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Abstract

This thesis considers the selection and scheduling problem of observa-

tions for agile Earth observing satellites. The mission of Earth observ-

ing satellites is to obtain photographs of the Earth surface to satisfy

user requirements. Requests from several users have to be managed

before transmitting an order, which is a sequence of selected acqui-

sitions, to the satellite. The obtained sequence must optimize two

objectives under operation constraints. The first objective is to maxi-

mize the total profit of the selected acquisitions. The second one is to

ensure the fairness of resource sharing by minimizing the maximum

profit difference between users. Two metaheuristic algorithms, con-

sisting of a biased random key genetic algorithm (BRKGA) and an

indicator-based multi-objective local search (IBMOLS), are proposed

to solve the problem. For BRKGA, three selection methods, borrowed

from NSGA-II, SMS-EMOA, and IBEA, are proposed to select a set

of preferred chromosomes to be the elite set. Three decoding strate-

gies, which are two single decoding and a hybrid decoding, are ap-

plied to decode chromosomes to become solutions. For IBMOLS,

several methods for generating the initial population are tested and

the neighborhood structure according to the problem is also proposed.

Experiments are conducted on realistic instances based on ROADEF

2003 challenge instances. Hypervolumes of the approximate Pareto

fronts are computed and the results from the two algorithms are com-

pared.
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Résumé

Cette thèse considère le problème de sélection et d’ordonnancement

des prises de vue d’un satellite agile d’observation de la Terre. La

mission d’un satellite d’observation est d’obtenir des photographies

de la surface de la Terre afin de satisfaire des requêtes d’utilisateurs.

Les demandes, émanant de différents utilisateurs, doivent faire l’objet

d’un traitement avant transmission d’un ordre vers le satellite, corre-

spondant à une séquence d’acquisitions sélectionnées. Cette séquence

doit optimiser deux objectifs sous contraintes d’exploitation. Le pre-

mier objectif est de maximiser le profit global des acquisitions sélec-

tionnées. Le second est d’assurer l’équité du partage des ressources

en minimisant la différence maximale de profit entre les utilisateurs.

Deux métaheuristiques, composées d’un algorithme génétique à clé

aléatoire biaisées (biased random key genetic algorithm - BRKGA)

et d’une recherche locale multi-objectif basée sur des indicateurs

(indicator-based multi-objective local search - IBMOLS), sont pro-

posées pour résoudre le problème. Pour BRKGA, trois méthodes de

sélection, empruntées à NSGA-II, SMS-EMOA, et IBEA, sont pro-

posées pour choisir un ensemble de chromosomes préférés comme en-

semble élite. Trois stratégies de décodage, parmi lesquelles deux sont

des décodages uniques et la dernière un décodage hybride, sont ap-

pliquées pour décoder les chromosomes afin d’obtenir des solutions.

Pour IBMOLS, plusieurs méthodes pour générer la population initiale

sont testées et une structure de voisinage est également proposée. Des

expériences sont menées sur des cas réalistes, issus d’instances mod-

ifiées du challenge ROADEF 2003. On obtient ainsi les fronts de

Pareto approximés de BRKGA et IBMOLS dont on calcule les hyper-

volumes. Les résultats de ces deux algorithmes sont comparés.
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Introduction

This thesis is in the multi-objective optimization area. It is applied to solve

scheduling problems in space applications, especially for Earth observing

satellites. The research has been done in the Modeling, Optimization and

Integrated Management of Systems of Activities (MOGISA) team of the

Laboratory for Analysis and Architecture of Systems (LAAS-CNRS). This

study is supported by the THEOS Operational Training Programme (TOTP)

of Geo-Informatics and Space Technology Development Agency - Thailand

(GISTDA). For the publications, some parts of this work had been presented

in the Annual Congress of the French Society of Operations Research and

Decision Support (ROADEF 2012 and ROADEF 2013), and the International

Conference on Parallel Problem Solving from Nature (PPSN 2012). Fur-

thermore, the latest paper was accepted to be presented in the Workshop on

Computational Optimization (WCO 2013).

The mission of Earth observing satellites is to obtain photographs of the

Earth surface depending on requests from users, in order to satisfy their re-

quirements. The requests must be managed by the ground station center be-

fore transmitting a sequence to operate the satellites. In this work, we study

the multi-user observation scheduling problem of an agile Earth observing

satellite. Requests required from several users are considered. For a spot re-

quest, it can be acquired at once by the satellite, hence it is considered as a

strip. For a polygonal request, it has to be decomposed into several strips.

Each strip can be acquired in two opposite directions, called possible acqui-

sitions. However, only one direction can be selected. The problem needs to

find a sequence of selected acquisitions, which optimizes two objective func-

tions and satisfies the satellite constraints. The first objective function is to

maximize the total profit. The second one is to ensure the fairness of resource

sharing by minimizing the maximum profit difference between users. There-

fore, the problem is modeled as a multi-objective optimization problem.

For years, many real-world optimization problems were looked and
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treated as multi-objective optimization problem, thus a numerous number

of multi-objective optimization algorithms were proposed. The family of

metaheuristics is one of many existing methods, which were applied to solve

problems in engineering and scientific areas. Metaheuristics consist of a

panel of approximate optimization methods, which are able to find near

optimal solution in a reasonable time. They are usually efficient to obtain

good solutions for solving complex problems.

In this work, two metaheuristic algorithms, which are a biased random

key genetic algorithm (BRKGA) and an indicator-based multi-objective local

search (IBMOLS), are applied to solve the multi-user observation schedul-

ing problem of an agile observing satellite. Some steps of the algorithms are

adapted from the original proposed version for solving the considered prob-

lem.

The document of this thesis is organized as follows: Chapter 1 presents an

overview of multi-objective optimization. Its basis concepts and mathemat-

ical formulation are explained. Since multi-objective optimization considers

several objectives simultaneously, we will not obtain only one solution, but a

set of solutions. Thus, dominance relation, tradeoff surface, and approaches

for fitness assignment are covered. Some metaheuristics, which are devel-

oped to solve multi-objective optimization problems, are also described in

this chapter.

Chapter 2 describes the observation scheduling problem for Earth observ-

ing satellites. Two types of Earth observing satellites, agile and non-agile,

are studied in this work. The models of their observation scheduling prob-

lems are explained. The scheduling problem concerning an agile satellite is

more complex to solve, because of its properties. Hence, the multi-objective

scheduling problem of an agile satellite is mainly considered in this work.

The modified instances of ROADEF 2003 challenge, which will be used for

testing the algorithms, are also described in detail.

In Chapter 3, BRKGA is applied to solve the problem. Since two ob-

jectives are considered in this work, the selection methods from three multi-

objective evolutionary algorithms are used to choose a set of preferred chro-

mosomes to become the elite set in BRKGA process. Moreover, a hybrid

decoding is proposed to improve the results obtained from single decodings.

IBMOLS is applied to solve the problem in Chapter 4. Three methods

of initial population generation are presented. Moreover, neighborhood struc-

tures and strategies for checking the feasibility of solutions are also described.

Finally, experimental results of the two algorithms are reported and dis-

cussed in Chapter 5. Hypervolumes of the obtained approximate Pareto fronts

are computed. The hypervolume values and computation times are compared.

Moreover, an example of the approximate Pareto front of each instance is also

illustrated in this chapter. The document finishes by highlighting the conclu-
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sions of the document, as well as proposing some short-term perspectives and

possible further research directions.





Multi-objective optimization 1

This chapter presents an overview of multi-objective optimization. Many

real world optimization problems consider several objectives simultaneously.

Hence, they can be solved by using multi-objective optimization algorithms.

Not only one solution, but a set of solutions, will be obtained after solving the

problem. A subset of these solutions is interesting and they can be decided

by the dominance relation. In this work, some metaheuristics are applied to

solve the problem and their concepts are described in this chapter.

1 Introduction

Optimization is an important issue for many real-world applications. Many

areas are concerned, e.g. engineering, science, management, business, etc.

The optimization involves the decision making which chooses a best solution

from all alternative available choices. The fitness measurement of each choice

depends on a given objective function. A general optimization problem can

be formalized as:
minimize f(x)

subject to x ∈ Ω

where f : Rn → R, x = (x1, x2, . . . , xn) ∈ Ω, and Ω ⊆ R
n. The func-

tion f is an objective function that we need to minimize. The vector x is

an n-vector of decision variables. The set Ω is a feasible set. Furthermore,

note that a maximization objective can be represented as a minimization one

(minimizef(x) ≡ maximize − f(x)) [17]. For obtaining the best solution

of the optimization problem, many algorithms, which use different searching

strategies, were proposed. All strategies of mono-objective optimization al-

gorithms have a common goal, which needs to find the global optimum of
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the objective function while satisfying the constraints. Some examples of

classical algorithms are the sequential search [54], Newton-Raphson method

[87], gradient method [32], or simplex method [66]. Examples of evolution-

ary algorithms, which use mechanisms inspired by biological evolution, are

genetic algorithm [43], ant colony optimization [28], particle swarm optimiza-

tion [53], or harmony search algorithm [39]. Some other metaheuristic algo-

rithms are simulated annealing [55], or tabu search [42].

Real world problems are not usually characterized by only one objective,

as there are several conflicting objectives to handle. Hence, a multi-objective

optimization is more efficient to address the global problems.

2 Basis concepts and mathematical formulation

For the history of multi-objective optimization, Olivier L. De Weck said in

[24] “Francis Y. Edgeworth and Vilfredo Pareto are credited for first introduc-

ing the concept of non-inferiority in the context of economics ”. After that,

many engineering researchers were interested in the area of multi-objective

optimization and it was rapidly developed until nowadays. For instance, J.

Andersson reformulated the design problem as a multi-objective optimization

problem in [3]. It is obviously more natural to express a real world question

as a multi-objective optimization problem. However, the methods for solving

multi-objective optimization problems are much more complicated. There-

fore, efficient optimization strategies are required [89]. A simple instance of

a multi-objective optimization problem is the following: Consider people who

want to buy a product. They need the product with the highest quality. Thus

the product quality has to be maximized. Simultaneously, they do not want

to pay a lot of money, hence the product price has to be minimized. The ex-

ample set of favorable solutions is shown in Figure 1.1. For the bi-objective

optimization problem, normally both objective functions are contradictory.

As in the example, when the people increase the quality of the product, its

price will not be cheap.

A multi-objective optimization problem has a general form as follows:

minimize F (x) = (f1(x), f2(x), . . . , fn(x))

subject to x ∈ Ω

where:

• n ≥ 2 is the number of objectives,

• F = (f1, f2, . . . , fn) is a vector of functions to optimize,

• Ω ⊆ R
m is a set of feasible solutions,
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Figure 1.1: The example set of favorable solutions for multi-objective opti-

mization problem.

• A(Ω) ⊆ Ω is a set of feasible solutions visited by an algorithm A

• x = (x1, x2, . . . , xm) ∈ Ω is a solution

• Y = F (Ω) is the objective space, and

• y = (y1, y2, . . . , yn) ∈ Y with yi = fi(x) is a point of the objective

space.

Normally, when the optimization problem is solved, we hope to obtain

only the best solution. However, for the multi-objective optimization problem,

we will not obtain only one solution, but a set of solutions. In a multi-objective

optimization problem (considering several contradictory objective functions),

the obtained tradeoff solutions are called Pareto-optimal solutions.

3 Dominance relation and tradeoff surface

Among a possible huge number of solutions arising from the solving of a

multi-objective optimization problem, only a subset of these solutions is inter-

esting. For characterizing this subset, the following Pareto dominance holds

[20]:

Definition 1.1. A vector x1 dominates a vector x2, if x1 is at least as good as

x2 for all objectives, and x1 is strictly better than x2 for at least one objective.
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The solutions which dominate the others and are not dominated by anyone

of them, are called optimal solutions in the Pareto sense or nondominated

solutions. This dominance relation is illustrated in Figure 1.2. The multi-

objective optimization problem at hand has to maximize the product quality

f1(x) and minimize the product price f2(x). Solutions A, B, C, D, and E are

found in the solution space. Due to the problem which needs to maximize f1
and minimize f2, the dominance relation in the Pareto sense of this problem

is given by:

solution x1 dominates solution x2 (denoted by x1 ≺ x2) if

f1(x1) ≥ f1(x2) and f2(x1) < f2(x2)
or

f1(x1) > f1(x2) and f2(x1) ≤ f2(x2).
Hence, the nondominated solutions are solutions A, C, and E, as shown in

Figure 1.2.

A

C

E

B

D

Figure 1.2: Example of nondominated solutions for the multi-objective opti-

mization problem which has to maximize the first objective and minimize the

second objective.

There is other types of dominances, which are:

Definition 1.2. A vector x1 weakly dominates a vector x2 (denoted by x1 4

x2) if x1 is better than or equal to x2 for all objectives.

Definition 1.3. A vector x1 strictly dominates a vector x2 (denoted by x1 ≺≺
x2) if x1 is better than x2 for all objectives.

The set of points on the objective space, which are mapped from the non-

dominated solutions is called tradeoff surface or Pareto front. For the above

example, which needs to maximize the first objective and minimize the sec-

ond objective, the tradeoff surface is illustrated in Figure 1.3.

The shape of the tradeoff surface depends on the type of the problem. For

the bi-objective optimization problems, the different shapes of tradeoff sur-

face are shown in Figure 1.4 [20], [67]. For most multi-objective optimization



4 Approaches for fitness assignment 5

C
h
ap

te
r
1

Objective

space

Tradeoff surface

Figure 1.3: Example of tradeoff surface for the multi-objective optimization

problem, which has to maximize the first objective and minimize the second

objective [20].

problems the exact tradeoff surface cannot be reached for complexity reasons.

Thus, the obtained solutions are usually an approximate tradeoff surface. The

good approximate tradeoff surface should be as close as possible to the exact

tradeoff surface. Furthermore, it should also spread uniformly along the exact

tradeoff surface.

4 Approaches for fitness assignment

Several approaches can be used to solve multi-objective optimization prob-

lems to optimality. These approaches mainly differ by the way for classifying

the quality of the obtained solutions. Four types of approaches are presented

in this section: nonscalar approach, scalar approach, Pareto approach, and

indicator-based approach.

4.1 Nonscalar approach

The first type of methods refers to nonscalar ones. A classical method, which

uses the nonscalar approach, is VEGA (vector evaluated genetic algorithm)

proposed in [71]. It applies a selection mechanism differently than in a clas-

sical genetic algorithm. In the selection step, a modified version of current

population is generated. It is composed of several subpopulations equal to

the number of objective functions. The individuals in subpopulation i, are se-

lected from the current population by considering only the objective function

fi. Hence, each subpopulation selects the individuals independently from the

other ones. Before starting the crossover and mutation steps, all individuals in
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Figure 1.4: The different shapes of tradeoff surface for bi-objective optimiza-

tion problem [20].

each subpopulations are mixed in order to obtain the modified current popu-

lation. Then, crossover and mutation mechanisms can be applied. The VEGA

process is shown in Figure 1.5. However, this algorithm has a main disadvan-

tage, that when the algorithm selects the individuals to keep in each subpop-

ulation, it considers only one objective without looking the others. Thus, the

compromised solutions, which consider all objectives, can be lost.

4.2 Scalar approach

Some cases of multi-objective optimization problems can be solved by using

the scalar approach. The main target of the scalar approach is to transform the

multi-objective problem into the mono-objective problem. Many algorithms

were proposed by using this scalar approach, e.g., the aggregation or weighted

sum of objective functions, the weighted matrix, the ǫ-constraint method, etc.

For example, when using the weighted sum of objective functions method,

which transforms several objectives into a single one, the optimization prob-
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Figure 1.5: VEGA process.

lem is given by

minimize feq(x) =
n

∑

i=1

wi · fi(x)

subject to x ∈ Ω

where n is the number of objective functions, wi is the weight of objective

function fi, and Ω is a solution space. Then, the mono-objective optimization

method can be used for solving this problem. However this method has a

disadvantage which is how to define the weight values, because they have to

be assigned by users.

4.3 Pareto approach

The idea of Pareto approach or dominance-based approach was presented

firstly in [43]. It uses the dominance relation as presented in Section 3 for the

fitness assignment of each solution. This approach does not need to transform

the multi-objective optimization problem into the mono-objective optimiza-

tion problem. Moreover, a set of solutions, which converge to the set of Pareto

optimal solutions, are obtained in a single run. The obtained solutions are the

nondominated solutions, which are classified by using the dominance rela-

tion. Because of this advantage, the Pareto approach is used in many multi-

objective optimization algorithms. Examples of famous algorithms using the

Pareto approach, are strength Pareto evolutionary algorithm 2 (SPEA2) and

nondominated sorting genetic algorithm II (NSGA-II). Both algorithms will

be detailed in Sections 6.2 and 6.3, respectively.
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4.4 Indicator-based approach

The indicator-based approach uses the binary indicator I for giving the qual-

ity of the found solutions. There are several types of indicators, for example,

ǫ-indicator or hypervolume indicator. The binary indicator I(A,B) can be

calculated for comparing the quality between two sets of solutions A and

B. The indicator-based approach has some advantages. For example, it

does not require the diversity preservation mechanism such as fitness shar-

ing. Also, it does not need to define the values of weighted parameters as

in some scalar approaches. Because of these advantages, the indicator-based

approach can be easily included in the optimization algorithms in order to de-

velop the preference selection step in the algorithms. The indicator-based ap-

proach is used in many multi-objective optimization algorithms, for instance,

indicator-based evolutionary algorithm (IBEA), S metric selection evolu-

tionary multi-objective optimization algorithm (SMS-EMOA), or indicator-

based multi-objective local search (IBMOLS). These three algorithms will be

described in detail in Sections 6.4, 6.5, and 6.6, respectively.

The presented approaches for fitness assignment measure the quality of

the solutions found by multi-objective optimization algorithms. They are ap-

plied to select and preserve the good solutions and discard the bad ones.

In the next section, the metaheuristic algorithms will be presented. They

consist of many efficient methods to solve real-world problems.

5 Metaheuristics

Solving real-world problems, involving conflicting objective functions, is

characterized by the huge size of search space. Eckart Zitzler said in [89]

“the search space of the multi-objective optimization problem can be too

large and too complex to be solved by exact methods ”. Thus, another

type of solving methods, so-called metaheuristics, will be presented in this

section. The metaheuristics represent a family of approximate optimization

techniques [77]. They are able to find approximate optimal solutions in a

reasonable time. Most of them iteratively improve the quality of the candidate

solutions. The metaheuristics obtain approximate solutions, which cannot be

guaranteed to be optimal as exact methods do. However, metaheuristics are

usually efficient to obtain good solutions for solving complex problems in

engineering and scientific areas.

Heuristics are techniques for seeking good solutions at a reasonable cost

[83]. They are different from the metaheuristics in the sense that the heuristics

are ad hoc, i.e., designed for specified problem, while the metaheuristics are

general methods, which can be applied to solve several different problems.

Thus, the metaheuristics are defined as upper level methodologies [77]. As



5 Metaheuristics 9

C
h
ap

te
r
1

in [49], the metaheuristics were proved to be highly efficient to solve vari-

ous difficult combinatorial optimization problems. In [15], the importance of

metaheuristics to solve combinatorial optimization problems was discussed.

Moreover, an overview and a comparison of the main metaheuristic methods

are presented. Furthermore, the metaheuristics, especially population-based

ones, are the main techniques to solve multi-objective problems. Surveys, tu-

torials and state-of-the-art research papers in this field were presented in [37].

Several metaheuristic methods were proposed since the early 1950s and some

of them are described below.

5.1 Local search

Local search is a metaheuristic method which improves a single solution. It

starts by an initial solution in the search space. Then, a neighborhood struc-

ture is defined depending on the problem, in order to find a new solution,

which can improve the objective function value from the incumbent one. In

each iteration, the neighbors are explored and the current solution is replaced

by an improving neighbor. The iterations will be continued until no better

neighbors can be found. It means that a local optimum is reached. In [23], the

local search was first applied to solve combinatorial optimization problems.

A local search approach was implemented in [51] to the particular case of the

traveling salesman problem.

