Spatial structure of complex network and diffusion dynamics

par Zi Hui

Thèse de doctorat en Physique

Sous la direction de Qiuping Alexandre Wang et de Jean-Marc Greneche.

Soutenue le 08-04-2013

à Le Mans , en partenariat avec Laboratoire de physique statistique et systèmes complexes (Le Mans) (laboratoire) .

  • Titre traduit

    Structure spatiale du réseau complexe et dynamique de diffusion


  • Résumé

    Dans le développement récent des sciences de réseau, réseaux contraints spatiales sont devenues un objet d'une enquête approfondie. Spatiales des réseaux de contraintes sont intégrées dans l'espace de configuration. Leurs structures et les dynamiques sont influencées par la distance spatiale. Ceci est prouvé par les données empiriques de plus en plus sur des systèmes réels montrant des lois exponentielles ou de distribution d'énergie distance spatiale de liens. Dans cette thèse, nous nous concentrons sur la structure de réseau spatial avec une distribution en loi de puissance spatiale. Plusieurs mécanismes de formation de la structure et de la dynamique de diffusion sur ces réseaux sont pris en considération. D'abord, nous proposons un réseau évolutif construit en l'espace de configuration d'un mécanisme de concurrence entre le degré et les préférences de distance spatiale. Ce mécanisme est décrit par un a^'fc- + (1 — a)^'lL_,1, où ki est le degré du noeud i et rni est la distance spatiale entre les noeuds n et i. En réglant le paramètre a, le réseau peut être fait pour changer en continu à partir du réseau spatiale entraînée (a = 0) pour le réseau sans échelle (a = 1). La structure topologique de notre modèle est comparé aux données empiriques de réseau de courrier électronique avec un bon accord. Sur cette base, nous nous concentrons sur la dynamique de diffusion sur le réseau axé sur spatiale (a — 0). Le premier modèle, nous avons utilisé est fréquemment employée dans l'étude de la propagation de l'épidémie: ['spatiale susceptible-infecté-susceptible (SIS) modèle. Ici, le taux de propagation entre deux noeuds connectés est inversement proportionnelle à leur distance spatiale. Le résultat montre que la diffusion efficace de temps augmente avec l'augmentation de a. L'existence d'seuil épidémique générique est observée, dont la valeur dépend du paramètre a Le seuil épidémique maximum et le ratio minimum fixe de noeuds infectés localiser simultanément dans le intervalle 1.5 < a < 2.Puisque le réseau spatiale axée a bien défini la distance spatiale, ce modèle offre une occasion d'étudier la dynamique de diffusion en utilisant les techniques habituelles de la mécanique statistique. Tout d'abord, compte tenu du fait que la diffusion est anormale en général en raison de l'importante long plage de propagation, nous introduisons un coefficient de diffusion composite qui est la somme de la diffusion d'habitude constante D des lois de la Fick appliqué sur différentes distances de transfert possibles sur le réseau. Comme prévu, ce coefficient composite diminue avec l'augmentation de a. et est une bonne mesure de l'efficacité de la diffusion. Notre seconde approche pour cette diffusion anormale est de calculer le déplacement quadratique moyen (l²) à identifier une constante de diffusion D' et le degré de la anomalousness y avec l'aide de la loi de puissance (l²) = 4D'ty. D' comportements de la même manière que D, i.e.. elle diminue avec l'augmentation de a. y est inférieur à l'unité (subdiffusion) et tend à un (diffusion normale) que a augmente.


  • Résumé

    In the recent development of network sciences, spatial constrained networks have become an object of extensive investigation. Spatial constrained networks are embedded in configuration space. Their structures and dynamics are influenced by spatial distance. This is proved by more and more empirical data on real Systems showing exponential or power laws spatial distance distribution of links. In this dissertation, we focus on the structure of spatial network with power law spatial distribution. Several mechanisms of structure formation and diffusion dynamics on these networks are considered. First we propose an evolutionary network constructed in the configuration space with a competing mechanism between the degree and the spatial distance preferences. This mechanism is described by a ki + (1 — a), where ki is the degree of node i and rni is the spatial distance between nodes n and i. By adjusting parameter a, the network can be made to change continuously from the spatial driven network (a = 0) to the scale-free network (a = 1). The topological structure of our model is compared to the empirical data from email network with good agreement. On this basis, we focus on the diffusion dynamics on spatial driven network (a = 0). The first model we used is frequently employed in the study of epidemie spreading : the spatial susceptible-infected-susceptible (SIS) model. Here the spreading rate between two connected nodes is inversely proportional to their spatial distance. The result shows that the effective spreading time increases with increasing a. The existence of generic epidemic threshold is observed, whose value dépends on parameter a. The maximum épidemic threshold and the minimum stationary ratio of infected nodes simultaneously locate in the interval 1.5 < a < 2. Since the spatial driven network has well defined spatial distance, this model offers an occasion to study the diffusion dynamics by using the usual techniques of statistical mechanics. First, considering the fact that the diffusion is anomalous in general due to the important long-range spreading, we introduce a composite diffusion coefficient which is the sum of the usual diffusion constant D of the Fick's laws applied over different possible transfer distances on the network. As expected, this composite coefficient decreases with increasing a and is a good measure of the efficiency of the diffusion. Our second approach to this anomalous diffusion is to calculate the mean square displacement (l²) to identify a diffusion constant D' and the degree of thé anomalousness y with the help of the power law {l²} = 4D'ty. D' behaviors in the same way as D, i.e., it decreases with increasing a. y is smaller than unity (subdiffusion) and tends to one (normal diffusion) as a increases.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.