Inference attacks on geolocated data

par Miguel Nuñez del Prado Cortez

Thèse de doctorat en Systèmes Industriels et Systèmes Informatiques

Sous la direction de Marc-Olivier Killijian et de Sébastien Gambs.

Le président du jury était Abdelmalek Benzekri.

Le jury était composé de Marc-Olivier Killijian, Sébastien Gambs, Refik Molva, Guillaume Raschia.

Les rapporteurs étaient David Gross-Amblard, Yucel Saygin.

  • Titre traduit

    Attaques d'inférence sur des bases de données géolocalisées


  • Résumé

    Au cours des dernières années, nous avons observé le développement de dispositifs connectéset nomades tels que les téléphones mobiles, tablettes ou même les ordinateurs portablespermettant aux gens d’utiliser dans leur quotidien des services géolocalisés qui sont personnalisésd’après leur position. Néanmoins, les services géolocalisés présentent des risques enterme de vie privée qui ne sont pas forcément perçus par les utilisateurs. Dans cette thèse,nous nous intéressons à comprendre les risques en terme de vie privée liés à la disséminationet collection de données de localisation. Dans ce but, les attaques par inférence que nousavons développé sont l’extraction des points d’intérêts, la prédiction de la prochaine localisationainsi que la désanonymisation de traces de mobilité, grâce à un modèle de mobilité quenous avons appelé les chaînes de Markov de mobilité. Ensuite, nous avons établi un classementdes attaques d’inférence dans le contexte de la géolocalisation se basant sur les objectifsde l’adversaire. De plus, nous avons évalué l’impact de certaines mesures d’assainissement àprémunir l’efficacité de certaines attaques par inférence. En fin nous avons élaboré une plateformeappelé GEoPrivacy Enhanced TOolkit (GEPETO) qui permet de tester les attaques parinférences développées.


  • Résumé

    In recent years, we have observed the development of connected and nomad devices suchas smartphones, tablets or even laptops allowing individuals to use location-based services(LBSs), which personalize the service they offer according to the positions of users, on a dailybasis. Nonetheless, LBSs raise serious privacy issues, which are often not perceived by the endusers. In this thesis, we are interested in the understanding of the privacy risks related to thedissemination and collection of location data. To address this issue, we developed inferenceattacks such as the extraction of points of interest (POI) and their semantics, the predictionof the next location as well as the de-anonymization of mobility traces, based on a mobilitymodel that we have coined as mobility Markov chain. Afterwards, we proposed a classificationof inference attacks in the context of location data based on the objectives of the adversary.In addition, we evaluated the effectiveness of some sanitization measures in limiting the efficiencyof inference attacks. Finally, we have developed a generic platform called GEPETO (forGEoPrivacy Enhancing Toolkit) that can be used to test the developed inference attacks


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2013 par INSA à Toulouse

Inference attacks on geolocated data


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Institut national des sciences appliquées. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.
Cette thèse a donné lieu à 1 publication .

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2013 par INSA à Toulouse

Informations

  • Sous le titre : Inference attacks on geolocated data
  • Détails : 1 vol. (X-F19-139 p.)
  • Annexes : Bibliogr. p. 127-139
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.