Some important questions when using local search are how to pick an ini-

tial solution, how to define the neighborhood, how to select the neighbor for

replacing the current solution. Moreover, the main drawback of local search

is that it may converge rapidly to a local optimum while the global optimum

cannot be reached. For the first question, there are several methods for pick-

ing the initial solution, e.g. starting from a greedy initial solution in [31]

or starting from just one random feasible solution in [70]. For the second

question, the structure of the neighborhood can be defined depending on the

applied problems. However, the size of neighborhood has an effect for finding

the final solution. On the one side, if the neighborhood is defined in the too

large area, the final solution can be the global optimum, but it may require a

very high computation time. On the other side, a too small neighborhood is

defined, and the final solution is probably only a local optimum. There are

many researches which studied the algorithms to define the neighborhoods,

e.g. a survey of very large-scale neighborhood search techniques [1], a pro-

posed neighborhood portfolio approach which were applied to timetabling

problems [38]. For the third question about how to select the neighbor for

replacing the current solution, the selection of the neighbor can apply from

many strategies [77]:
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• The best improvement works by exploring all neighbors in the neigh-

borhood and choosing the best one of them.

• The first improvement selects the first explored neighbor which is better

than the current solution.

• The random selection chooses randomly a neighbor from the set of im-

proving ones, after all neighbors are explored.

Due to the three questions when using the local search, several parame-

ters have to be set properly for operating an efficient algorithm. An efficient

algorithm should avoid to entrap local optima and reach the global optimal so-

lution. Some algorithms were proposed to improve the basic local search. For

instance, an iterated local search is presented and generalized in [63]. This

method repeats the basic local searches from the different initial solutions. In

each iteration, the initial solution is generated by using the perturbation. It is

more efficient than using the initial solutions which are regenerated randomly.

Moreover, this method also uses an acceptance criterion to decide whether a

neighboring solution is accepted or not. This criterion improves the diversifi-

cation.

5.2 Genetic algorithm

Genetic algorithm is a population-based method which was first applied for

solving the optimization problems in [43]. It is one of the very popular evo-

lutionary algorithms which is developed from the natural survival concept.

The genetic algorithm operates by several individuals in the population. Each

individual consists of a chromosome, which represents one solution of the

search space. The types of chromosome encoding, e.g. binary, real value,

or permutation, are defined depending on the considered problem. A genetic

algorithm is an iterated method which is started by generating an initial pop-

ulation and its size equals to p. Three important operations, which consist of

selection, crossover, and mutation, are used to generate the new population

for the next generations. The crossover and mutation operators are operated

according to their probabilities. The generation process is repeated until some

stopping criteria are satisfied.

For the selection operator, the individuals that exist in the population are

selected by considering the fitness of each individual, which is obtained af-

ter the chromosome decoding. The fittest individuals are chosen to survive

and they are stored into the population in the next generation. The crossover

operator is used to produce the offspring individuals (children) for the next

generation. Two parents are selected from the current population, then an off-

spring is generated from them. There are many techniques to crossover, e.g.
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one-point crossover, two-point crossover, or uniform crossover. The last oper-

ator is mutation operator, which is used for escape from a local optimum. The

mutation operator has several techniques, e.g. bit flip at a random position or

regenerating as the initial individuals. However, the probability of mutation

should be set low, otherwise, the search will become a random search.

Genetic algorithms were applied to solve several well-known problems

in the optimization area [72]. Genetic algorithms were also used for solving

multi-objective optimization problems for a long time [78]. Several efficient

methods were proposed by using different strategies [56]. Multi-objective op-

timization algorithms based on genetic algorithm will be discussed in Section

6.

In this section, we will introduce a special type of genetic algorithm,

which is applied for solving the problem under study. It is a biased random

key genetic algorithm (BRKGA).

Biased random-key genetic algorithm

The biased random-key genetic algorithm (BRKGA) was first presented

in [44]. It is one efficient method for solving combinatorial optimization

problems. The BRKGA was developed from random key genetic algorithm

(RKGA), which was proposed in [9]. The BRKGA has a different way to

select two parents for the crossover operation, when comparing with the

seminal RKGA. The BRKGA selects randomly a parent from an elite set and

another parent from a non-elite set of the current population. On the contrary,

the original RKGA randomly selects two parents from the entire population.

The BRKGA combines genetic algorithm with the concept of random key.

The random-key chromosome, which is formed by several genes, represents

one solution. As the basic process of genetic algorithm, the BRKGA has the

same operating steps. It is started by generating an initial population and

the population consists of p chromosomes. The genetic algorithm involves

three mechanisms: selection, crossover, and mutation, to generate the new

chromosomes for the next generation. The iterations are repeated until the

stopping criteria are satisfied.

For BRKGA, the random key chromosome is formed by several genes that

are encoded by real values randomly generated in the interval [0, 1]. Then, it
inputs the chromosome to a decoder in order to output the solution. The

decoder is defined depending on the problem. For the scheduling problem,

each gene represents one job. The solution stands for a sequence of jobs. The

priority to consider each associated job in order to be assigned in the sequence

is calculated in this decoding step. Objective function values and fitness of

the solution, which is obtained from each chromosome, can be computed.

To start the process for generating the new generation, the current population

is classified into two groups by using the selection mechanism. The methods
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for selection are applied to choose pe preferred chromosomes from the current

population to become the elite set. The remaining chromosomes will be stored

in the other group of non-elite chromosomes. Then, the process to generate

the population in the next iteration is begun.

The population of the new generation is generated from three parts, as in

Figure 1.6. The pe chromosomes of elite set are copied to be stored in the top

position. The second part is stored in the bottom position, which is a mutant

set. It is the set of pm chromosomes generated to avoid entrapment in a local

optimum. These chromosomes are randomly generated by the same methods

used to generate the initial population. The last part is the crossover part for

which each crossover offspring is built from one elite chromosome and one

chromosome in the previous population. Each element in the crossover off-

spring is obtained from the element in elite chromosome with the probability

ρe. The crossover offspring is stored in the middle part of the new population.

Hence, the size of crossover offspring set is p−pe−pm to fulfill the remaining

space of chromosomes in the next population. The recommended parameter

value setting is displayed in Table 1.1 [45]. The process for generating the

next populations is applied repeatedly until a given stopping criterion is satis-

fied.

POPULATION

Generation i

ELITE

CROSSOVER

OFFSPRING

MUTANT

Generation i+1

ELITE

NON-ELITE

X

Figure 1.6: The population of the new generation by using BRKGA.

The BRKGA was used to solve several combinatorial optimization prob-

lems (e.g. communication, transportation or scheduling) [45]. In [46], the

authors used BRKGA to solve the fiber installation for an optical network

optimization problem. The objective function is to minimize the cost of the

optical components necessary to operate the network. In [65], the resource-

constrained project scheduling problem was solved by BRKGA. They found

the optimal solution for minimizing the makespan. Nevertheless, all of these

problems need to find an optimal solution for satisfying a single objective
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Table 1.1: Recommended parameter values of BRKGA [45].

Parameter Recommended value

p p = a.n,
where 1 ≤ a ∈ R is a constant and

n is the length of the chromosome

pe 0.10p ≤ pe ≤ 0.25p
pm 0.10p ≤ pm ≤ 0.30p
ρe 0.5 ≤ ρe ≤ 0.8

function. In our work, the BRKGA is applied to solve multi-objective opti-

mization problems. This will be presented in Chapter 3.

5.3 Other metaheuristic algorithms

In Sections 5.1 and 5.2, the metaheuristics, which are applied to solve the

problem in this work, are presented. Except the local search and the genetic

algorithm, there are other interesting metaheuristic algorithms and some of

them will be discussed in this section.

Simulated annealing was first proposed to solve optimization problems in

[55]. It corresponds to a probabilistic method for finding the global minimum

of an objective function that may have several local optima [11]. This method

bases on the annealing process, where a solid material is heated and then it

is cooled down slowly in order to obtain a strong structure. The simulated

annealing algorithm applies the energy change of the cooling down process

until it converges to an equilibrium state for solving optimization problems.

The practical guideline for the implementation of simulated annealing was

presented in [48]. In [76], [5], the simulated annealing is developed to provide

a set of tradeoff solutions for solving multi-objective optimization problems.

Ant colony optimization belongs to swarm intelligence methods and is

also a probabilistic technique for solving optimization problems. It is one

of the very famous metaheuristics in the combinatorial optimization area. It

was successful for solving several well-known problems, e.g. traveling sales-

man problem [27], permutation flowshop scheduling [68], and so on. The

ant colony optimization algorithm was first proposed in [26]. This algorithm

was established from an inspiration of ant’s behavior, when the ant seeks the

shortest path for transporting the food between its nest and the food source.

The ant colony algorithm consists of two main iterated steps, which are a so-

lution construction by using the pheromone trail and a pheromone update of

evaporation and reinforcement. The ant colony optimization algorithm is ap-

plied for solving problems in several applications [29], [30]. It was initially
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proposed for solving single objective combinatorial optimization problems.

After that, it was adapted to be able to solve continuous optimization prob-

lems [73] and multi-objective optimization problems [2].

Particle swarm optimization refers also to swarm intelligence. It is a

population-based metaheuristic. It was first presented in [53]. This method

mimics the social behavior of natural organism which is the movement of or-

ganisms in a bird flock or fish school to find a food place. It optimizes the

problems by using the population of the particles as the candidate solutions.

Particle swarm optimization was applied to solve optimization problems in

many areas [74], [6]. It was also developed for multi-objective optimization

problems [50], [18].

In the next section, metaheuristics, especially evolutionary algorithms,

used to solve multi-objective optimization problems, will be presented.

6 Metaheuristics for multi-objective optimization

Many metaheuristics were developed for solving multi-objective optimiza-

tion problems. This work considers the algorithms in the evolutionary class,

as well as local search algorithms. The evolutionary class is a class of meta-

heuristics which simulates the process of natural evolution. The techniques of

this class are popular due to the effectiveness and robustness in searching for

global tradeoff solutions [79]. This section will discuss about evolutionary

and local search algorithms for multi-objective optimization.

Firstly, the multi-objective evolutionary algorithms (MOEA) will be intro-

duced in Sections 6.1 – 6.5. As presented previously about the good approx-

imate Pareto front of the multi-objective optimization, the goals are to min-

imize the distance between the obtained solutions of the approximate Pareto

front and the exact one and to maximize the diversity of the approximate

Pareto front. Thus, algorithm design issues are fitness assignment, diversity

preservation, and elitism [93]. For the first issue, the main role of fitness as-

signment is to guide the search toward to the exact solutions. The fitness is a

scalar value which can illustrate the quality of the objective function vector.

For the second one, the goal of diversity preservation is to keep the diverse set

of nondominated solutions. Finally, elitism helps the algorithm to keep the

nondominated solutions during the optimization process. Most researches on

MOEA concentrate on the selection stage which needs to integrate vectorial

performance measures in order to classify the solution qualities [34]. Several

researchers developed many well-known algorithms and some of them will be

described in this section.
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6.1 Multiple objective genetic algorithm (MOGA)

Multiple objective genetic algorithm or MOGA was proposed in [33]. This

method is based on the dominance relation in the Pareto sense. The fitness is

assigned to each individual depending on the number of solutions of which it

is dominated by. For instance, consider an individual xi at generation t which

is dominated by p
(t)
i individuals, the rank of this considered individual is given

by rank (xi, t) = 1+p
(t)
i . All nondominated solutions are assigned rank 1. The

other ones are assigned higher ranks according to the population density of

the corresponding region. For this algorithm, not all ranks will necessarily be

represented in the population. Their ranks are transformed to the fitnesses by

interpolating from the best rank (rank 1) to the worst rank (rank n∗) according
to a function which is often linear as illustrated in Figure 1.7. The fitness

assignment in this method has an important drawback. It lacks to consider

the diversity of the individuals. Therefore, niche-formation method is used

to distribute the population by performing a sharing parameter. However, the

performance of this algorithm is highly dependent on an appropriate selection

of the sharing factor [19].

fitness

rank
1 n*

1

0

n

f(n)

Figure 1.7: Fitness assignment for MOGA by using linear interpolation.

6.2 Strength Pareto evolutionary algorithm 2 (SPEA2)

Strength Pareto evolutionary algorithm 2 (SPEA2) was proposed in [90]. It

is the improved version of SPEA [91]. SPEA uses a population P and an

archive A. The archive is used to store the nondominated solutions and it is

updated when finishing the process in each iteration. Furthermore, the size of

archive is limited by a predefined value. In the algorithm process, the fitness

is assigned to each solution, both in archive and population. The fitness of
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each solution in the archive (y ∈ A) is calculated depending on its strength.

The strength values are in the interval [0, 1[. The strength value of solution y
for iteration t is defined as

s(y, t) =
np(y, t)

Np + 1
,

where np(y, t) is the number of solutions in the population, which do not

dominate solution y and Np is the population size. For each solution in the

regular population (x ∈ P ), the fitness is given by

f(x, t) = 1 +
∑

y∈A,y4x

s(y, t)

That way, all nondominated solutions are assigned a fitness equal to 1.
However, the nondominated solution which has the lowest strength value is

preferred than the others, since it dominates the least number of solutions

in the objective function space. This value can indicate the diversity of the

solutions. Hence, the solution with the lower fitness value has more chance to

be selected. Afterwards, the crossover and mutation mechanisms are applied.

However, SPEA has some issues that need to be improved. The first issue

is about the fitness assignment; solutions, which are dominated by the same

archive members, have the same fitness values. Hence, the selection pressure

is decreased substantially. For the second one, in case many solutions are

indifferent, density information has to be used in order to guide the search

more effectively. The last one is about the archive truncation. Because of the

limitation of archive size, SPEA may lose some good nondominated solutions

[90]. Hence, SPEA2 was proposed for improving the algorithm. The main

procedure of SPEA2 has the steps as in Algorithm 1.

Both SPEA and SPEA2 are very efficient to solve multi-objective opti-

mization problems. They are also good examples for using the archive set

to store the nondominated solutions during the search [56]. Especially for

SPEA2, it is applied to solve the problems in many applications until nowa-

days.

6.3 Nondominated sorting genetic algorithm II (NSGA-II)

Nondominated sorting genetic algorithm II (NSGA-II) was proposed in [25].

It is an improved version of NSGA which was proposed in [75]. For NSGA,

the individuals in the population are classified into several layers of classifi-

cations. NSGA uses the dominance relation in the Pareto sense for ranking

the individuals. All nondominated individuals are classified in one category

with the dummy fitness value [19]. The process continues until all individuals

in the population are classified. NSGA has a computational complexity of
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Algorithm 1 Procedure of SPEA2

NA is the archive size

NP is the population size

UA is the maximum size of archive set A

Step 1: Initialization

Set t = 0.
Generate an initial population P0 and an empty archive set A0 = ∅.

Step 2: Fitness calculation

for all x ∈ Pt ∪ At do

Step 2.1: Calculate the raw fitness r(x, t) =
∑

y∈Pt∪At,y≺x
s(y, t), where

s(y, t) is the number of solutions in Pt ∪ At dominated by solution y.
Step 2.2: Calculate the density d(x, t) = 1/(σk

x + 2), where σk
x is the

distance between solution x and its k-th nearest solution point, and k =√
NA +NP .

Step 2.3: Calculate the final fitness f(x, t) = r(x, t) + d(x, t).
end for

Step 3: Archive set management

At+1 ← nondominated solutions in Pt ∪ At

if |At+1| < UA then

At+1 ← best UA − |At+1| dominated solutions from Pt ∪ At

else

if |At+1| > UA then

Remove |At+1| − UA nondominated solutions from At+1

end if

end if

Step 4: Termination

if Stopping criteria are satisfied then

return Nondominated solutions in At+1

Stop

end if

Step 5: Selection

Select parents from At+1 by using binary tournament selection with re-

placement.

Step 6: Crossover and mutation

Apply crossover and mutation operators in order to create the offsprings.

Pt+1 ← offsprings

t← t+ 1
Go to Step 2



C
h
ap

ter
1

18 CHAPTER 1. MULTI-OBJECTIVE OPTIMIZATION

O(MN3), where M is the number of objectives and N is the population size.

It makes NSGA computationally expensive for large population sizes. For

diversification, NSGA uses the concept of sharing, which requires the specifi-

cation of a sharing parameter. NSGA has a good convergence, however, there

are three criticisms which consist of a high computational complexity of non-

dominated sorting, a lack of elitism which prevents the loss of good evaluated

solutions, and a need for specifying the sharing parameter. Hence, NSGA-II

was proposed for improving the algorithm. The main procedure of NSGA-II

has the steps as in Algorithm 2.

The fast nondominated sorting algorithm is used for ranking the individ-

uals into several fronts. It compares each individual p with other individuals

in the population. For each individual p, an integer value np and a set Sp are

computed. The value np illustrates the number of solutions which dominate

p. The set Sp stores the individuals which are dominated by p. The process

to classify the individuals into each front (starting from i = 1) are repeated

by checking the np values. The individuals, which have np equal to 0, are
classified by moving them to the considered front (Fi). Before checking for

the next front, np and Sp of the remaining individuals are updated. The front

classifying are iterated until the individuals in the population are empty. Fi-

nally, all individuals in the population are sorted in several ranks, as shown in

Figure 1.8.

Figure 1.8: Fast nondominated sorting for NSGA-II of the problem to maxi-

mize f1(x) and minimize f2(x).

The crowding distance assignment is used for ensuring the diversity in the

considered front. It sorts the individuals depending on the distances between

the two adjacent points in the objective space as in Figure 1.9. The individuals
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Algorithm 2 Procedure of NSGA-II

Step 1: Initialization

Set t = 0.
Generate randomly an initial population P0 with size N .

Step 2: Fast nondominated sorting for initial population

Sort the population P0 in several ranks by using the fast nondominated

sorting algorithm.

Step 3: Selection, crossover, and mutation for initial population

Use binary tournament selection, crossover, and mutation for generating a

population of offsprings Q0 with size N .

repeat

Step 4: Iteration

Step 4.1: Combine parents and offsprings population, Rt = Pt ∪Qt.

Step 4.2: Sort all nondominated fronts of Rt, F = (F1,F2, . . .).
Step 4.3: Set i = 1,
repeat

Fill the individuals from front i (Fi) into the new population Pt+1

i← i+ 1
until |Pt+1|+ |Fi| ≥ N
Step 4.4: Crowding distance assignment

if |Pt+1|+ |Fi| > N then

Calculate the crowding distance of Fi.

Sort the individuals in Fi depending on the crowding distance values

from high to low.

Choose firstN−|Pt+1| individuals to fill into the new population Pt+1.

end if

Step 4.5: Use binary tournament selection, crossover, and mutation for

generating a population of offsprings Qt+1 with size N .

Step 4.6: Increment a generation counter t = t+ 1.
until Stopping criteria are satisfied.



C
h
ap

ter
1

20 CHAPTER 1. MULTI-OBJECTIVE OPTIMIZATION

are ordered in the sorted set according to the distance values from high to low.

For the boundary points, they always stay in first positions of the sorted set,

so that they are always selected.

Figure 1.9: Crowding distance assignment for NSGA-II of the problem to

maximize f1(x) and minimize f2(x).

In the selection step of NSGA-II, two solutions are compared. The so-

lution with a lower nondominated front is preferred. Otherwise, in the case

that the two solutions have the same front, the solution which has the higher

crowding distance value is preferred. Because this solution has lesser density

of solution crowd on the objective space. The overall complexity of NSGA-

II is O(MN2) [25]. The diversity among nondominated solutions uses the

crowding distance comparison. It does not need the extra sharing parameter.

Because of the efficiency of NSGA-II, it was applied for solving the multi-

objective optimization problems in many applications. It is one of the very

famous algorithms in this area.

6.4 Indicator-based evolutionary algorithm (IBEA)

In this section, a local search algorithm for multi-objective optimization will

be presented. Indicator-based evolutionary algorithm or IBEA was proposed

in [92]. IBEA is an algorithm which can be combined with any indicator.

The indicator is used to measure the performance of the solution. For IBEA,

the users can choose the preference indicator by themselves. Moreover, it

does not need the extra diversity preservation mechanism, e.g. the fitness

sharing. In [92], a binary indicator was presented; it was used in the selection

process. The binary indicators are used to compare the quality of two Pareto

set approximations relatively to each other. The presented indicators are Iǫ+-
indicator and IHD-indicator. For instance, the IHD-indicator, which is based
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on the hypervolume concept, is given by

IHD(A,B) =

{

IH(B)− IH(A) if ∀x2 ∈ B, ∃x1 ∈ A : x2 ≺ x1,

IH(A+B)− IH(A) otherwise

where IH(A) is the hypervolume of the objective space dominated by A,

IH(B) is the hypervolume of the objective space dominated byB, and IH(A+
B) is the hypervolume of the objective space dominated by A and B [89].

