Structures kählériennes sur T*G dont la forme symplectique sous-jacente est la forme standard

par Karl Leicht

Thèse de doctorat en Mathématiques

Sous la direction de Johannes Huebschmann.

Soutenue le 18-11-2013

à Lille 1 , dans le cadre de École doctorale Sciences pour l'Ingénieur (Lille) , en partenariat avec Laboratoire Paul Painlevé (laboratoire) .


  • Résumé

    Soit G un groupe de Lie connexe. On montre qu'une structure complexe sur l'espace total TG du fibré tangent de G, invariante à gauche, et telle qu'une G-orbite quelconque par rapport à translation à gauche soit totalement réelle, est induite par une immersion lisse de TG dans le complexifié de G. Pour G compact et connexe, on caractérise ensuite les structures complexes invariantes à gauche et également les structures complexes biinvariantes sur l'espace total T*G du fibré cotangent de G qui, combinées avec la structure symplectique tautologique, munissent T*G d'une structure kählérienne. On étudie enfin les courbures de Ricci de ces structures kählériennes.

  • Titre traduit

    Kaehler structures on T*G having as underlying symplectic structure the standard one


  • Résumé

    Let G be a connected Lie group. We show that every complex structure on the total space TG of the tangent bundle of G which is left invariant and such that an orbit with respect to the left translation action is totally real, is induced by a smooth immersion of TG into the complexifixed group of G. For G compact and connected, we also characterize the right invariant complex structures and the biinvariant complex structures on the total space T*G of the cotangent bundle of G which, combined with the tautological symplectic structure, endow T*G with a Kaehler structure. Finally, we study the Ricci curvature of these Kaehler structures.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université des sciences et technologies de Lille. Service commun de la documentation. Bibliothèque virtuelle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.