et Systèmes

Sous la direction de Alain Reineix.

Soutenue en 2013

à Limoges , en partenariat avec Université de Limoges. Faculté des sciences et techniques (autre partenaire) .


  • Résumé

    L'objet de cette thèse est de présenter une méthode de modélisation de la complexité. Partant de l'analyse tensorielle des réseaux, on montre tout d'abord que cette technique permet de modéliser tout processus physique en intégrant dans un formalisme efficace les modèles développés dans chaque branche actuelle de la physique. Il ne s'agit pas de proposer une méthode universelle, mais bien un formalisme qui est capable d'intégrer et de coupler les modèles développés par ailleurs et appelés à évoluer. Le formalisme encapsule ainsi ceux de la mécanique quantique ou de la relativité générale, etc. L'aspect "physique" du système pris en charge, on fait appel à la théorie des jeux pour aborder l'aspect "psychique" du système, pour modéliser son comportement. Ce lien passe par la création d'objets mathématiques comme les tenfolds et gamma matrices. On est alors à même de créer un arbre d'évolution et de représenter des trajectoires de transformations et décisions dans un espace "choix-gains".

  • Titre traduit

    Updating game theory in dynamic topologies


  • Résumé

    This thesis presents a method for modeling complexity. Starting from tensorial analysis of networks, we show that this technique allows to model any physical process. It gives in a common formalism all the tools to integrate equations coming from various physics. The purpose is not to develop an unique method rather than having one able to embed developments coming from any kind of physic material. The formalism embed quantum mechanics, relativity, etc. Once the physical part of the system take in charge, we use game theory to take the psychical part. Both methods linked by special mathematical objects like "tenfolds" or gamma matrices makes a global technique for complexity. A tree cross talking the two theories models the complex system evolution. A special representation in a "choices-utility" space gives a comprehensible image of the system evolution.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (175 p.)
  • Annexes : Bibliographie 21 p.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Limoges (Section Sciences et Techniques). Service Commun de la documentation.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.