Hence, IHD(A,B) is the volume of the objective space which is dominated by

B but not by A in respect to a predefined reference point. The IHD-indicator

of the problem which needs to maximize f1(x) and minimize f2(x) is shown

in Figure 1.10.

Figure 1.10: The IHD-indicator of the problem which needs to maximize

f1(x) and minimize f2(x).

The indicator can be integrated in the multi-objective evolutionary

algorithm by using a fitness assignment. One simple possibility to as-

sign the fitness for each individual is to sum up the indicator values for

each population member with respect to the rest of the population as

F
′

(x1) =
∑

x2∈P\{x1} I({x2} , {x1}), which is to be maximized. However,

the basic IBEA proposed to use a slightly different scheme which is defined

as

F (x1) =
∑

x2∈P\{x1}

−e−I({x2},{x1})/κ

where parameter κ is a scaling factor, which needs to be greater than 0, de-
pending on I and the underlying problem. The main procedure of basic IBEA

has the steps as in Algorithm 3.

Moreover, there is an adaptive IBEA, which improve the robustness. It

scales both the objective values and the indicator values. The objectives val-

ues lie in the interval [0, 1]. They are scaled by using the upper bound and

lower bound of each objective. Because of the objective scaling, a reference
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Algorithm 3 Procedure of IBEA

Step 1: Initialization

Set t = 0.
Generate randomly an initial population P0 with size N .

Step 2: Fitness calculation

Calculate fitness values of individuals in Pt.

Step 3: Environmental selection

repeat

Step 3.1: Choose an individual x∗ ∈ Pt which has the smallest fitness

value.

Step 3.2: Remove x∗ form the population.

Step 3.3: Update the fitness values of the remaining individuals.

until |Pt| ≤ N .

Step 4: Termination

if Stopping criteria are satisfied then

return Nondominated solutions in Pt

Stop

end if

Step 5: Mating selection

Perform binary tournament selection with replacement on Pt in order to fill

the mating pool P
′

t .

Step 6: Crossover and mutation

Apply crossover and mutation operators to the mating pool P
′

t and add the

offspring to Pt.

t← t+ 1
Go to Step 2
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point for IHD-indicator can be determined easier. The worst value of each ob-

jective, which is 0 or 1 can be chosen, depending on the considered problem.

For the indicator value, the values lie in the interval [−1, 1] for all points in

the population. They are scaled by using c - parameter, which is the maxi-

mum absolute indicator value. Hence, the adaptive IBEA changes Step 2 and

Step 3 of the basic IBEA. In Step 2, the objective values are scaled and these

scaled values are used to calculate the indicator values. Then, c - parameter is

calculated and it is included in the equation of fitness assignment. Thus, the

fitness assignment equation becomes as follows:

F (x1) =
∑

x2∈P\{x1}

−e−I({x2},{x1})/(c·κ)

In Step 3, the equation for updating the fitness values of the remaining indi-

viduals also has to include the c-parameter.

6.5 S metric selection evolutionary multi-objective

optimization algorithm (SMS-EMOA)

S metric selection evolutionary multi-objective optimization algorithm or

SMS-EMOA was proposed in [12]. SMS-EMOA applies the use of hypervol-

ume measure (or S metric) and the idea to maximize the dominated hyper-

volume within the optimization process for using as selection criterion. The

algorithm consists of two main strategies which are:

• a nondominated sorting borrowed from NSGA-II, which is used as a

ranking criterion, and

• a selection operator based on the hypervolume measure

The individual, which obtains the least value of hypervolume, is as-

signed to be the worst individual in the considered rank.

The main procedure of SMS-EMOA has the steps as in Algorithm 4.

In the step for selecting N best individuals, the nondominated sorting

from NSGA-II is applied to partition the current population into v ranks

R1,R2, . . . ,Rv. Afterwards, the last rank (Rv) are considered. The indi-

vidual, which has the lowest∆S (s,Rv) value, is eliminated. The ∆S (s,Rv)
value is defined as

∆S (s,Rv) := S (Rv)−S (Rv \ {s})

where S is the hypervolume. Figure 1.11 shows the area which becomes the

∆S (s,Rv) value.
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Algorithm 4 Procedure of SMS-EMOA

Step 1: Initialization

Set t = 0.
Generate an initial population P0 with size N .

Step 2: Iteration

repeat

Step 2.1: Generate the offspring by using variation operators and include

it into the current population Pt.

Step 2.2: Select N best individuals from the current population Pt and

store these individuals into the next population Pt+1.

Step 2.3: Increment the generation counter t = t+ 1
until Stopping criteria are satisfied

solutions

in rank

Figure 1.11: The area which becomes the ∆S (s,Rv) value of the problem to

maximize f1(x) and minimize f2(x).

Moreover, there is a modified selection procedure, which separates the

selection criterion in two cases. The first case is used when the population can

be classified in several nondominated ranks (v > 1). In this case, it selects

the individual by considering the number of dominating points d(s, P (t)). It
is the number of points from set P (t) that dominate point s, which is given by

d(s, P (t)) := |{y ∈ P (t)|y ≺ x}| .

The algorithm discards the individual with the highest d(s, P (t)) value among

the solutions of the worst rank. For the second case, the d(s, P (t)) values of
all individuals equal to zero or it means that all individuals are nondomi-

nated, the ∆S (s,Rv) values are considered. The individual with the lowest

∆S (s,Rv) value is eliminated as the non-modified algorithm.
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6.6 Indicator-based multi-objective local search (IBMOLS)

Indicator-based multi-objective local search or IBMOLS is a simple and

generic algorithm which was proposed in [7]. It borrows a part of the IBEA,

which is a binary indicator using as the selection operator. The advantage

of the binary indicator is no requirement of additional diversity preservation

mechanisms. The binary indicator can compare two single solutions, or a

solution against an entire population. Hence, it can be applied in the selection

process of evolutionary algorithm in order to delete the worst solution

or select the best solution. As with IBEA, the fitness assignment can be

calculated from the binary indicator values. Hence, IBMOLS was proposed

by combining the single objective iterated local search and indicator-based

fitness assignment from IBEA. The procedure of baseline IBMOLS and the

iterated local search have the steps as in Algorithms 5 and 6, respectively.

There are three parameters of IBMOLS that have to be defined. They are

the population size, binary indicator, and population initialization. For the

population size, a fixed one was suggested to use [7]. It can avoid the prob-

lem of the loss of diversity, in the case that only one nondominated solution

is found, and slow down the convergence, in the case that the number of non-

dominated solutions grows up exponentially. For the binary indicator, several

methods can be used depending on the considered problem. For the popula-

tion initialization, it is managed into two cases. The initial population of the

first iteration can be generated randomly or generated by using the useful data

from the considered problem. The initial population of the next iterations can

be generated randomly as for the first iteration or keeping information from

the archived nondominated set of solutions. Hence, the users have to define

these parameters depending on the considered multi-objective optimization

problem.

As the steps of the algorithm, the neighborhood of the original IBMOLS

is generated in a random order and each neighbor in the neighborhood is gen-

erated once. The generated neighbor is added to the population and the worst

solution is removed, until the new solution is found. This algorithm uses the

first improvement method of the local search for choosing the neighbor. How-

ever, we also apply IBMOLS to solve our problem. Some steps are modified,

as it will be explained in Chapter 4.

7 Conclusion

In this chapter, the basic concepts of multi-objective optimization are de-

scribed. As real-world optimization problems naturally involve many con-

flicting objectives, multi-objective optimization algorithms can be applied to

solve such problems efficiently. When multi-objective optimization problems
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Algorithm 5 Procedure of baseline IBMOLS

Step 1: Initialization

Generate an initial population P with size N .

Step 2: Archive set management

Store the nondominated solutions of the population P in an archive set A.

Step 3: Fitness assignment

For all individuals z in the initial population, calculate the fitness values

from the indicators, i.e., Fit(z) = I(P \ {z} , z).

Step 4: Local search step

for all individuals z in population P do

repeat

Step 4.1: Generate a neighbor x∗ in the neighborhood X .

Step 4.2: Calculate the fitness values, Fit(x∗) = I(P, x∗).
Step 4.3: Add neighbor x∗ in the population P .

Step 4.4: Update the fitness values of all individuals z in the popula-

tion P (except x∗), Fit(z)+ = I(x∗, z).
Step 4.5: Select the worst individual w from the population P .

Step 4.6: Remove w from the population P .

Step 4.7: Update the fitness values of all individuals z in the popula-

tion P , Fit(z)− = I(w, z).
until All neighborhoods are explored or w 6= x∗.

end for

Step 5: Archive set update

Store the nondominated solutions of A ∪ P in the archive set A.

Step 6: Termination

if A does not change then

return A
else

Perform another local search step.

end if



7 Conclusion 27

C
h
ap

te
r
1

Algorithm 6 Procedure of iterated local search

Step 1: Initialization

Create the approximate Pareto set PO = ∅.

Step 2: Iteration

while Stopping criteria not reached do

Step 2.1: Run the baseline IBMOLS and obtain the archive set A.

Step 2.2: PO ← nondominated solutions of PO ∪ A.

end while

return PO.

are solved, we hope to obtain only one best solution. Actually, a set of so-

lutions are found, and it is difficult to decide that which one is better than

the others, because of the contradictory objective functions. Hence, the domi-

nance relation in the Pareto sense is used to decide the interest of the solutions

by obtaining the nondominated solutions on the tradeoff surface. However,

the search space can be too large and too complex to be solved by exact meth-

ods, therefore some of the metaheuristics are presented. Moreover, many evo-

lutionary algorithms for multi-objective optimization can solve the problems

efficiently in many applications. Some of them are explained in this chapter.

In the next chapter, an application which concerns a scheduling problem of

Earth observing satellites, considered as a multi-objective optimization prob-

lem, will be presented.
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1 Introduction

Multi-objective optimization is used to model many real-world problems, es-

pecially, in aeronautical and aerospace applications, such as aerodynamics,

structure, propulsion, acoustics, manufacturing, and economics [4]. Here,

we consider an observation scheduling problem of Earth observing satellites.

In Section 2, the mission and properties of the Earth observing satellites are

explained. In this work, we study two types of Earth observing satellites,

which are a non-agile and agile Earth observing satellites. The overview of the

scheduling problem for both types of Earth observing satellites is described in

Section 3. This section also explains the difficulty for solving the observation

scheduling problem of agile satellite, when compared to non-agile satellite.

In Section 4, the observation scheduling problem of an agile Earth observ-

ing satellite is considered as a multi-objective optimization problem and the

model of the problem is presented. In the last section, the problem instances

are described in detail; they will serve for the computational experiments

(Chapter 5).

2 Earth observing satellites

Earth observing satellites (EOSs) have the mission to acquire photographs of

the Earth surface in order to satisfy the requirements from users. The Earth

observing satellites can acquire photographs, during moving along their or-

bits. They spend a period of several days for performing a cycle of orbits.
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The whole area of the Earth is viewed, when the satellites complete a full

cycle [47]. The Earth observing satellites carry the different instruments de-

pending on their usages, e.g. optical camera or infrared cameras. Most of

them operate at low altitudes. Hence, when they move over the visible areas

of the required photographs, the photographs can be captured as in Figure

2.1. Then, the satellites will try to transfer the data of the acquired images

directly to the ground station center after acquiring, if it is possible. Other-

wise, the data are stored in the on-board memory with a limitation size, until

the satellites are in the possible transferring range to the ground station center.

There are many types of Earth observing satellites, which are used to acquire

the images in order to support governments, research institutes, commercials,

and militaries. Moreover, the satellites can be used to monitor and forecast the

weather, observe the environment, map locations, manage natural resources,

etc.

Satellite direction

Earth surface

Captured photograph

Candidate photographs

Figure 2.1: The satellite captures the photographs [64].

The types of satellites which are considered in this work are classified

depending on the physical properties of the satellites. They are non-agile

and agile satellites. These satellites are equipped with high resolution optical

or/and infrared instruments.

2.1 Non-agile satellite

Non-agile satellite is a kind of Earth observing satellites which has only one

degree of freedom for acquiring photographs such as SPOT satellite. The

SPOT is a family of Earth optical observing satellites, which was initiated
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by the CNES (Centre national d’études spatiales or French Center for Spatial

Studies) in the 1970s. Several versions of SPOT have been developed and

launched until now. The first SPOT (SPOT 1) was launched in 1986 and the

launch of the latest one (SPOT 7) is planned in 2014. However, SPOT 5 is

a non-agile Earth observing satellite, which is studied in this work and its

properties are explained in this part. SPOT 5 is equipped with three high res-

olution visible imaging instruments, which are fixed on-board on the satellite.

Each instrument is installed in different positions, which are front, middle,

and rear. In front of each camera, there is a mobile mirror, which is attached.

This mirror stays fixed during taking the photographs, but it turns around the

roll axis during the transition from one acquired photograph to the other one,

in order to prepare for taking the next photograph [61]. Two types of pho-

tographs can be taken from SPOT 5. They are mono photograph and stereo

photograph. For obtaining the mono photographs from this satellite, one im-

age, which is acquired from one of the three cameras, is needed. For obtaining

the stereo photograph, it needs one acquired image from the front camera and

another one from the rear camera [10]. As previously presented, the mobile

mirror of each camera on SPOT 5 can turn around only the roll axis, there-

fore the starting time for acquiring each image is fixed. It is the time that the

satellite moves over the beginning position of the acquired area. Hence, for

solving the observation scheduling problem of SPOT 5, the set of the feasible

sequences to acquire the images can be pre-computed. Then, each image will

be assigned to the cameras [61].

2.2 Agile satellite

Another type of Earth observing satellites is agile satellite. The agile satellite,

which is considered in this work, is equipped with only one fixed on-board

camera, but the whole satellite can turn around three axes: roll, pitch, and

yaw. The satellite uses an orbit control system to be able to move in these

three degrees of freedom [59]. This property allows the satellite to take the

required photographs by using only one camera. Each request can also be

of two types: mono and stereo. Each area is taken only once for a mono

request, whereas for a stereo request, each area must be acquired twice in the

same direction but from different angles. An example of an agile satellite is

PLEIADES, which was also developed by CNES. As the three axes that the

agile satellite can move, the starting time for taking each image is not fixed,

but it must be in a given time interval which is called time window. Because

of this, an agile satellite has an important advantage when compared to a non-

agile satellite. On the one hand, this gives agile satellite better efficiency of

the whole system. On the other hand, the problem of selecting and scheduling

the candidate images, is more difficult to solve, because the search space of
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the scheduling problem for the agile satellite is larger than the search space

for the non-agile satellite [61].

3 Observation scheduling of Earth observing

satellites

As previously presented, the mission of Earth observing satellites is to ob-

tain photographs of the Earth surface depending on requests from users. The

mission management which concerns the observation scheduling problem is

considered in this work and thus it is presented in this section. The satellite

management process starts when several users order requests to a ground sta-

tion center. After that, the ground station center has to manage the requests by

selecting and scheduling the candidate images, according to some limitations

of the satellite, before the obtained sequence is transmitted. If the requests

are acquired by the satellite, they can give profits and gains. Hence, one way

for obtaining the highest profit is that the ground station center tries to as-

sign as many requests as possible to the satellite. But in the real case, the

satellite usually cannot acquire all requests in only one revolution, because of

several reasons. For example, the number of requests may exceed the satellite

capacity, or several required areas must be acquired during the same period.

Each request is represented as a candidate photograph in the observation man-

agement problem, which is considered in this work. Therefore, the considered

problem is to select and schedule the feasible subset of candidate photographs

for satisfying some objectives (e.g. maximize the total profit, maximize the

number of acquired requests, etc.) and subject to the imperative physical con-

straints of the considered Earth observation satellite.

Many researchers studied scheduling problems for Earth observing satel-

lites and have proposed several strategies and several algorithms to solve the

problems. For examples, in [40] and [41], a project of NASA was stud-

ied. It was an oversubscription scheduling problem which considered the

requests from users and the size of requests exceeded the satellite capacity.

In the project, the users represented financial investors. The objective func-

tion was computed by the weighted sum of the observation’s priority and the

total spending time. Genetic algorithm, hill climbing, and simulated anneal-

ing were tested and compared. Simulated annealing obtained the best results.

In [16], the allocation problem was studied. It needed to allocate a finite set

of resources to a set of agents with fairness and efficiency. The experiments

had done on the satellite application. Two constraint programming algorithms

were proposed. In [88], the selection problem of multiple imaging frames for

Earth observing satellite was considered. The objective of this problem is to

assign each imaging frame in a given time slot and maximize the reward. The
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problem was modeled as a directed acyclic graph. The nodes represent the

candidate image frames and the directed edges imply the reachable succes-

sive imaging frames, which were defined by the constraints of Earth observ-

ing satellite. The path, which obtained the maximum reward, was a result of

the problem.

Furthermore, the satellite constellation scheduling problem was also stud-

ied. In [52], this problem was decomposed into two subproblems: the task

assignment and single satellite scheduling. The former considers the assign-

ment of a task to a satellite. The latter schedules the assigned tasks to a given

satellite. The objective was to maximize the number of completed images

under the satellite operation constraints. An ant colony optimization algo-

rithm and a simulated annealing heuristic were used to solve this problem. In

[85], they mainly considered in the download scheduling mechanism that the

acquired images had to be transferred to the ground station. A priority-based

heuristic to avoid conflicts was proposed. In [14], planning and scheduling al-

gorithms were studied for the COSMO-SkyMed constellation. It was one of

the joint development satellite constellations between France and Italy. This

constellation consisted of four satellites. Each satellite was phased at 90 de-

grees difference from the other one. The four satellites synchronized the op-

erations, which needed to acquire the required images and transmit the data

files to a set of ground stations. The objective was to maximize the number of

images taken and transmitted.

3.1 Observation scheduling of non-agile Earth observing

satellites

The non-agile satellite, which is studied in this work, is SPOT 5. The schedul-

ing problem for SPOT 5 concerns daily photograph scheduling. The candi-

date photographs of the next day need to be managed before submission to

the satellite. The main objective of this problem is to select a subset of pho-

tographs from a candidate set and to schedule it for obtaining a sequence,

which uses the satellite efficiently. Hence, the selected set of photographs and

their schedule should give the highest profit under operation constraints. The

starting time for acquiring each photograph of SPOT 5 cannot be changed, ac-

cording to its properties that SPOT 5 can move in only one degree of freedom.

Thus, the acquiring starting time is the exact time when the satellite flies over

the beginning position of the desired area.

SPOT 5 instances were proposed in [10]. This set of instances consists

of 20 instances which are divided in two groups. The first group is the data

from the single satellite revolution and do not consider a recording capacity

constraint. The other group involves several satellite revolutions and also
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includes a recording capacity constraint. In both instance groups, the common

considered constraints are:

1. Non-overlapping: A satellite cannot acquire more than one photograph

in the same period of time.

2. Minimum transition time: A transition time is a necessary time to move

the camera from the ending point of the previous photograph to the

beginning point of the next photograph.

3. Limitations of the instantaneous data flow through the satellite teleme-

try: The satellite will try to transfer the data of the acquired photographs

directly to the ground station after acquiring, if it is possible. Otherwise,

the data are stored in the on-board memory with a limitation size, until

the satellite is in the possible transferring range to the ground station.

The data description of each instance was explained in [10]. Each instance

consists of:

• Set of requested photographs S = {s1, s2, . . . , sn}

• Set of cameras C = C1 ∪ C2 = {1, 2, 3, 13}

– C1 = {1, 2, 3} is the set of cameras for mono photographs

– C2 = {13} is the set of cameras for stereo photographs

• ∀sj ∈ S, pj ∈ N is the profit if photograph sj is selected

• ∀sj ∈ S, αj ∈ {1, 2, 3} is the number of possible cameras for taking

photograph sj

• ∀sj ∈ S, PCj ⊆ C is the set of possible cameras for taking photograph

sj

• ∀sj ∈ S, ∃c ∈ PCj , wcj ∈ N is the recording consumption of photo-

graph sj be taken by camera c (only for instances in the second group)

• Set of binary and ternary constraints U = {u1, u2, . . . , um}

• ∀uk ∈ U , βk ∈ {2, 3} is the number of (sj, c) that are forbidden to be

assigned in the same solution,

– if βk = 2, it means that at most one of (sj1 , c1), (sj2 , c2) can be

selected (Constraint2)
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– if βk = 3, it means that at most one or two of (sj1 , c1), (sj2 , c2),
(sj3 , c3) can be selected (Constraint3_1 or Constraint3_2, respec-

tively)

where (sj, c) is an associated pair which represents the photograph sj
to be taken by camera c

• The maximum recording capacity on boardWmax (only for instances in

the second group)

Several formulations were proposed for the SPOT 5 observation schedul-

ing problem. The formulation as a knapsack model was proposed in [80]. In

[35], two different formulations were presented. The first one is a formulation

which uses mathematical programming. The second one is a formulation from

graph theory model. In [69], another formulation based on valid inequalities

arising in node packing and 3-regular independence system polyhedra was

proposed.

In this work, we will explain in detail the formulation based on a knapsack

model. Each mono photograph sj in S can be acquired by one of the three

cameras denoted 1, 2, or 3. Hence, three associated pair (sj, 1), (sj, 2), and
(sj, 3) are considered. Similarly, an associated pair (sj, 13) is considered for

each stereo photograph sj in S, since the stereo photograph needs the two

cameras (front and rear) for acquisition. Hence, the number of 3 · nmono +
nstereo associated pairs, which are considered in each instance, is equal to m.

m = 3 · nmono + nstereo

where nmono is the number of mono candidate photographs and nstereo is

the number of stereo candidate photographs. Then, the photograph sched-

ule corresponds to a binary vector, which elements represent all associated

pairs (sj, c). The binary vector is

x = (x1, x2, . . . , xm)

where xi = 1, if its associated pair is present in the schedule, otherwise,

xi = 0.
Each profit pj of all candidate photographs is transformed to a set of profits

which correspond to all associated pairs. It is represented by

px = (px1, px2, . . . , pxm) .

Similarly, each recording consumption wcj is transformed to a set of

recording consumptions which correspond to all associated pairs (sj, c). It is
represented by

wx = (wx1, wx2, . . . , wxm) .
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The optimization problem of these instances is to maximize the total profit

value of the schedule x and subject to all constraints, which is given by

maximize f(x) =
∑

1≤i≤m

xi · pxi

subject to
∑

1≤i≤m

wxi · xi ≤ Wmax,

∀ (xi1 , xi2) ∈ Constraint2, xi1 + xi2 ≤ 1,

∀ (xi1 , xi2 , xi3) ∈ Constraint3_1, xi1 + xi2 + xi3 ≤ 1, and

∀ (xi1 , xi2 , xi3) ∈ Constraint3_2, xi1 + xi2 + xi3 ≤ 2.

Constraint2 involves the non-overlapping, the minimal transition time,

and limitations on instantaneous data flow. It is expressed by the relation of

two pairs. It forbids to select these two pairs simultaneously for assigning in

the sequence. Constraint3_1 represents a constraint, which forbids to select

more than one pair from the same mono photograph. Constraint3_2 involves

limitations on instantaneous data flow, which cannot be expressed in form of

Constraint2.

Several algorithms were applied to solve this problem. For example, a

Tabu search algorithm was used in [80]. The results were separated in two

groups depending on the set of instances. For the first group of instances, the

proposed algorithm found easily all optimal solutions. For the second group

of instances, it improved some best-known solutions and required less com-

putation times. In [81], an upper bound of the solution for each instance was

proposed. The upper bounds were obtained by applying an original partition-

based approach. A Tabu search algorithm was used to determine optimized

partitions.

Moreover, the SPOT 5 scheduling problem was considered as a multi-

objective optimization problem in [64]. A genetic algorithm was proposed to

solve this problem. Two objective functions were considered. They were the

maximization of the total profit and maximization of the number of acquired

photographs. Each gene of chromosome represented the candidate image.

The values of genes were encoded differently from the 0− 1 knapsack model

formulation as the previous one. They were encoded by using the integer

0, 1, 2, 3, or 13. The values represented the cameras which were used to ac-

quire the associated candidate images. If the gene value was equal to 1, 2, or
3, it meant that the associated candidate image was a part of the mono photo-

graph and was assigned to be taken by front, middle, or rear, respectively. If

the gene value was equal to 13, it meant that the associated candidate image

was a part of the stereo photograph and was assigned to be taken by front and

rear cameras. If the gene value was equal to 0, it meant that the associated

candidate image was not assigned to be taken from the satellite.
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As previously presented, the starting time for taking the candidate pho-

tographs of the non-agile satellites cannot be changed and the set of feasible

taken photographs can be pre-computed. In [61], the authors noticed that

the management problem for the non-agile satellite is only a selection prob-

lem, not a true scheduling problem. Therefore, the scheduling problem for

the agile Earth observing satellite, which has larger search space and is more

difficult to be solved, will be mainly consider in this work.

3.2 Observation scheduling of agile Earth observing satellites

The observation management for the agile observing satellite has the same

goal as for non-agile satellite, which is to select and schedule the candidate

photographs for assigning an efficient sequence to the satellite. Generally,

the obtained sequence should give the highest profit and satisfy the satellite

constraints.

The request management of agile satellite must consider the request type

and also request shape. Each request can be of two types: mono or stereo.

Each area is taken only once for mono requests, whereas for stereo requests,

each area must be acquired twice in the same direction but from different

angles. There are two possible shapes: spot or polygon. The spot is a small

circular area with a radius of less than 10 km. The polygon is a polygonal area

ranging from 20 to 100 km. Both shapes have to be managed by transforming

the requests into several rectangular shapes called strips. Each strip can be

taken once at a time by the camera on the satellite. A spot is considered

as a single strip. For each polygon, the area is too big for being taken only

once, it is decomposed into several strips. All strips have the same width but

variable lengths. The example of request shapes and the example of the order

for taking the strips after management are illustrated in Figure 2.2. There

are two possible directions which can acquire each strip. Both directions are

parallel to the length of each strip, but in the opposite directions as shown in

Figure 2.3. Among two of them, only one acquired direction can be selected.

The strip, which is associated with one possible acquired direction, is called

an acquisition. Thus, each strip consists of two possible acquisitions. In

the observation scheduling problem for agile Earth observing satellite, some

acquisitions will be selected and scheduled in order to obtain the sequence,

which is the solution of this problem.

The starting time for acquiring each acquisition is not fixed, but it has to be

in a given time interval, which is called a time window. The possible starting

time for taking each acquisition can be computed, depending on the acquired

direction, the earliest and latest visible time of the two extremities of the strip,

and the acquired duration time of the strip. Moreover, the adjacent selected

acquisitions must also respect a sufficient transition time. The sufficient tran-
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Spot

Polygon
Strip

Figure 2.2: The example of both request’s shapes and the order for taking the

strips after management [61].

sition time is the necessary time to move the camera from the ending point of

previous acquisition to the beginning point of the next acquisition.

Hence, the selecting and scheduling problem of the acquisitions is consid-

ered in this work. The set of the selected acquisitions are ordered to become

the sequence for being transmitted to the satellite. The obtained sequence has

to satisfy the imperative constraints of agile Earth observing satellite. The

first constraint is the time window, where the starting time of the selected ac-

quisition must be in the given time interval. The second one is the sufficient

transition time, where the camera of the satellite has enough time to be moved

from the ending point of the previous acquisition to the starting point of the

next one. For the third constraint, at most one of the two possible directions

of each strip is selected to be acquired. The fourth one is the stereo constraint

for the stereo photographs, if one of the twin acquisitions are selected, the

other one should also be selected, where the twin acquisitions take the same

strip, in the same direction, but different angles.

When some acquisitions are selected to be acquired by the satellite, they

give the profit or gain. Thus, for the observation scheduling problem, the

objective, which is total profit maximization, is considered. The total profit

is computed depending on the acquired area of each request. The profit of

each acquired request can be computed by using a piecewise linear function

of gain. This function is associated with a fraction of the acquired useful area

and the whole area of each request, as illustrated in Figure 2.4. The request,

that more area of them is taken, also gives more profit.

There are several studies on agile Earth observing satellites. For example,

a combination of genetic algorithm and simulated annealing, was proposed to

solve this problem in [62]. The performance of the proposed algorithm was
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Figure 2.3: A polygonal area is decomposed into several strips; each strip can

be acquired according to two possible directions [61].

compared with the simulated annealing alone. In [61], four methods consist-

ing of a greedy algorithm, a dynamic programming algorithm, a constraint

programming algorithm, and a local search method were applied in order to

solve a simplified version of the scheduling problem for agile Earth observing

satellites.

The ROADEF 2003 challenge was about the management problem of ag-

ile Earth observing satellite mission (see http://challenge.roadef.org/2003/en/).

The challenge deals with a scheduling, which optimize an objective (total

profit maximization) and also satisfy the imperative constraints of the

satellite. The data’s description and the optimization criterion were explained

in [82]. The criterion of this challenge is to maximize a gain criterion, which

is the sum of requests’ gains that are associated with the complete or partial

acquisition of each request. The winner of this challenge used an algorithm

based on simulated annealing for solving the scheduling problem [57]. The

decision to accept move depended on a random chance with the percentage

loss of the achievement, when moving from the current solution to the con-

sidered neighbor. Two types of moves were used to define the neighborhood

in this proposed algorithm. The second prize winner proposed an algorithm

based on tabu search [22]. The authors noticed that the scheduling problem

of agile satellite was similar to the selective traveling salesman problem.

However, there were some different features, e.g. the non-linear objective

function, the linking constraints, and the time windows. Therefore, they

adapted the unified tabu search algorithm [21], which was developed for



C
h
ap

ter
2

40
CHAPTER 2. MULTI-USER OBSERVATION SCHEDULING FOR

EARTH OBSERVING SATELLITES

1

0 1

x
0.1

0.4 0.7

0.4

P(x)

Figure 2.4: Piecewise linear function of gain P (x) depending on the effective

ratio x of acquired area [82].

the vehicle routing problem with time windows. The relaxed constraints

and self-adjusted parameters were applied to penalize infeasible solutions.

Six types of moves were considered in order to define the neighborhood.

In [47], a tabu search algorithm hybridized with a systematic search was

applied to solve this problem. The authors used a formulation of constrained

optimization problem and a convex evaluation function. Moreover, the upper

bounds were computed by relaxing the constraints and linearization of the

objective function. The proposed algorithm was also verified on the instances

from the ROADEF 2003 challenge.

These works considered the scheduling problem for the agile Earth ob-

serving satellite as a mono objective optimization problem. One objective

function, which was the total profit maximization, was treated. In our work,

the scheduling problem is considered in the case that the requests are required

from multiple users. Hence, it is considered as a multi-objective optimiza-

tion problem, which needs to optimize not only one objective. The original

instances of ROADEF 2003 challenge, which were described in [82], will be

modified for testing the proposed algorithms for solving the problem. The

description of all data for the multi-objective optimization problem will be

explained in the next section.
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4 Multi-objective scheduling of agile Earth

observing satellites

The scheduling problem of agile Earth observing satellites, where the require-

ments emanate from several different users, is considered in this work. We

need to optimize two objective functions, which are to maximize a total profit

and simultaneously ensure the fairness of resource sharing for all users. Thus,

this problem is modeled as a multi-objective optimization problem.

Some researchers studied multi-objective optimization problems for space

applications [4]. For example, the scheduling problem of SPOT satellites con-

sidering three objective functions was studied in [36]. The three objective

functions were the maximization of number of shots for satisfying the users,

the maximization of the total profit according to the request priority, and the

minimization of the satellite use. The last objective was contradictory with

the first two objectives and the number of on/off times of the instruments

was used for measuring the satellite use. The authors modeled the problem

as a selection of a satisfactory efficient path in a graph without circuit. The

path selection process was separated into two stages. The first stage was the

generation of efficient paths and the second one was the selection of a satis-

factory path by using the interactive multiple criteria procedure. In [84], the

scheduling problem of Earth observing satellites, which was modeled by us-

ing the multi-objective optimization, was studied. Strength Pareto Evolution-

ary Algorithm 2 (SPEA 2) was applied to solve this problem. Two objective

functions were the maximization of the importance of acquired requests and

the minimization of the resource consumption. Moreover, the satellites con-

straints had to be satisfied. The genetic operators were designed in order to

avoid generating a huge number of infeasible solutions in the process. The

problem coding step, crossover and mutation operators were developed for

the proposed approach.

In [13], the management problem with multiple satellites, multiple orbits,

and multiple users, was considered. A tabu search was applied for selecting

and scheduling the requests from the users under the operational constraints.

Three phases of allocation process were considered. The first phase was the

selection of priority requests. The second phase solved the optimization prob-

lem in order to select the requests from the subset of users. The last one

also solved the optimization problem for sharing the remaining capacities of

the satellites between all users. The considered objective function was the

weighted sum of the normalized utilities of the users. It was adapted from the

order weighted average in [86]. This operator for aggregation was used in or-

der to ensure the fairness of the solution. The utility of each user was defined

as the sum of obtained profits according to the acquired requests of that user.

Then, column generation procedure was applied to compute the upper bound
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for evaluating the quality of the solutions. The developed Tabu search was

tested with data instances from CNES.

As previously presented, several related works considered the requests,

which are required from only one user. An objective, which is the total profit

maximization, is sufficient to be optimized to find the solution. But in the

case that the requests are required from several users, other objectives should

also be considered, especially, the fair sharing of the satellite resources for all

users. There is some literature which considered to ensure the fairness among

users. As in [13], the fairness was taken into account, but it was not con-

sidered as an objective function. In [58], the importance of fair sharing was

illustrated. They presented that normally, a huge financial investment had to

be used for space missions (e.g. the satellite mission) and several entities had

to pay for this. Thus, they needed the sufficient uses of the space system

according to their investments. Hence, the sharing rules between different en-

tities must be satisfied. Moreover, the selection problem for the agile Earth

observing satellites concerning multiple end-users was considered and shar-

ing principles were adopted to select the candidates based on the utility levels.

In [8] and [60], the use of two objective functions related to fairness and ef-

ficiency was proposed. Three ways were discussed for solving this sharing

problem: the first one gives priority to fairness, the second one to efficiency,

and the third one computes a set of trade-offs to help a human to make de-

cisions. For the multi-criteria methods, instead of building a complete set of

nondominated solutions, the authors only searched for a solution, which is

close to the line with a specified slope on the objective function plane. It is

a compromise solution between two other solutions, which are obtained by

giving priority on an objective.

Therefore, in this work, the management of the candidate requests of

an agile Earth observing satellite is placed in a multi-objective optimization

framework. The management process needs to select and schedule the pos-

sible acquisitions, and then transmit the sequence of the selected acquisitions

to the satellite. The requests, which are ordered from multiple users, are con-

sidered. The obtained sequence has to maximize the total profit and simul-

taneously fairly share the satellite’s uses among the users. The minimization

of the maximum profit difference between users is used to ensure the shar-

ing fairness. Among the set of solutions, which contains the sequences of

the selected acquisitions, the decision-maker can choose a preferred sequence

for transmitting to the satellite. The instances of ROADEF 2003 challenge,

which simplified the problem and explained in [82], are modified by including

a specific user for each request. The data description of one instance, deci-

sion variables, considered constraints, and objective function computation are

presented below.
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5 Instances description

In this section, the instances, which are modified from the ROADEF 2003

challenge instances, will be described in detail. These instances will be used

in the experiments, for testing the performance of the proposed algorithms in

our work (see Chapter 5.

5.1 Data

• a set of requests Req = {1, 2, . . . , i, . . . , nr}

• a set of strips Strip = {1, 2, . . . , j, . . . , ns}

• a set of possible strip acquisitions Acq = {1, 2, . . . , k, . . . , na}, where

na = 2ns

Note: Since one strip can be taken from two directions, the size of

possible strip acquisitions set is then twice the size of strips set.

– k = 2j − 1; the first direction that can take strip j

– k = 2j; the second direction that can take strip j.

For each request i, 1 ≤ i ≤ nr:

• U [i] is the user which orders request i

• G[i] is the gain of request i for a complete acquisition (in /km2)

• S[i] is the surface area of request i (in km2)

• T [i] is the type of request i; target or polygon

• St[i] is the mono/stereo characteristic of request i: 0 for mono and 1 for

stereo.

For each strip j, 1 ≤ j ≤ ns:

• R[j] is the request from which strip j was split

• Tw[j] is the mono/stereo characteristic of strip j: 0 for mono and the

index of its twin strip for stereo

• Su[j] is the useful surface of strip j (in km2)

• Du[j] is the duration time for taking strip j (in seconds)

• The positions in the setting coordinates of the two ends of strip j are:
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– X[j, 0] and Y [j, 0] for the coordinate values of the end 0 position

– X[j, 1] and Y [j, 1] for the coordinate values of the end 1 position.

Note: The two possible directions for taking each strip are from end 0

to end 1 (first direction) and from end 1 to end 0 (second direction).

• The visibility times (in seconds) are:

– Te[j, 0] for the earliest visibility time of end 0 of strip j

– Tl[j, 0] for the latest visibility time of end 0 of strip j

– Te[j, 1] for the earliest visibility time of end 1 of strip j

– Tl[j, 1] for the latest visibility time of end 1 of strip j.

The data for the possible strip acquisitions have to be computed from the

data of the associated strip.

For each possible strip acquisition k, 1 ≤ k ≤ na:

• its earliest starting time is:

Tmin[k] = max(Te[j, i], T e[j, i
′

]−Du[j])

• its latest starting time is:

Tmax[k] = min(T l[j, i], T l[j, i
′

]−Du[j])

where j = ⌊(k + 1)/2⌋, i = (k + 1) mod 2, i
′

= k mod 2 and the

points < j, i > and < j, i
′

> are the starting and ending points of the

acquisition k.

For each pair of possible acquisition k, k
′

:

• the distance between the ending point < i, j > of acquisition k and the

starting point < i
′

, j
′

> of acquisition k
′

(in meters) is:

Di[k, k
′

] =
√

(X[j, i]−X[j ′ , i′ ])2 + (Y [j, i]− Y [j ′ , i′ ])2

• the rotation (in radians) is:

Ro[k, k
′

] = 2× arctan

(

Di[k, k
′

]

2Hs

)

where Hs is the satellite altitude in meters

• the upper bound of the time that is necessary to go from the ending

point of acquisition k to the starting point of acquisition k
′

(in seconds)

is:

Dt[k, k
′

] = Dmin+
Ro[k, k

′

]

V r
where Dmin is an incompressible transition time (in seconds) and

V r is the maximum speed of rotation on itself of the satellite (in

radian/second).
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5.2 Decision variables

• a set of the selected acquisitions

acq_sel = {sa1, sa2, . . . , said, . . . , saN}

• a set of the acquisition starting times which is related to the sequence

of the selected acquisitions

start_time = {ta1, ta2, . . . , taid, . . . , taN}

where N is the number of selected acquisitions

• a set of the request’s profits

req_profit = {rp1, rp2, . . . , rpi, . . . , rpnr
}

where nr is the number of requests

• a set of the user’s profits

user_profit = {up1, up2, . . . , upiu, . . . , upnu
}

where nu is the number of users.

5.3 Constraints

The imperative constraints must be satisfied for the feasible solutions.

For each selected acquisition said, where 1 ≤ id ≤ N :

• The time window is:

Tmin[k] ≤ taid ≤ Tmax[k]

where said = k.

• The sufficient transition time is:

taid +Du[j] +Dt[k, k
′

] ≤ taid+1

where said = k, said+1 = k
′

, and j is the strip of acquisition k.

• At most one of the two directions is selected for each strip.

In the sequence of the selected acquisitions acq_sel,

– if one element (said) equals to 2j − 1, all others should not equal

to 2j, and

– if one element equals to 2j, all others should not equal to 2j − 1.

• Stereo constraint

For each pair of twin strips, when Tw[j] 6= 0, Tw[j
′

] 6= 0, Tw[j] = j
′

,

Tw[j
′

] = j.

In the sequence of the selected acquisitions acq_sel,
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– if one element equal to 2j − 1, one of all others should equal to

2j
′

− 1

– if one element equal to 2j, one of all others should equal to 2j
′

.

5.4 Computation of objective function values

Firstly, the set of the request’s profits has to be computed as the steps below.

For each request i, 1 ≤ i ≤ nr:

• compute the taken useful surfaces of the request i (SuR[i])

SuR[i] =
∑

Su[

⌊

said + 1

2

⌋

]

for all id that R[
⌊

said+1
2

⌋

] = i

• compute the fraction of the taken useful surface and whole surface

fr[i] = SuR[i]/((St[i] + 1) ∗ S[i])

• compute the complete profit of request i (100% of the area are taken)

gc[i] = G[i] ∗ S[i] ∗ (St[i] + 1)

• compute the profit of request i that is associated with its partial acqui-

sition

gr[i] = gc[i] ∗ P (fr[i])

where function P is piecewise linear function on the interval [0, 1]

• store the profit of request i in the set of the request’s profits

(req_profit)

The profit of each user is computed and is stored in the set of the user’s

profits:

For each user, 1 ≤ iu ≤ nu:

• compute the profit of each user (gu[iu])

gu[iu] =
∑

gr[i]

for all i that U [i] = iu

• store the profit of user iu in the set of user’s profits (user_profit)
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Finally, the objective functions values are computed:

• the total profit
∑

1≤i≤nr

rpi

• the maximum profit difference between each pair of upiu

In this work, the set of solutions on the approximate Pareto front will be

obtained after solving this presented model by maximizing the first objective

and minimizing the second objective. Moreover, the obtained solutions must

satisfy the imperative constraints. Then, the decision maker can choose the

preferred sequence from the set of solutions on the approximate Pareto front

and transmits it to the satellite for operating the mission.

6 Conclusion

The details of the considered problem were explained in this chapter. It ad-

dresses the management of a space mission problem, which concerns Earth

observing satellites. Two types of Earth observing satellites consisting of

non-agile and agile satellites are presented. They have the general mission to

obtain the photographs of the Earth surface for satisfying users’ requirements.

The non-agile satellite is equipped with three fixed on-board cameras, but can

move according to only one degree of freedom. The agile satellite is equipped

with only one fixed on-board camera, but the whole satellite can move in three

degrees of freedom. The observation management problem of an agile satel-

lite is considered in this work. As its capacity of photograph acquiring is more

flexible, the underlying scheduling problem is more complicated to solve. The

management means selecting and scheduling the possible candidate acquisi-

tions to assign in the sequence. This work studied the problem where requests

are ordered from several users. Thus, multiple objectives have to be consid-

ered simultaneously. The set of solutions in the approximate Pareto front,

which satisfies the objective functions and respects the constraints, will be

obtained. Then, the final decision must be made by the decision maker, but

this part is not considered in this work. The best sequence of the management

problem can be then transmitted to operate on the satellite.

In the two next chapters, two algorithms are proposed to solve this prob-

lem. The biased random key genetic algorithm and the indicator-based multi-

objective local search are applied in Chapter 3 and 4, respectively. The com-

putational results, which are obtained from both algorithms, are presented and

discussed in Chapter 5.





Biased random key genetic

algorithm 3

1 Introduction

In this work, the problem under study is the management problem of an ag-

ile Earth observing satellite. Requests from several users are considered. As

described previously (see Chapter 2), the requests are transformed in sev-

eral strips and each strip can be taken from two opposite directions. Thus,

the possible acquisitions, which are the strips associated with acquiring di-

rections, are selected and scheduled in order to obtain an efficient sequence.

This chapter proposes a biased random key genetic algorithm (BRKGA) for

solving the problem.

This chapter is organized as follows. Section 2 presents the details of

BRKGA when it is applied to solve the selection and scheduling problem of

Earth observations. The section exposes the composition of chromosomes

and the encoding method, the solution improvement process, and the de-

coding strategies, which are used to decode the chromosomes to become

the solutions. In Section 3, the BRKGA is proposed for solving the multi-

user observation scheduling problem for an agile Earth observing satellite. It

needs to optimize two objectives. Three selection methods of popular multi-

objective evolutionary algorithms are applied in order to select the preferred

solutions: nondominated sorting genetic algorithm II (NSGA-II), S metric

selection evolutionary multi-objective optimization algorithm (SMS-EMOA),

and indicator-based evolutionary algorithm (IBEA). Moreover, a hybrid de-

coding method is presented.
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2 BRKGA applied to Earth observation scheduling

problem

The biased random key genetic algorithm [44] (BRKGA), which combines

genetic algorithm and the concept of random key, is used to solve the obser-

vation selecting and scheduling problem for an agile Earth observing satellite.

There are important parts for adapting the BRKGA to solve the scheduling

problem. The first part is how to define the chromosome representation. In

this part, the encoding method, which is used to encode the decision variables

of the problem into the gene values of the chromosome, is presented. The

second part is the genetic algorithm process, which is used for improving the

solutions found. The last part is the decoding method. It is applied to decode

the chromosome from the genetic algorithm process in order to obtain the so-

lution of the problem. Each of this part is detailed in the following successive

sections of this chapter.

2.1 Random key chromosome and encoding method

The BRKGA is operated on several individuals in a population. Each indi-

vidual contains a chromosome which represents a solution. The random key

chromosome of BRKGA is formed by several genes. The gene’s values are

randomly generated in the interval [0, 1]. For the considered problem, each

gene represents one acquisition. As described in the problem description in

Chapter 2, the requests are ordered from the users and all requests have to

be managed depending on their shape. The spot is considered as one strip

and the polygon is decomposed into several strips. The acquisition, which

is represented by the gene, is the strip associated with one possible acquired

direction. Hence, the number of genes is equal to the number of possible ac-

quisitions, which is twice the number of strips. In BRKGA, the random key

chromosomes are operated by the genetic algorithm operators for generating

the new population in each generation. Figure 3.1 illustrates example of ac-

quisitions and associated random key chromosomes. These acquisitions come

from three strips, which are decomposed from a polygonal request.

2.2 Genetic algorithm process

As already said in the introduction of BRKGA in Chapter 1, the popula-

tion (its size is equal to p) is modified by using three operators: selection,

crossover, and mutation. These operators generate three sets of chromosomes:

the elite set, the crossover offspring set, and the mutant set. The order to gen-

erate each part of the population for the next generation is depicted in Figure

3.2.
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Acquisitions
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direction 1 
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direction 2 

Strip 1 Acquisition 1 Acquisition 2 

Strip 2 Acquisition 3 Acquisition 4 

Strip 3 Acquisition 5 Acquisition 6 

Random key chromosome

Acquisition

1

Acquisition

2

Acquisition

3

Acquisition

4

Acquisition

5

Acquisition

6

0.6984 0.9939 0.6885 0.2509 0.4672 0.8293 

Strip 1 

Strip 3 

Strip 2 

Acquired direction 1 

Acquired direction 2 

Figure 3.1: Example of acquisitions and associated random key chromo-

somes.

The first generated part is the elite set. It consists of pe chromosomes,

which are selected among the preferred ones from the current population.

In this part, if the considered problem needs to satisfy only one objective

function, the chromosome selection can be done easily. However, for multi-

objective problems, some selection methods for the multi-objective optimiza-

tion should be applied to select the preferred chromosomes. These selection

methods will be explained in detail in Section 3.1. The elite set is stored in the

top position of the next population. The second generated part is the mutant

set. The pm chromosomes are generated randomly as the initial chromosomes.

The mutant set is stored in the bottom position of the next population. The

last generated part is the crossover offspring set. The crossover offspring set is
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1 2 3

Selection

pe chromosomes

Mutation

pm chromosomes

Crossover

p-pe-pm chromosomes

Crossover

offspring

Elite Elite Elite

MutantMutant

Figure 3.2: The order to generate each part of the population for the next

generation.

stored in the middle position of the next population. Each offspring is built by

using the crossover operator between a randomly selected chromosome from

the elite set and another randomly selected chromosome from the whole cur-

rent population. Each element in the offspring is obtained from the element

of elite parent with the probability ρe. Otherwise, the element of offspring is

copied from the non-elite parent. An example of BRKGA crossover opera-

tion is illustrated in Figure 3.3. The offspring is repeatedly generated until the

remaining space of the next population is fulfilled.

2.3 Decoding strategies

The other important part of BRKGA is the decoding part. It is used to trans-

form the random key chromosome to a solution for the considered problem.

For the observation scheduling problem, each chromosome is decoded in or-

der to obtain a sequence of the selected acquisitions. In this decoding step, the

priority for selecting and scheduling each acquisition is considered depending

on its associated gene value. The acquisition, which has the highest priority,

is considered firstly to schedule in the sequence. Two main decoding methods

are applied for solving this observation scheduling problem: a basic decoding

and a decoding of gene value with ideal priority combination.
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0.850.530.150.32

XParent 1 (elite) Parent 2 (non-elite)

Random number Relation to crossover

probability of 0.7

Offspring

Figure 3.3: The example of BRKGA crossover operation [45].

2.3.1 Basic decoding

The priority of the basic decoding is defined by using directly the gene value.

This decoding expression is given by

Priorityj = genej.

This basic decoding allows the highest priority for scheduling to the acquisi-

tion with the highest gene value. Thus, the priority of this decoding method

depends only on the random key value.

2.3.2 Decoding of gene value with ideal priority combination

This decoding method is borrowed from [65]. It was applied for the resource-

constrained project scheduling problem. This decoding defines the priority

of each acquisition depending on two values: its associated gene value as in

the basic decoding and its calculated ideal priority value. For the concept of

ideal priority, the job, which has the earliest possible starting time, should

be selected first and be scheduled in the beginning of the solution sequence.

Hence, the ideal priority gives a higher priority to select and schedule the job

with the earlier possible starting time. This ideal priority is given by

LLPj

LCP
,

where LLPj is the longest length path from the beginning of job j to the end

of the project and LCP is the length along the critical path of the project.
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The factor that adjusts the priority to account for the gene values of the

random key chromosome is given by

1 + genej
2

.

Thus, the decoding expression of each job j is

Priorityj =
LLPj

LCP
×

[

1 + genej
2

]

In [65], the minimization of the makespan is the only criterion addressed.

In this work, the concept of ideal priority is modified in order to be more

appropriate for solving the multi-objective observation scheduling problem.

Hence, the ideal priority gives highest priority to select and schedule the ac-

quisition which has the earlier possible starting time. This ideal priority is

given by
TmaxL − Tminj

TmaxL

,

where TmaxL is the latest starting time of the last possible acquisition and

Tminj is the earliest starting time of acquisition j.
The same factor as in [65] is used to adjust the priority. Thus, the ex-

pression of decoding of gene value with ideal priority combination for each

acquisition j is

Priorityj =
TmaxL − Tminj

TmaxL

×

[

1 + genej
2

]

.

Example of the ideal priority calculation of the second decoding method

is illustrated in Figure 3.4. It is applied to the observation scheduling prob-

lem for Earth observing satellites, which needs to select and schedule four

acquisitions, which are acquisitions a, b, c, and d. For this example, the order

of the acquisitions, which will be considered to be assigned in the sequence

according to the ideal priority, is b, c, d, and a.

Since the ideal priority, which is used in the equation of this second de-

coding, is calculated by using the value of problem data. It can make this

decoding method faster to reach the optimal solution. However, one should

be careful with the entrapment in a local optimum.

The order to consider each acquisition depends on the priority, which is

obtained from the above equations. When considering each acquisition, three

imperative constraints must be satisfied: the non-repeated selection of the

same strip, time windows, and sufficient transition times. Each considered

acquisition can be assigned in the sequence, only if the obtained sequence can

satisfy the three constraints. When all acquisitions are considered, a tempo-

rary sequence is obtained. Then, the stereo constraints are verified on the tem-

porary sequence. If the temporary sequence satisfies the stereo constraints, the
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time
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Acquisition dcba

Figure 3.4: Example of ideal priority calculation.

final sequence is obtained. Otherwise, the acquisitions that do not satisfy the

stereo constraint are removed and it gives way to rescheduling. The flowchart

of these decoding steps is depicted in Figure 3.5.

The example of one solution from the smallest instance of the ROADEF

2003 challenge is shown in Figure 3.6. The instance consists of two strips.

Thus, the chromosome size is equal to four. This example shows the solution,

which is decoded from the basic decoding. The decoding step is used to obtain

the sequence of the selected acquisitions and the value of objective function.

The basic decoding and the decoding of gene value with ideal priority

combination are experimented on the observation scheduling problem for an

agile Earth observing satellite. The obtained results will be illustrated and

discussed in Chapter 5.

3 BRKGA applied to multi-user observation

scheduling problem for an agile Earth observing

satellite

The multi-user observation scheduling problem for an agile Earth observing

satellite is considered in this work. Requests coming from several users are

considered. Two objective functions have to be optimized and the imperative
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Start

Assign the acquisition which has the 

highest priority to the sequence of 

the selected acquisitions

The acquisition which has the next 

lower priority is considered

Satisfy the time window and 

the sufficient transition time

Assign the considered acquisition to  

the sequence of the selected 

acquisitions

Consider all acquisitions

Obtain the temporary 

sequence of the selected 

acquisitions

The instance contains 

stereo requests

Satisfy the stereo 

constraint

Obtain the final sequence of 

the selected acquisitions

Remove the acquisition which 

does not satisfy stereo 

constraint and reschedule 

Compute the objective 

function values

end

Yes

No

YesNo

Yes

No

Yes

No

Satisfy the non-repeated 

selection of the same strip

No

Yes

Figure 3.5: Flowchart of constraint verification and acquisition assignment.

constraints must be satisfied as follows:

maximize total profit

minimize maximum profit difference between users

satisfy time windows

sufficient transition times

one of two directions can be acquired for each strip

stereo constraints.
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Acquisition

2

Acquisition

3

Total profit 1.04234E+07 

Figure 3.6: Solution example from the instance, which needs to schedule two

strips.

After solving this problem, the BRKGA will output the sequences of the

selected acquisitions, which are decoded in the decoding step. Then, the ob-

tained profit for each user can be calculated and the objective function values

are computed. Both objective functions have to be considered, thus the se-

lection methods for the multi-objective optimization problem must be applied

in the elite selection step of BRKGA. They will be presented in Section 3.1.

Moreover, this work proposes a hybrid decoding method in Section 3.2. Hy-

brid decoding combines the use of basic decoding and decoding of gene value

with ideal priority. The objective of this hybrid decoding is to bring out the

advantages of each decoding. The methods to manage the elite set for the

proposed hybrid decoding are studied.

3.1 Selection methods for multi-objective optimization

problem

In this chapter, the biased random key genetic algorithm is applied to solve a

multi-objective optimization problem. As pointed in Chapter 1, most research

in the evolutionary multi-objective optimization area pays attention to develop

the selection stage. Because the conflicting objectives, which have to be op-

timized simultaneously, make the difficulty to judge that a solution is better

than the other ones. Therefore, the chromosome selection, which is operated

for obtaining the preferred chromosomes in order to become the elite set in

BRKGA process, is also not easy. Hence, this work proposes three selection

methods to choose pe preferred chromosomes from the current population to

become the elite set in BRKGA process. The three selection methods are

borrowed from efficient multi-objective evolutionary algorithms.
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3.1.1 Fast nondominated sorting and crowding distance assignment

Fast nondominated sorting and crowding distance assignment methods were

proposed in the Nondominated Sorting Genetic Algorithm II (NSGA-II) [25].

In this work, the fast nondominated sorting method is applied to classify the

solutions in the population into several ranks. The solutions of Rank 1 or the

nondominated solutions are used in this step. The number of nondominated

solutions is compared to the parameter setting value of maximum size of elite

set. If the number of nondominated solutions is less than or equal to the setting

maximum size of elite set, all nondominated solutions will become the elite

set. Otherwise, the crowding distance assignment method is applied to select

some solutions from the nondominated set. All solutions in the nondominated

set are sorted depending on the objective values from high to low. The solu-

tions in the boundary points, which obtain the highest and lowest objective

values, are always selected. For each remaining solution i of the considered

problem, the estimate density of solutions surrounding is calculated by

I distance(i) = [(obj1(i− 1)− obj1(i+ 1))/(max1 −min1)]

+ [(obj2(i− 1)− obj2(i+ 1))/(max2 −min2)] ,

where I distance is the crowding distance value, obj1 refers to the first objec-

tive which is the total profit, and obj2 refers to the second objective, which is

the maximum profit difference between users. The process for calculating the

crowding distance values for selecting the preferred solutions by using crowd-

ing distance assignment is shown in Figure 3.7. When the crowding distance

values of all remaining solutions are calculated, the solutions are sorted by the

decreasing crowding distance values. The pe − 2 solutions, which have the

highest crowding distance values, are selected. These solutions are included

to the two pre-selected solutions from the boundary points, and then they are

the members of the elite set in BRKGA process.

3.1.2 S metric selection evolutionary multi-objective optimization

algorithm

S metric selection evolutionary multi-objective optimization algorithm or

SMS-EMOA, which was proposed in [12], is applied to select some solu-

tions in the current population to become the elite set. In this work, we use

SMS-EMOA with combining the fast nondominated sorting from NSGA-II.

The fast nondominated sorting is applied in order to find the nondominated

solutions and SMS-EMOA is used as a selection criterion for limiting the

size of elite set. For SMS-EMOA, the solutions in the nondominated set are

sorted depending on the objective function values. Then, the hypervolume

∆S (i,R1) is calculated for each solution i in the nondominated set. It is the

hypervolume, which is dominated by solution i, but is not dominated by the
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Figure 3.7: The process for calculating the crowding distance values for se-

lecting the preferred solutions by using crowding distance assignment.

other nondominated solutions. The reference point, which is used to calculate

the hypervolume, is (−∞,∞). The hypervolume of the considered problem

is given by

∆S (i,R1) = (obj1(i)− obj1(i+ 1))× (obj2(i− 1)− obj2(i)),

where obj1 refers to the first objective, which is the total profit, and obj2 refers
to the second objective, which is the maximum profit difference between

users. The process for calculating the hypervolume ∆S (i,R1) is shown in

Figure 3.8. The selection discards the solutions that have the least values of

hypervolume ∆S (s,R1), until the number of remaining solutions in the non-

dominated set is equal to the limit size of elite set and the remaining solutions

will become the elite set.

3.1.3 Indicator-based evolutionary algorithm based on the hypervolume

concept

The use of an indicator based on the hypervolume concept was proposed in the

Indicator-Based Evolutionary Algorithm or IBEA [92]. The indicator based

method is used to assign fitness values based on the hypervolume concept

to the population members. Then, some solutions in the current population
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Figure 3.8: Example for calculating the hypervolume ∆S (i,R1).

are selected to become elite set for the next population. The indicator based

hypervolume performs binary tournaments for all solutions in the current pop-

ulation.

The adaptive IBEA is applied in this work, thus the objective values are

scaled in the interval [0, 1] by using the upper and lower bound values of each

objective. However, the reference point should not be set equal to (0, 1), be-
cause the hypervolume value of extreme points on the objective space cannot

be calculated. Hence, for the considered problem, which is to maximize the

first objective and minimize the second objective, the reference point to cal-

culate the hypervolume of each solution is set equal to (−1, 2) as shown in

Figure 3.9.

The indicator value (IHD) can be computed as

IHD(
{

x2
}

,
{

x1
}

) =

{

IH({x1})− IH({x2}) if x1 ≺ x2,

IH({x1}+ {x2})− IH({x1}) otherwise,

where IH is the dominated hypervolume of the objective function space.

Then, the fitness of all solutions are calculated and its expression is given by

F (x1) =
∑

x2∈P\{x1}

−e−IHD({x2},{x1})/(c·κ).
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Figure 3.9: The reference point for calculating the hypervolume.

The κ value is set equal to 0.05 regarding the experimental parameter setting

in [92]. The c value is calculated as

c = max
∣

∣IHD

({

x1
}

,
{

x2
})∣

∣ ,

where x1, x2 ∈ P . The selection is implemented by removing the worst solu-

tion with the least fitness value from the population and updating the fitness

values of the remaining solutions. The worst solution is removed repeatedly

until the number of remaining solutions satisfies the recommended size of

elite set for BRKGA.

In this work, the three selection methods are applied to select the solutions

in order to become the elite set for the considered problem. The obtained

results of these three methods will be compared and discussed in Chapter 5.

3.2 Proposed decoding method: Hybrid decoding

In Section 2.3, the two decoding methods, which are basic decoding and de-

coding of gene value with ideal priority combination, were presented. They

are used in BRKGA process in order to decode a random key chromosome

to become one feasible solution. In this decoding step, the efficient decoding
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method can give a good solution for the problem and vice versa. Hence, the

specification of decoding method is one of the important parts for BRKGA.

In addition to the two presented decoding methods, a hybrid decoding

method is proposed in this section. The key difference from the previous

decoding methods is that the hybrid decoding method may give more than one

feasible solution from the decoding of one chromosome. Because of this, the

hybrid decoding can make BRKGA process more efficient for solving multi-

objective optimization problems, which need a set of solutions, not only one.

The hybrid decoding combines the uses of the basic decoding, which is

given by

Priorityj = genej

and the decoding of gene value with ideal priority combination, which is given

by

Priorityj =
TmaxL − Tminj

TmaxL

×
[

1 + genej
2

]

where TmaxL is the latest starting time of the last possible acquisition and

Tminj is the earliest starting time of acquisition j. It obtains two feasible

solutions from the decoding of one chromosome.

When applying the hybrid decoding, the methods for management the

elite set must be defined. Three methods are used to select the preferred chro-

mosomes to be included into the elite set.

1. Elite set management - Method 1

Each chromosome in the population is decoded from both decoding

methods. The first solution is obtained from the basic decoding and the

second solution is obtained from the decoding of gene value with ideal

priority combination. Then, both solutions, with corresponding objec-

tive function value, are compared using the dominance relation in the

Pareto sense. If a solution can dominate the other one, the dominant

solution is selected to be stored in the set of solutions. Otherwise, one

of the two solutions is selected randomly. The decoding process is re-

peated until all chromosomes in the population are decoded. When it

finishes, the size of solution set is equal to p. Then, the pe solutions

are selected to become the elite set by using the same methods with

only one decoding. The principle of elite set management - method 1 is

shown in Figure 3.10.

2. Elite set management - Method 2

All chromosomes in the population are decoded by using the two de-

coding methods. Two solutions are obtained from the decoding of one

chromosome. Both of them are stored in the solution set. Hence, the
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Figure 3.10: Elite set management for hybrid decoding - method 1.

size of solution set is equal to 2p, when all chromosomes from the cur-

rent population are decoded. Then, the pe solutions are selected from

the solution set to become the elite set. The principle of elite set man-

agement - method 2 is shown in Figure 3.11.

Decoding1

Decoding2

Population 

Elite set 

Preferred 

chromosomes 

Figure 3.11: Elite set management for hybrid decoding - method 2.

3. Elite set management - Method 3

Each chromosome in the population is firstly decoded by using the pri-

ority equation of basic decoding and the obtained solution is stored in

the first solution set. Similarly, the same chromosome is decoded by
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using the priority equation of the decoding of gene value with ideal pri-

ority combination. Then, the obtained solution from this decoding is

stored in the second solution set. When all chromosomes in the popula-

tion are decoded and the solutions are stored into two solution sets, the

selection methods are applied to select pe solutions for becoming the

elite set. Hence, the pe/2 preferred solutions must be chosen from each

solution set as shown in Figure 3.12.

Decoding1

Decoding2

Population 
Elite set 

Preferred 

chromosomes 

Preferred 

chromosomes 

Figure 3.12: Elite set management for hybrid decoding.

The three elite set management methods for the proposed hybrid decoding

are evaluated on modified instances issued from ROADEF 2003 challenge.

The obtained results from the hybrid decoding will be reported in Chapter

5. They are also compared with the results, when using only one decoding

method.

4 Conclusion

In this chapter, the biased random key genetic algorithm or BRKGA is applied

to solve the multi-user observation scheduling problem for an agile observing

satellite. The details of BRKGA process are explained. In the encoding step,

random key chromosomes are generated. They can be operated by the genetic

algorithm operators. Each chromosome contains several genes, which repre-

sent an acquisition. The genetic algorithm process is described; it is used to
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generate the new population for each iteration. The new population is gen-

erated from three sets: elite set, crossover offspring set, and mutant set. To

obtain a solution, the chromosome has to be decoded. The solution is the

sequence of the selected acquisitions. Two decoding methods are presented.

However, the problem in this work is modeled by considering two objectives.

Hence, the selection methods for multi-objective optimization are applied to

use in the elite selection step. These methods were proposed in the existing

popular multi-objective evolutionary algorithms. Furthermore, a hybrid de-

coding is also proposed in this work. Two decoding methods are combined in

order to increase the performance of BRKGA. Experiments are conducted on

realistic instances. The results will be reported and discussed in Chapter 5.





Indicator-based multi-objective

local search 4

1 Introduction

This chapter proposes the use of indicator-based multi-objective local search

(IBMOLS) to solve the multi-user observation scheduling problem for an ag-

ile observing satellite. IBMOLS was proposed in [7]. It is a generic algo-

rithm, which combines the use of basic local search and a binary indicator of

indicator-based evolutionary algorithm.

This chapter is organized as follows. Section 2 presents IBMOLS and its

adaption to the multi-user observation scheduling problem for an agile Earth

observing satellite. The neighborhood structure is proposed in Section 3. The

procedure for feasibility checking is described in Section 4.

2 IBMOLS applied to multi-user observation

scheduling problem for an agile Earth observing

satellite

In single objective optimization, a local search is a metaheuristic method,

which starts from an initial solution and move to a neighbor improving this

solution. The process is iterated until a local optimum is found. In many real

world applications, the local search was applied to solve the problems and

good solutions have been obtained, even for large-size problems.

In this work, IBMOLS is applied to solve the problem, which is bi-

objective. IBMOLS is a population-based iterated local search method. The

local search is used to explore the neighborhood for finding the solutions,

which are better than the current ones. Moreover, IBMOLS uses a binary
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indicator as the selection operator. Indeed the binary indicator has a main

advantage, which is no requirement of additional diversity preservation

mechanism.

The standard of IBMOLS was presented in Chapter 1. However, some

steps are modified according to the considered problem. The steps of IB-

MOLS, which is applied for this work, are explained. In Section 2.1, the

overview of IBMOLS procedure is described. Then, the initial generation for

the first iteration and for the other iterations of the iterated local search are

presented in Sections 2.2 and 2.3. Finally, Sections 2.4 and 2.5 present the

fitness computation and the local search step, respectively. The local search

step describes the neighborhood exploration and how to select the neighbor.

2.1 Overview of IBMOLS

IBMOLS is an iterated local search. For the first iteration, the approximate

Pareto front PO is generated as an empty set and it is updated, whenever each

iteration is finished. In each iteration of IBMOLS, it starts by generating the

initial population. Two types of initial population generation are presented

in this work. The first one is applied for the first iteration and the second

one is applied for the other iterations. The details of the first and the second

types will be explained in Sections 2.2 and 2.3, respectively. Then, the non-

dominated solutions in the population are stored in the archive set A. The

fitness values of all individuals in the population are computed and the local

search step is applied for each individual. The details of fitness computation

and the local search step will be described in Section 2.4 and Section 2.5,

respectively. After that, the updated population is combined with the archive

set A and the nondominated solutions of this combined set are stored in the

new archive set A. If the archive set A changes, the process returns to apply

the local search step. Otherwise, this iteration is finished and the archive set

A is obtained. Then, the approximate Pareto front PO will be updated by

combining the obtained archive set A with the approximate Pareto front PO
and the set of nondominated solutions from the combined set becomes the

new approximate Pareto front PO. The next iteration is continued, if it does

not satisfy the stopping criteria. The flowchart of the overview IBMOLS is

illustrated in Figure 4.1.

2.2 Initial population generation - first iteration

The IBMOLS is a population-based iterated local search that needs N in-

dividuals to be generated to become the initial population. Each individual

represents one solution, which is a sequence of the selected acquisitions in-

cluding the starting time for acquiring each acquisition. This work uses two
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methods for generating the initial population for the first iteration. The first

method generates the initial population randomly. The second one also uses

data of the problem instances for generating some initial individuals.

Start

Set PO = Ø

Set iteration = 1

Obtain PO

End

Satisfy stopping 

criteria
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Figure 4.1: Flowchart of the overview IBMOLS.
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2.2.1 Random generation

For the random generation, the flowchart of the initial population generation

is shown in Figure 4.2. All acquisitions are assigned to be the members of the

selected acquisition set depending on a random order. For each acquisition, it

is checked that it satisfies the sufficient transition time constraint and the time

window constraint. If it satisfies both constraints, the satisfied starting time

is set in the starting time set. Moreover, the acquisition, which comes from

the same strip of the considered acquisition, is removed from the selected ac-

quisition set. Otherwise, the considered acquisition is removed. The process

for checking these constraints is repeated until all acquisitions in the selected

acquisition set are tested. After that, the temporary selected acquisition set

and starting time set are obtained. In this step, the stereo constraint has to

be checked for each selected acquisition one by one in the temporary set. If

the checking acquisition comes from the stereo strip, its twin must also be as-

signed. If its twin is not assigned, the checking acquisition is removed. When

all selected acquisitions are checked, the starting time set is re-computed.

2.2.2 Using useful data of problem instances

This section presents the second method for generating the initial population

of the first iteration. As presented previously, in this work, IBMOLS process

needs to generate N individuals for becoming the initial population. This

method generates five individuals by using useful data of problem instances

and other five individuals are generated by random generation, as presented

in Section 2.2.1. This section describes the five strategies. Each strategy

depends on an order which is listed below:

1. The earliest starting time (Tmin)

2. The time interval between the earliest starting time and the latest start-

ing time (Tmax− Tmin)

3. The obtained profit (Profit)

4. The fraction of the obtained profit and the earliest starting time

(Profit/Tmin)

5. The fraction of the obtained profit and the time interval between earliest

starting time and the latest starting time (Profit/ (Tmax− Tmin))

The orders for considering each acquisition in order to generate the five

individuals are set as in Figure 4.3. For the first order, the acquisition, which

has the smallest earliest starting time, should be scheduled in the beginning
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Figure 4.2: Flowchart of the initial randomly generated population.
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of the sequence. The second order gives the chance for assigning the ac-

quisition which has the smallest possible starting time interval, because the

acquisition with the larger possible interval can be more easily assigned. For

the third order, the profit of each acquisition is computed, in the case that the

acquisition is selected and scheduled in the sequence and the whole area of

its associated request is acquired. For this order, the acquisition, which gives

the highest profit, should be selected firstly. The fourth and fifth orders are

extended from the three first ones. By the fourth order, it combines the first

and the third orders. The fifth order combines the second and the third ones.

Individual 1

Tmin

Individual 2

Tmax - Tmin

Individual 3

Profit

Individual 4

Profit/Tmin

Individual 5

Profit/

(Tmax – Tmin)

low low

low low lowhigh high

high high high

Figure 4.3: The orders assignment for considering each acquisition in order

to generate the five individuals.

Each individual consists of a selected acquisition set and a starting time

set, that each element of the starting time set illustrates the starting time for

acquiring the according selected acquisition. Each individual is generated

from one of the five presented strategies, which are used to define the consid-

ering orders of each acquisition. The verification process is the same as the

process of the initial randomly generated population, but the order for consid-

ering each acquisition is specified by one of the five strategies, not randomly

generated. Thus, the flowchart of the initial population generation by using

the useful data of problem instances is shown in Figure 4.4.
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Start

All acquisitions are assigned in 

the selected acquisition set with 

the specified order from one of 

the five strategies

The first acquisition is 

considered

Satisfy the sufficient 

transition time

The acquisition in 

the next order is 

considered

Satisfy the time 

window

The starting time is set and 

the acquisition from the 

same strip is removed

Remove the 

considered 

acquisition

All acquisitions 

are considered

Obtain the 

temporary selected 

acquisition set

Satisfy the stereo 

constraint

Remove the stereo 

acquisitions, which 

their twins are not 

assigned

The starting time 

set is re-computed

Obtain the final 

selected acquisition 

set

End

The starting time is set and 

the acquisition from the 

same strip is removed

Yes

No

Yes

No

YesNo

Yes

No

Figure 4.4: Flowchart of the initial population generating by using the useful

data of problem instances.
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2.3 Initial population generation - other iterations

In IBMOLS, an iterated local search is used for searching for the nondomi-

nated solutions by starting the search from different initial populations. The

initial population generation of the first iteration has been described in Section

2.2. Now, the initial population generation for the other iterations is explained

in this section. Two methods are applied in this work.

2.3.1 Random generation

The random generation in order to build the initial population for the other

iterations, starting from the second iteration, uses the same method than for

the first iteration. For more detail, see in Section 2.2.1.

2.3.2 Perturbation

This method uses a perturbation mechanism to generate the initial population

starting from the second iteration. For the perturbation, an individual is gen-

erated by modifying a solution from the approximate Pareto front PO of the

current iteration. In this work, the solutions in the approximate Pareto front

are randomly selected. The number of selected solutions is equal to the size

N of initial population. Each solution consists of the selected acquisition set

ori_acq_sel and the starting time set ori_start_time. They are modified by

removing some acquisitions in the random position j from the selected ac-

quisition set and also removing the starting time elements of the associated

removed acquisition. The number of the removing elements is about 1/4 of

the size nori of the original selected acquisition set. Moreover, during remov-

ing, the stereo constraint has to be verified. If the removed acquisition is a part

of the stereo request, its twin must also be removed. The acquisition remov-

ing is repeated until the number of the remaining aquisition in the selected

acquisition set or nmodi is less than or equal to 3/4 of the size nori of the orig-

inal set. Then, the modified selected acquisition set modi_acq_set and the

modified starting time set modi_start_time will become the parts of the in-

dividual, which is a member of the initial population in the next iteration. The

initial population generation by using the perturbation is shown in Algorithm

7. The example of a modified individual, which becomes a member of the

initial population by using the perturbation is illustrated in Figure 4.5. In this

example, the size of the original selected acquisition set and the starting time

set from the approximate Pareto front is equal to eight. Hence, two random

acquisitions are removed from the original one.

For the avoidance to generate any solution, which has been already vis-

ited, we must be careful for generating the individual to become the initial

population. In the process of perturbation, the number of acquisitions, which



2 IBMOLS applied to multi-user observation scheduling

problem for an agile EOS
75

C
h
ap

te
r
4

Algorithm 7 Procedure of the initial population generating by using the per-

turbation
for i = 1 to i = N do

Step 1: Original individual selection

Select randomly an individual from the approximate Pareto front PO.

The selected individual consists of ori_acq_sel and ori_start_time.

Step 2: Element removing

repeat

Step 2.1: Select randomly the removing position j.
Step 2.2: Remove the acquisition in position j.
Step 2.3: Remove the starting time in position j.
Step 2.4: Verify the stereo constraint.

if The removed acquisition is a part of stereo request. then

Remove the twin of removed acquisition.

Remove the starting time of the twin.

end if

until nmodi ≤ 3
4
nori

Step 3: Counter increment

i← i+ 1
end for
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Acq 18 Acq 12Acq 21 Acq 9Acq 3Acq 5Acq 8Acq 15

637 745527 784514496435422

The original selected acquisition set

The original starting time set

Acq 12Acq 21 Acq 9Acq 3Acq 5Acq 15

745527 784514496422

The modified selected acquisition set

The modified starting time set

Remove the second and sixth positions

An individual

of the initial 

population

Figure 4.5: The example of a modified individual, which becomes a member

of the initial population by using the perturbation.

have to be removed in order to generate the individual, is pre-computed. Some

elements of the original selected acquisition set and the original starting time

set will be removed, only if, the pre-computed number of the removed acqui-

sitions is more than or equal to two. Otherwise, the perturbation will generate

the individual, which has been visited. In the case that the number of removed

acquisitions is equal to zero, the same individual from the approximate Pareto

front will be generated. If the number of removed acquisitions is equal to one,

this individual can be generated by exploring the neighborhood. The neigh-

borhood structure will be explained later in Section 3. Hence, the perturbation

will not be applied, if the number of removed acquisition is less than two. The

random generation will be used to generate the individual, instead of using the

perturbation.

2.4 Fitness computation

After the initial population generation, the fitness value of each individual

has to be computed. In this work, the indicator-based evolutionary algorithm

based on the hypervolume concept from [92] is used to compute the fitness.

This method was also applied to select the preferred individuals in BRKGA,

which was presented in Chapter 3. The indicator performs binary tournaments

for all individuals in the population P .
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The objective values of each individual are computed and they are scaled

in the interval [0, 1] by using the upper bound and lower bound of each objec-

tive. As in [92], the upper bound (b) is

bi = maxx∈Pfi(x)

and the lower bound (b) is

bi = minx∈Pfi(x),

where fi is an objective function i. The worst values of the two objectives,

which are 0 and 1 can be chosen to be the reference point for computing

the hypervolume. However in this work, we set the reference point equal to

(−1, 2), since the hypervolume of the two extreme points can be computed.

Then, the indicator value based hypervolume (IHD) can be computed as

IHD(
{

x2
}

,
{

x1
}

) =

{

IH({x
1})− IH({x

2}) if x1 ≺ x2,

IH({x
1}+ {x2})− IH({x

1}) otherwise,

where IH is the dominated hypervolume of the objective function space, and

the fitness value (F ) is

F (x1) =
∑

x2∈P\{x1}

−e−IHD({x2},{x1})/(c·κ),

where κ value is set equal to 0.05 as the experimental parameter setting in

[92] and c value is computed as

c = max
∣

∣IHD

({

x1
}

,
{

x2
})∣

∣ ,

where x1, x2 ∈ P .

2.5 Local search step

This local search step starts from an individual in the population P and move

iteratively to a neighbor by exploring the neighborhood. In this work, the pro-

cess of neighbor selection for replacing the worst solution is modified from

the original IBMOLS. The original IBMOLS uses the first improvement strat-

egy to select the neighbor for replacing the worst solution in the population.

However, the best improvement strategy is used in this work. The fitness val-

ues of each neighbor, visited by the neighborhood exploration, are computed.

Then, the neighbor, which obtains the best fitness, is generated and selected

for replacing the worst solution in the population. The local search step works

as shown in Algorithm 8.
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Algorithm 8 Procedure of the local search step

for All individuals x ∈ P do

Step 1: Neighborhood exploration

Generate all neighbors in the neighborhood Y = (y1, y2, y3, . . . , yn).

Step 2: Fitness computation

for All neighbors y ∈ Y do

Compute the fitness value of yi by using the indicator based hypervol-

ume

end for

Step 3: Best neighbor selection

Select the best neighbor y∗ from Y (the neighbor with the highest fitness

value).

Step 4: Best neighbor addition

Add the best neighbor y∗ to P .

Step 5: Fitness update after neighbor addition

for All individuals x ∈ P (except y∗) do
Update the fitness value Fit(x) = Fit(x)− e−IHD({y∗},{x})/(c·κ).

end for

Step 6: Worst individual selection

Select the worst individual w from P (the individual with the lowest

fitness value).

Step 7: Worst individual removing

Remove the worst individual w from P .

Step 8: Fitness update after individual removing

for All individuals x ∈ P do

Update the fitness value Fit(x) = Fit(x) + e−IHD({w},{x})/(c·κ).

end for

end for
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In the local search step, the neighborhood of all individuals in the pop-

ulation P are explored and the population is updated. The archive set A is

updated by storing the nondominated solutions of the combined set P ∪ A,

which combines the updated population P and the previous iteration archive

set A. If the updated archive set A does not change, the local search step will

be stopped. Otherwise, another local search step is performed.

3 Neighborhood structure

In this section, neighborhood structures are presented. According to the local

search step, the best improvement strategy is used in this work. The fitness

values of each neighbor in the neighborhood is computed and compared with

the best found neighbor. If the fitness of the considered neighbor is better than

the fitness of the best found neighbor, the feasibility to generate the considered

neighbor is checked. Otherwise, the considered neighbor is discarded. If the

considered neighbor is feasible, it is generated and replaces the best found

neighbor. The process is repeated until all neighbors in the neighborhood are

explored and then the best neighbor is obtained. The procedure for searching

for the best neighbor follows the steps as in Algorithm 9. Then, the best

neighbor is added in the population and the worst individual in the population

is removed. The neighborhood, which is used in this work, consists of six

types of move:

1. Insert a mono acquisition i

2. Remove a mono acquisition i

3. Insert twin acquisitions i and j

4. Remove twin acquisitions i and j

5. Replace a mono acquisition i with a mono acquisition j

6. Replace twin acquisitions i and j with twin acquisitions k and l

For each type of move, all mono acquisitions or all pairs of twin acquisitions

are tried to be inserted, removed, or replaced one by one. For example, in the

insertion of a mono acquisition, all mono acquisitions, which have not been

assigned in the original sequence, are tried to be inserted one by one in the

sequence. Similarly for the removing of a mono acquisition, each assigned

mono acquisition is tried to be removed from the sequence. In this work, the

experiments test two groups of types of move for comparing the quality of

the obtained results and the computation time. The first group applies all six

types of move. The second group applies only the first four types of move,
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excluding the replacement of a mono acquisition and twin acquisitions. The

details of experiments and the results comparison will be presented in Chapter

5.

Algorithm 9 Procedure of the best neighbor search

Step 1: Initialization

Set the initial best fitness value Fit(y∗) = −∞.

bf Step 2: Neighborhood exploration

for All neighbors yi in neighborhood Y do

Compute the objective function values and the fitness value Fit(yi).
if Fit(yi) > Fit(y∗) then

Check the feasibility of the neighbor yi.
if Neighbor yi is feasible then

Generate the neighbor yi.
y∗ ← yi
Fit(y∗)← Fit(yi)

else

Discard neighbor yi.
Counter increment i← i+ 1

end if

else

Discard neighbor yi.
Counter increment i← i+ 1

end if

end for

Step 3: Best neighbor obtained

return y∗

4 Feasibility checking

Among the six types of move of the neighborhood structure, when occurring

a move that inserts or replaces the acquisition, the feasibility of the neighbor

has to be checked. An unassigned acquisition can be inserted in a position

of the selected acquisition set, only if, all imperative constraints are satisfied.
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For the mono acquisition, the three constraints, which consist of the time win-

dow constraint, the sufficient transition time constraint and the constraint that

the same strip can be selected and acquired only one direction, must be veri-

fied. For the stereo acquisition, the three constraints of the mono acquisition

including the stereo constraint have to be checked. In this part, two methods

for checking the feasibility of the insertion of a mono unassigned acquisition

are explained. The first method checks the feasibility by comparing directly

between the possible starting time of the acquisition, which needs to be in-

serted, and the starting times of the associated acquisitions in the starting time

set. For the second method, the latest starting times of the selected acquisi-

tions, which are scheduled behind the insertion position, have to be computed

before checking the feasibility. Hence, the variables, which are used to check

the feasibility, are:

• the individual x consisting of:

– the selected acquisition set

acq_sel = {sa1, sa2, . . . , said, . . . , saN},

– the starting time set

start_time = {ta1, ta2, . . . , taid, . . . , taN},

where taid is the starting time to acquire acquisition said,

• Tmin(j), which is the earliest starting time, computed from the visibil-

ity times of acquisition j (Te [j, 0] , Tl [j, 0] , Te [j, 1] , Tl [j, 1]),

• Tmax(j), which is the latest starting time computed from the visibility

times of acquisition j (Te [j, 0] , Tl [j, 0] , Te [j, 1] , Tl [j, 1]),

• Du(j), which is the duration time in order to take acquisition j,

• Dt(j, l), which is the transition time of the camera from the ending

position of acquisition j to the starting position of acquisition l.

4.1 Feasibility checking: Method 1

For this method, an unassigned acquisition Acq k is considered to be inserted

in a position of the selected acquisition set. The possible starting time of

acquisition Acq k is compared directly with the values in the starting time set.

For example, the unassigned acquisition Acq k is tried to be inserted in front

of the selected acquisition sa3 as shown in Figure 4.6. If the starting time is

possible and there is enough free space for Acq k to be inserted, this neighbor

is generated. Otherwise, this neighbor will not be generated. The first method

of the insertion feasibility checking can be verified in three cases depending

on the insertion position, which are:
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• the acquisition Acq k can be inserted in the first position (position 1) of
the selected acquisition set, only if

Tmin(Acq k) +Du(Acq k) +Dt(Acq k, sa1) ≤ ta1

• the acquisitionAcq k can be inserted in the middle position id (position

2 to N ) of the selected acquisition set, only if

taid−1 +Du(said−1 +Dt(said−1, Acq k)) ≤ Tmax(Acq k)

and

Tk +Du(Acq k) +Dt(Acq k, said) ≤ taid

where Tk = max(Tmin(Acq k), taid−1+Du(said−1)+Dt(said−1, Acq k))

• the acquisitionAcq k can be inserted in the last position (positionN+1)
of the selected acquisition set, only if

taN +Du(saN) +Dt(saN , Acq k) ≤ Tmax(Acq k)

sa1 sa2 sa3 sa4 sa5

Insertion position

time

sa1 sa2

time

Acq k

The acquired sequence before insertion

Verify the possible starting time and enough space to insert Acq k

sa3 sa4 sa5

Figure 4.6: Verify the possibility to start for acquiring the acquisition Acq k
and the enough free space to insert it at the insertion position.

If it is possible to insert Acq k in the selected acquisition set, the starting

time values in the starting time set are re-computed. Moreover, if the acqui-

sition Acq k is a part of the stereo request, the twin of the acquisition Acq k
must also be checked the insertion feasibility.
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4.2 Feasibility checking: Method 2

This section presents the improved method, which can increase the insertion

possibility. This secondmethod proposes to compute the latest starting time of

the assigned acquisitions, which are scheduled behind the insertion position,

before checking the feasibility. This step is included in the process, thus the

insertion feasibility checking of this second method has steps as follows:

• Step 1: Compute the latest starting times Q(id)

The free space as large as possible is prepared to support the insertion

of the mono unassigned acquisition Acq k. All positions in the selected

acquisition set are considered. The latest starting times Q(id) of each

selected acquisition said can be computed before checking the possi-

bility. The method is to postpone the acquisitions which are scheduled

behind the insertion position. They are scheduled to be taken as late as

possible at their latest possible starting times. For example, the unas-

signed acquisition Acq k is tried to be inserted in front of the selected

acquisition sa3. The other acquisitions following sa3 can be moved to

the right as late as possible. This example is shown in Figure 4.7.

sa1 sa2 sa3 sa4 sa5

Insertion position

time

sa1 sa2 sa3 sa4 sa5

time

Acq k

The acquired sequence before insertion

The acquisitions, which stay behind the insertion position, 

are moved to the back as late as possible

Figure 4.7: The large space is prepared for the insertion of the unassigned

acquisition.
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For the last acquisition saN , its latest starting time Q(N) can be com-

puted by

Q(N) = Tmax(saN).

For the other acquisitions said, where 1 ≤ id ≤ N − 1, their latest

starting times Q(id) are given by

Q(id) = min(Tmax(said), Q(id+1)−Du(said+1)−Dt(said, said+1)).

Example of the latest starting time Q(id) computation is shown in Fig-

ure 4.8.

First case:

Second case:

time

time

Figure 4.8: Example of the latest starting time Q(id) computation.

• Step 2: Verify the feasibility of the insertion

For checking the insertion feasibility, the expressions are classified in

three cases depending on the insertion positions. The three cases are:

– the acquisition Acq k can be inserted in the first position (position

1) of the selected acquisition set, only if

Tmin(Acq k) +Du(Acq k) +Dt(Acq k, sa1) ≤ Q(1)

– the acquisition Acq k can be inserted in the middle position id
(position 2 to N ) of the selected acquisition set, only if

taid−1 +Du(said−1 +Dt(said−1, Acq k)) ≤ Tmax(Acq k)
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and

Tk +Du(Acq k) +Dt(Acq k, said) ≤ Q(id)

where Tk = max(Tmin(Acq k), taid−1 + Du(said−1) +
Dt(said−1, Acq k))

– the acquisition Acq k can be inserted in the last position (position

N + 1) of the selected acquisition set, only if

taN +Du(saN) +Dt(saN , Acq k) ≤ Tmax(Acq k)

• Step 3: If the acquisition Acq k is a part of stereo request, its twin must

also be checked for its insertion feasibility. The latest starting times

from Step 1 are re-computed by using the updated selected acquisition

set, which included Acq k in the set.

– If the twin of acquisition Acq k cannot be inserted, the acquisition

Acq k has to be removed from the selected acquisition set.

This feasibility checking is used to verify the possibility of the neigh-

bor generation for two main types of move, which are the insertion and re-

placement. If the considered neighbor is feasible, the selected acquisition

set is modified and the neighbor is obtained. Then, the starting time set is

re-generated depending on the modified selected acquisition set. The starting

time of each acquisition is assigned as early as possible. The generated neigh-

bor, which gives better fitness value than the best found neighbor, replaces the

best found one. The possibilities of the other neighbors have to be checked

until all neighbors in the neighborhood are explored.

The results obtained from these two methods of feasibility checking are

compared in Chapter 5. The first method has an advantage that it has less

number of steps in the process for checking the feasibility. But the second

method has another advantage that it can increase the insertion possibility of

each considered acquisition. Thus, the results will be compared both for the

qualities of approximate Pareto front and the computation times.

5 Conclusion

This chapter presented the indicator-based multi-objective local search (IB-

MOLS) for solving the multi-user observation scheduling problem of an agile

Earth observing satellite. The IBMOLS is a generic method, which combines

the use of indicator-based evolutionary algorithm and the iterated local search

for searching for the approximate Pareto front of the multi-objective opti-

mization problem. The overview of IBMOLS, the initial generation, and the
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fitness computation were explained. For the local search step, the neighbor-

hood structure was presented. The insertion, removing, and replacement of

the mono acquisition or the twin acquisitions of the stereo requests were pro-

posed. All neighbors in the neighborhood are explored and the best neighbor

is chosen. Before generating the neighbor, the feasibility has to be checked.

Two methods are applied to verify the feasibility to generate the neighbor.

Experiments will be presented in Chapter 5.



Computational results 5

1 Introduction

This chapter presents the computational results of the experiments for solv-

ing the multi-objective optimization problem of selecting and scheduling im-

ages taken by an agile Earth observing satellite. Two metaheuristic algo-

rithms, consisting of the biased random key genetic algorithm (BRKGA) and

the indicator-based multi-objective local search (IBMOLS), are used to solve

the problem. The experiments are conducted on realistic instances, which

were proposed in the context of ROADEF 2003 challenge. In our work,

the problem was modified so as to consider requests explicitly emanating

from several users. Hence, the ROADEF 2003 challenge instances (Subset

A) (see http://challenge.roadef.org/2003/en/sujet.php)

are modified for 4-user requirements and the format of instance names are

changed to a_b_c, where a is the number of requests, b is the number of

stereo requests, and c is the number of strips.

This chapter is organized as follows. Section 2 presents the results ob-

tained by applying BRKGA. This section proposes and compares the results

in three parts. The first part reports the results obtained with two single decod-

ing methods. They are a basic decoding and a decoding of gene value with

ideal priority combination. The elite solutions are selected by using three

methods, which are borrowed from efficient multi-objective evolutionary al-

gorithms. The second part presents the results obtained by using a hybrid de-

coding method. In this part, an issue of the hybrid decoding, that two feasible

solutions are obtained from the decoding of one chromosome, are solved by

using elite set management methods; their respective experimental results are

compared. The last part compares the results from the two single decodings

and the results from the hybrid decoding regarding the hypervolume values
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of the approximate Pareto front and the average computation times. Section

3 presents the results obtained with IBMOLS. Several parameter settings are

studied and the respective results are compared. This section is presented in

four parts. In the first part, different strategies are used to generate the ini-

tial population. In the second part, two groups of neighborhood structure are

defined. One group includes the replacement strategy, but the other one does

not. For the third part, the results from two methods for feasibility check-

ing are compared. The first one checks the insertion feasibility directly with

the original starting time set. The second method computes the latest starting

times of the acquisitions, which are scheduled after the insertion position be-

fore checking the feasibility. The last part presents the results obtained from

different stopping criteria in the IBMOLS process. In Section 4, the best re-

sults obtained from BRKGA and IBMOLS are compared.

2 Biased random key genetic algorithm

Our implementation of BRKGAwas described in Chapter 3. The experiments

are done on the modified ROADEF 2003 challenge instances (Subset A). The

obtained results are reported and discussed in this section.

For the proposed biased random key genetic algorithm (BRKGA), param-

eter values of the algorithm were experimentally tuned for this work. The

population size p of BRKGA is set equal to the length of the random key

chromosome or twice the number of strips. As presented in Chapter 3, the

population for the next iteration in BRKGA process is generated by compos-

ing three sets of chromosomes. They are the elite set, the crossover offspring

set, and the mutant set. The sizes of the three sets are set in accordance with

the recommended values in Table 1.1. The size of the elite set is equal to the

number of non-repeating schedules from the nondominated solutions, but it is

not over 0.15p. The size of mutant set is equal to 0.3p. The probability of elite

element inheritance for crossover operation is set to 0.6. In each iteration, the

potentially efficient solutions are stored in an archive. If there is at least one

solution from the current population that can dominate some solutions in the

archive, the archive will be updated. Therefore, we use the number of itera-

tions since the last archive improvement as a stopping criterion. We opt for

50 iterations. Moreover, the computation time is used as the second stopping

criterion. It is adapted to the instance size, as shown in Table 5.1. BRKGA

will be stopped, when one of the two stopping criteria is satisfied.

The algorithm is implemented in C++ and ten runs per instance are tested.

The hypervolumes of the approximate Pareto front are calculated by using a

reference point of 0 for the first objective (maximizing the total profit) and

the maximum of the profit summations of each user for the second objective

(minimizing the maximum profit difference between users). The hypervolume
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Table 5.1: The BRKGA limitation values of computation time for the modi-

fied ROADEF 2003 challenge instances (Subset A).

Instance Limit computation time value (seconds)

4_0_7 100
12_2_25 100
12_9_28 100
68_12_106 2000
77_40_147 2000
218_39_295 2000
150_87_342 10000
336_55_483 10000
375_63_534 10000

values of the results are plotted by the box plot. The results of the smallest

instance (instance 2_0_2) cannot be reached, when using the population size

equal to the length of the chromosome or twice of number of strips, because

the population size is too small for generating the population in the next itera-

tion from the three sets of chromosomes in BRKGA process. Thus, the results

of nine instances, except the smallest one, will be reported in this section.

2.1 Basic decoding vs Decoding of gene value with ideal

priority combination

Firstly, the experiments are done using the basic decoding (D1) and the de-

coding of gene value with ideal priority combination (D2). Three methods

for elite set selection, which are borrowed from three efficient algorithms

(NSGA-II, SMS-EMOA, and IBEA), are applied. In this section, the results

of both decoding methods using the three methods of elite set selection are

reported. The box plots of hypervolume values and the average computation

times are shown in Figure 5.1.

There are six box plots on each graph. The first, third, and fifth columns

show the results obtained with D1. The second, fourth, and sixth columns

show the results obtained with D2. According to the presented results,

the three methods for selection of the elite set (NSGA-II, SMS-EMOA,

and IBEA) obtain similar box plots. The results on medium-size instances

(12_9_28, 68_12_106, 77_40_147, and 218_39_295) show that the

decoding of gene value with ideal priority combination (D2) obtains better

results, both for the median values of hypervolumes and the standard devi-

ations. Moreover, it spends less computation time than the basic decoding
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Figure 5.1: Comparison of the hypervolume values of the approximate Pareto

front and the average computation times between two decoding methods: the

basic decoding (D1) and the decoding of gene value with ideal priority combi-

nation (D2), by using the three methods for elite set selection borrowed from:

NSGA-II (S1), SMS-EMOA (S2), and IBEA (S3).
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(D1). For large-size instances, the range of the hypervolume values can be

reduced with D2, but D1 obtains better median values of hypervolumes.

The results show that each decoding method has its own advantages.

Hence, the idea of hybrid decoding is proposed in order to combine two single

decoding methods and try to preserve the advantage of each one. However,

the elite set management is an issue of the hybrid decoding, because two

solutions will be obtained from the decoding of one chromosome. The

next section will report the results, which are obtained from three different

methods for elite set management. The three methods have been explained in

Section 3.2 of Chapter 3.

2.2 Elite set management for hybrid decoding

With a hybrid decoding, a chromosome can be decoded to become two so-

lutions. Thus, the methods to manage the elite set must be defined. Three

methods are tested. The first method (M1) compares the two solutions ob-

tained from the decoding of a chromosome. The solution that dominates the

other one is selected to be stored in the solution set. The second method (M2)

stores both solutions in a unique solution set. The third method (M3) stores

the solution from each decoding method in two separate solution sets. For the

three methods, the hypervolume values of the approximate Pareto front are

computed and plotted in box plots. The box plots associated with the mech-

anisms of NSGA-II (S1), SMS-EMOA (S2), and IBEA (S3), are reported in

Figures 5.2, 5.3, and 5.4, respectively. Each graph contains three columns

corresponding to M1, M2, and M3.

The results show that the three methods obtain similar solutions regard-

ing the hypervolume values of the approximate Pareto front. However, M2

spends more computation time for large instances, especially when the elite

set selection method borrowed from IBEA is used. Furthermore, M3 spends

more computation time for small instances, particularly with the elite set se-

lection methods borrowed from NSGA-II or SMS-EMOA. Therefore, in the

sequel only methodM1 will be kept to compare the results between the hybrid

decoding and the two single decoding approaches.

2.3 Decoding methods

In this section, three decoding methods, namely the basic decoding (D1), the

decoding of gene value with the ideal priority combination (D2), and the hy-

brid decoding (HD), are compared. The box plots from the three elite set

selection methods coming from NSGA-II, SMS-EMOA, and IBEA, are re-

ported in Figures 5.5, 5.6, and 5.7, respectively. As previously, the graphs
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Figure 5.2: Comparison of the hypervolume values of the approximate Pareto

front and the average computation times between three methods for manage-

ment of the elite set for hybrid decoding: select dominant solution (M1), com-

bine all solutions in a solution set (M2), and store the solutions from each

decoding in two separate solution sets (M3), by using the method for elite set

selection borrowed from NSGA-II (S1).
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Figure 5.3: Comparison of the hypervolume values of the approximate Pareto

front and the average computation times between three methods for manage-

ment of the elite set for hybrid decoding: select dominant solution (M1), com-

bine all solutions in a solution set (M2), and store the solutions from each

decoding in two separate solution sets (M3), by using the method for elite set

selection borrowed from SMS-EMOA (S2).
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Figure 5.4: Comparison of the hypervolume values of the approximate Pareto

front and the average computation times between three methods for manage-

ment of the elite set for hybrid decoding: select dominant solution (M1), com-

bine all solutions in a solution set (M2), and store the solutions from each

decoding in two separate solution sets (M3), by using the method for elite set

selection borrowed from IBEA (S3).
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illustrate the box plots of the hypervolume values and the average computa-

tion times.

Most of the results show that the hybrid decoding obtains results close

to the best ones, when comparing the two single decodings. Indeed, it can

preserve the advantages of the two single decodings for all instances. For

example, in instance 12_2_25, the first decoding method obtains better re-

sults than the second one, thus the hybrid decoding obtains results similar

to the first one. For instance 77_40_147, the hybrid decoding obtains re-

sults similar to the second decoding, which obtains better results than the first

one. Thus, the hybrid decoding method is efficient for solving most of the

instances. Compared with D1, it can reduce the range of hypervolume values.

This means that the hybrid decoding can provide results with better standard

deviations. Moreover, for some instances where the second decoding entraps

in local optima, the hybrid decoding is able to reach the global optimum. Re-

garding the computation time, the hybrid decoding method spends longer time

in each iteration, however it can obtain good solutions in a reasonable com-

putation time, which is limited by the second stopping criterion of BRKGA

process.

3 Indicator-based multi-objective local search

This section presents the results, which are obtained from the indicator-based

multi-objective local search (IBMOLS). The IBMOLS is a population-based

method, which combines the uses of indicator-based evolutionary algorithm

and the iterated local search. The parameter values of population size and

stopping values have to be tuned by the experiments. In Sections 3.1, 3.2,

and 3.3, a dynamic stopping criterion is applied. It corresponds to the number

of iterations, without any improvement of the approximate Pareto front. The

population size is set equal to 10. The algorithm is implemented in C++ and

ten runs per instance are tested. The indicator-based fitness assignment with

the hypervolume concept from IBEA is applied for comparing the solutions in

the population. Hypervolumes of the approximate Pareto front are calculated

by using a reference point of 0 for the first objective (maximizing the total

profit) and the maximum of the profit summations of each user for the second

objective (minimizing the maximum profit difference between users).

3.1 Initial population generation

Firstly, the dynamic stopping criterion is used in this section. The stopping

value is set equal to 10. The methods for generating the initial population,

which have been described in Sections 2.2 and 2.3 of Chapter 4, are tested.
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Figure 5.5: Comparison of the hypervolume values of the approximate Pareto

front and the average computation times between three decoding methods: ba-

sic decoding (D1), decoding of gene value with the ideal priority combination

(D2), and hybrid decoding (HD), by using the method for elite set selection

borrowed from NSGA-II (S1).
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Figure 5.6: Comparison of the hypervolume values of the approximate Pareto

front and the average computation times between three decoding methods: ba-

sic decoding (D1), decoding of gene value with the ideal priority combination

(D2), and hybrid decoding (HD), by using the method for elite set selection

borrowed from SMS-EMOA (S2).
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Figure 5.7: Comparison of the hypervolume values of the approximate Pareto

front and the average computation times between three decoding methods: ba-

sic decoding (D1), decoding of gene value with the ideal priority combination

(D2), and hybrid decoding (HD), by using the method for elite set selection

borrowed from IBEA (S3).
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The results obtained from three cases of initial population generation are com-

pared. The first results are obtained by using the random generation for all

iterations. The second results are obtained by using a random generation for

the first iteration and using the perturbation for the other iterations. The third

results are obtained by using the useful data of problem instances for gener-

ating the initial population in the first iteration and using the perturbation for

the other iterations. The neighborhood structure, which consists of insertion,

removing, and replacement of the mono and stereo acquisitions, is used in

this experiment. Hypervolume values of the approximate Pareto front are cal-

culated and they are plotted in box plots. The box plots of the three methods

for generating the initial population including the average computation times

are illustrated in Figure 5.8.

The results show that the perturbation, which is used to generate the ini-

tial population for the other iterations, obtains better results than using the

random generation. For the first iteration, the random generation and the gen-

eration by using the useful data of problem instances obtains similar results

and computation times. But the generation by using the useful data of prob-

lem instances needs more additional processes in order to generate the initial

population than using the random generation. Thus, the random generation

has the advantage for generating the initial population in the first iteration. In

the next sections, the experiments will use the random generation in the first

iteration and using the perturbation in the other iterations for generating the

initial population in IBMOLS process.

3.2 Neighborhood structure

Secondly, two groups of neighborhood structures, which have been presented

in Section 3 in Chapter 4, are tested. The first group applies six types of

move, which are the insertion, removing, and replacement of the mono and

stereo acquisitions. The second group applies four types of moves, which

are the insertion and removing of the mono and stereo acquisitions. In this

experiment, the setting values of the dynamic stopping criterion are also tested

with the second group of the neighborhood structure. The hypervolume values

of the approximate Pareto set are plotted in the box plots. The box plots and

the average computation times are shown in Figure 5.9. In each graph, the first

and second columns illustrate the results by using the stopping value equal to

10, but they are obtained from the first group (apply six types of move) and

the second group (apply four types of move) of the neighborhood structure,

respectively. The third column shows the results, which are obtained from the

second group (apply four types of move) of the neighborhood structure and

the stopping value equal to 50 is used.
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Figure 5.8: Comparison of the hypervolume values of the approximate Pareto

front and the average computation times between three methods for generat-

ing the initial population for IBMOLS.
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Figure 5.9: Comparison of the hypervolume values of the approximate Pareto

front and the average computation times between two groups of neighborhood

structure and two stopping values of dynamic stopping criterion for IBMOLS.
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When the same value of dynamic stopping criterion is used and two groups

of neighborhood structure are compared, most of the results show that the sec-

ond group obtains results, which are a little bit worse than the first group. But

the second group of neighborhood structure spends much less computation

time. When the stopping value of the dynamic stopping criterion is increased,

the obtained results can be improved and more computation time is spent.

However, for most instances, except the small size ones, when using the sec-

ond group of neighborhood structure and setting higher stopping value, the

obtained hypervolume values and the consumptions of computation times are

the best for this comparison.

3.3 Feasibility checking

Thirdly, two methods for checking the feasibility of the neighbors, which are

presented in Section 4 of Chapter 4, are compared. The first method checks

directly the feasibility to insert an acquisition with the starting time set of the

original solution. The second method computes the latest starting time of the

acquisitions, which stay behind the insert position, before checking the feasi-

bility. It is sure that the second method should obtain better results, because it

gives more possibility to insert the considered acquisition. Thus, in Sections

3.1 and 3.2, the presented results are obtained from the second method of the

feasibility checking. This section wants to illustrate the difference between

the two methods for feasibility checking. The results, which are obtained by

using the first and second methods, are shown in Figure 5.10.

In this comparison, the stopping value is set equal to 10 and the first

group of neighborhood structure is applied. The results show that, the sec-

ond method for checking the insertion feasibility obtains better results than

the first one. However, the second method spends more computation time.

Indeed, it has to calculate the latest starting time of the acquisitions, which

stay behind the insertion position, before checking the insertion feasibility.

3.4 Stopping criterion

In the previous parts, the presented results are obtained by using a dynamic

stopping criterion. In this part of IBMOLS experiments, other stopping crite-

ria are tested. They are a fixed computation time and a fixed number of visited

neighbors. The values of the second and the third stopping criteria are spec-

ified for each instance as in Tables 5.2 and 5.3, respectively. Moreover, the

two groups of neighborhood structures are tested for all instances. The results,

which are obtained by using the computation time as the stopping criterion,

are presented in Figure 5.11. The first and second columns of each graph

show the results, which are obtained from the first group (apply six types of
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Figure 5.10: Comparison of the hypervolume values of the approximate

Pareto front and the average computation times between two methods of fea-

sibility checking.
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Table 5.2: Stopping values concerning the computation time in the experi-

ments of IBMOLS for the modified ROADEF 2003 challenge instances (Sub-

set A).

Instance Stopping computation time value (seconds)

2_0_2 5
4_0_7 5
12_2_25 5
12_9_28 5
68_12_106 300
77_40_147 300
218_39_295 300
150_87_342 300
336_55_483 1000
375_63_534 1000

move) and the second group (apply four types of move) of the neighborhood

structure. Similarly, the results, which are obtained by using the number of

visited neighbors as the stopping criterion, are illustrated in Figure 5.12.

When the computation times are fixed, the second group of neighbor-

hood structure obtains better results for most of the instances. For the other

instances, the obtained results are similar between the first and the second

groups of neighborhood structure. When the fixed numbers of the visited

neighbors are used as the stopping criterion, the first group of neighborhood

structure obtains better results, because of the replacement process, which

is not operated in the second group of neighborhood structure. For the first

group, more various neighbors are visited in one iteration and the results can

be improved by visiting a fewer number of neighbors. However, the first

method of neighborhood structure spends more computation time to check

and generate a neighbor in the replacement process of the neighborhood struc-

ture.

4 BRKGA vs IBMOLS

In this section, the results of the biased random key genetic algorithm

(BRKGA), presented in Section 2, and the results of the indicator-based

multi-objective local search (IBMOLS), presented in Section 3, are com-

pared. For each algorithm, thirty runs per instance are tested. For BRKGA,

the compared results are obtained from the hybrid decoding, which uses

the selection method of indicator-based evolutionary algorithm (IBEA)
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Figure 5.11: Comparison of the hypervolume values of the approximate

Pareto front between two groups of neighborhood structure by using the com-

putation time as the stopping criterion.
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Figure 5.12: Comparison of the hypervolume values of the approximate

Pareto front and the average computation times between two groups of neigh-

borhood structure by using the number of visited neighbors as the stopping

criterion.
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Table 5.3: Stopping values concerning the number of visited neighbors in the

experiments of IBMOLS for the modified ROADEF 2003 challenge instances

(Subset A).

Instance Stopping value of the number of visited neighbors

2_0_2 0
4_0_7 1000
12_2_25 10000
12_9_28 10000
68_12_106 20000
77_40_147 40000
218_39_295 40000
150_87_342 40000
336_55_483 60000
375_63_534 60000

for selecting the preferred chromosomes to become the elite set. The first

method of the elite set management, which selects the dominant solution

between the two decoding, is used to obtain the results in this comparison.

For IBMOLS, the compared results are obtained by using the neighborhood

structure, which consists of the insertion and removing of the mono and

stereo acquisitions. The second method of feasibility checking, which

calculates the latest starting time before checking insertion feasibility, is

applied. For generating the initial population, the random generation is used

in the first iteration and the perturbation is applied in the other iterations. The

number of iterations of the last archive improvement is used as a stopping

criterion for both BRKGA and IBMOLS. The stopping value is set to 50.
The box plots of hypervolume values and the average computation time

of BRKGA and IBMOLS are presented in Figure 5.13. The first column

illustrates the results from BRKGA and the second column shows the results

from IBMOLS. Moreover, we also use a Mann-Whitney statistical test for

comparing the results from both algorithms.

The box plots show that IBMOLS obtains better median values of the

hypervolume for all instances and better standard deviations for most of the

results. Moreover, IBMOLS spends less computation time than BRKGA, es-

pecially for the large instances. Additionally, the results of IBMOLS are sig-

nificantly better than those of BRKGA. In Figure 5.14, the improvement of

the hypervolume values versus the computation times of the medium and the

large instances are illustrated. In each graph, the improvement of hypervol-

ume values between BRKGA process and IBMOLS process are compared.
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Figure 5.13: Comparison of hypervolume values of the approximate Pareto

front and the average computation times between the best results from

BRKGA and the best results from IBMOLS.
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The results show that IBMOLS obtains solutions closer to the global opti-

mum for the medium and large instances. Moreover, it can also converge to

the global optimum faster than BRKGA.

Finally, the best approximate Pareto fronts of all instances are illustrated

in Figure 5.15. For each instance, the total profit is presented on x-axis and

the maximum profit difference between users is presented on y-axis.

5 Conclusion

This chapter presents the computational results for the multi-objective opti-

mization problem under study (observation scheduling of an agile observing

satellite). Two algorithms are applied to solve this problem. The first al-

gorithm is the biased random key genetic algorithm (BRKGA). The selec-

tion methods of three established multi-objective evolutionary algorithms are

used to select the preferred chromosomes. For the decoding step, a hybrid

decoding is proposed. With the hybrid decoding, the obtained solutions are

better than when using only one single decoding. The second algorithm is

the indicator-based multi-objective local search or IBMOLS. This algorithm

combines the uses of indicator-based evolutionary algorithm and the iterated

local search. The best improvement strategy is used to select a neighbor in the

neighborhood to replace the worst solutions in the population. Several meth-

ods for generating the initial population and two neighborhood structures are

tested. IBMOLS obtains very good results for the considered problem. Fi-

nally, the best results, which are obtained from BRKGA and IBMOLS, are

compared. IBMOLS reaches better results than BRKGA, both in median val-

ues and standard deviations for the hypervolume of the approximate Pareto

front. Moreover, IBMOLS spends less computation times and it can converge

to the global optimum faster than BRKGA, especially for the large instances.
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Figure 5.14: Comparison of the improvement of hypervolume values versus

the computation times between BRKGA process and IBMOLS process when

using the dynamic stopping as the stopping criterion.
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Figure 5.15: The best approximate Pareto front of each instance.





Conclusions and perspectives

The multi-user observation scheduling problem of an agile Earth observing

satellite has been solved in this work. The problem considers the requests

demanded from several users. These requests have to be managed before

being transmitted to the satellite. The requests must be decomposed into sev-

eral strips, which can be taken only once by the satellite. Each strip can be

acquired from two opposite directions (called acquisitions), but only one di-

rection can be chosen. If the acquisitions are selected to be scheduled in the

sequence and acquired by the satellite, they can give profits and gains. Hence,

one way for obtaining the highest profit is to assign as many acquisitions as

possible in the sequence. However, in the real case, the satellite usually can-

not acquire too many acquisitions in only one revolution, because of several

reasons. For example, the number of acquisitions may exceed the satellite

capacity, or more than one required area must be acquired during the same

period.

The problem is modeled as a multi-objective optimization problem. Two

objectives are optimized under operation constraints. The first objective is to

maximize the total profit. The second one is to ensure the fairness of resource

sharing, by minimizing the maximum profit difference between users. The

operation constraints, which have to be satisfied, consist of time windows,

sufficient transition times, one of two directions can be acquired for each strip,

and stereo constraints. After solving this optimization problem, a sequence of

selected acquisitions is obtained and then, it is transmitted in order to operate

on the satellite. The ROADEF 2003 challenge instances (Subset A) are mod-

ified in order to consider the case of 4-user requirements. Experiments have

been done on these instances.

Two metaheuristics, a biased random key genetic algorithm (BRKGA)

and an indicator-based multi-objective local search (IBMOLS), are applied

to solve this problem. For BRKGA, some steps are adapted for solving the

multi-objective optimization problem. In the experiments, two stopping cri-
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teria are used: a dynamic stopping, which is a number of iterations after the

last improvement, and a limit computation time. Three methods for the elite

set selection, which are borrowed from NSGA-II, SMS-EMOA, and IBEA,

are applied to select a set of preferred chromosomes to become the elite set.

Firstly, two single decoding methods, which consist of a basic decoding and

a decoding of gene value with ideal priority combination, are used separately

to decode chromosomes to be solutions. Each single decoding method has

its own advantages. Hence, we propose the idea of hybrid decoding in order

to combine two single decoding methods and try to preserve the advantage

of each one. However, the elite set management is an issue of the hybrid

decoding, because two solutions will be obtained from the decoding of one

chromosome. Three methods, which are used to manage the elite set of hy-

brid decoding, are proposed. Then, the results from the hybrid decoding and

the two single ones are compared. The hybrid decoding is efficient to provide

results with better standard deviation than the basic decoding. Moreover, it

can avoid the entrapment in a local optimum, which may happen when using

the decoding of gene value with ideal priority combination. Hence, the hybrid

decoding obtains better solutions than when using only one single decoding.

Furthermore, the corresponding computation time is reasonable.

For IBMOLS, we use the best improvement strategy to select the neigh-

bor in the neighborhood to replace the worst solution in the population. A

dynamic stopping, which is a number of iterations after the last improvement,

is used to be the stopping criterion. Three methods for the initial population

generation are proposed. We obtain the best results when using the random

generation for the first iteration and the perturbation for the other iterations.

The perturbation can improve the solutions faster than using the random gen-

eration for the other iterations. However, for the first iteration, the random

generation is enough for generating the initial population, with no need of an

additional process. Moreover, the neighborhood structure and the feasibility

checking are also studied. The neighborhood structure with the replacement

obtains better solutions, but spends more computation time. For the feasibil-

ity checking, we propose to compute the latest starting time of the assigned

acquisitions, before checking the insertion feasibility. IBMOLS obtains very

good results for the considered problem. Furthermore, other stopping criteria,

which are a fixed computation time and a fixed number of visited neighbors,

are also presented.

The best results from BRKGA and IBMOLS are compared. IBMOLS

reaches better results than BRKGA, both in median values and standard de-

viations for the hypervolume of the approximate Pareto front. Moreover, IB-

MOLS spends less computation times and it can converge to the global opti-

mum faster than BRKGA, especially for large instances.

As perspectives, we present short term and long term further works. Con-
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cerning the short term works, it may be possible to improve the results ob-

tained from BRKGA and IBMOLS. In BRKGA process, the hybrid decoding

step and the elite set selection method can be modified. The two single decod-

ings that were used and combined to be the hybrid decoding, can be changed.

Each of these single decodings may be re-defined to mainly consider one ob-

jective. For the elite set selection, other indicators can be used like the selec-

tion method borrowed from SPEA2. In IBMOLS process, other strategies can

be included in the initial population generation step for the first iteration by

using useful data of the problem instances. For example, the order to assign

each acquisition in the initial sequence can depend on the acquiring duration

time of each acquisition. The acquisition with the longest acquiring duration

time should be assigned firstly in the sequence. Moreover, the number of re-

moved elements in the perturbation for the initial population generation in the

other iterations can also be modified.

For the long term works, more advanced decoding methods can be applied

for BRKGA, e.g. consider the decoder as a full multi-objective problem. In

IBMOLS process, other perturbation rules and other neighborhood structures

may be used. An example of perturbation rule is to insert some feasible acqui-

sitions for replacing the removed elements. For the scheduling problem of an

agile satellite, the second objective function, which ensures the fairness of re-

source sharing, can be modified, e.g. minimizing the sum of profit difference

between users. Furthermore, other objective functions can also be included in

the problem.





Résumé long

Introduction et contexte

Ce travail s’intéresse à un problème d’optimisation multi-objectif associé
à la sélection et l’ordonnancement des observations d’un satellite agile
d’observation de la Terre. Nous considérons le cas où de multiples util-
isateurs émettent des requêtes pour le satellite. Un algorithme génétique
et une recherche locale sont proposés pour résoudre le problème et des
expérimentations sont conduites sur des instances réalistes. La mission des
satellites d’observation de la Terre (EOS) est d’obtenir des photographies de
la surface terrestre, afin de satisfaire les exigences des utilisateurs. Les EOS
peuvent acquérir des photographies pendant qu’ils sont en mouvement sur
leurs orbites. Il leur faut une période de plusieurs jours pour effectuer une
orbite. La surface totale de la terre est observée lorsque les satellites achèvent
un cycle complet [47]. Les EOS sont occupés de différents instruments
fonction de leurs usages, par exemple des caméras optiques ou des caméras
infrarouges. La plupart d’entre eux fonctionnent à basse altitude. Ainsi,
quand ils se déplacent au-dessus de la zone visible des photographies
requises, les photographies peuvent être prises comme illustré sur la figure
2.1. Ensuite, les satellites vont essayer de transférer les données des images
acquises directement à la station sol après leur acquisition, si possible. Sinon,
les données sont stockées dans la mémoire bord (disponible en quantité
limitée) jusqu’à ce que les satellites soient à portée de la station sol.

Parmi les différents types d’EOS, seuls les satellites dits "agiles" sont con-
sidérés dans ce travail. Un EOS agile est équipé d’une seule caméra embar-
quée, mais l’ensemble du satellite peut tourner autour des trois axes : roulis,
tangage et lacet. Le satellite utilise un système de contrôle d’orbite pour pou-
voir se déplacer selon ces trois degrés de liberté [59]. Cette propriété per-
met au satellite de prendre les photos demandées à l’aide d’une seule caméra.
Deux exemples de satellites agiles sont Pléiades 1A et 1B, qui ont été dévelop-
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pés par le CNES. Tel que présenté, un satellite agile peut se déplacer suivant
les trois axes. Ainsi, l’instant de départ pour prendre chaque image n’est
pas fixe, mais doit être dans un intervalle de temps donné appelé fenêtre de
temps. Pour cette raison, un satellite agile possède un avantage important par
rapport à un satellite non agile. D’une part, cela conduit à une meilleure ef-
ficacité de l’ensemble du système. D’autre part, le problème de sélection et
d’ordonnancement des images candidates est plus difficile à résoudre, du fait
que l’espace de recherche à parcourir est plus important [61].

Le processus de gestion de satellite commence lorsque plusieurs utilisa-
teurs fournissent des requêtes vers la station sol, ces demandes ne pouvant pas
être attribuées directement à un satellite. La station sol doit gérer les requêtes
en sélectionnant et ordonnançant les images candidates, selon certaines lim-
itations du satellite, avant que la séquence obtenue ne soit transmise. Si ces
demandes sont acquises par le satellite, elles peuvent générer des profits et des
gains. Par conséquent, une façon d’obtenir le plus grand profit est que la sta-
tion sol essaye d’allouer autant de demandes que possible au satellite. Mais
le satellite ne peut généralement pas acquérir toutes les demandes au cours
d’une seule révolution. Par exemple, le nombre de demandes peut dépasser
la capacité du satellite ou plusieurs zones requises doivent être acquises au
cours de la même période.

Chaque demande peut être de deux types : mono ou stéréo. Chaque région
est prise une seule fois pour les requêtes mono, alors que pour les demandes
stéréo chaque zone doit être acquise deux fois dans la même direction mais à
partir d’angles différents. Deux formes possibles de demande, point ou poly-
gone, peuvent être demandées. Le point est une petite zone circulaire d’un
rayon de moins de 10 km. Le polygone est une zone polygonale allant de 20
à 100 km. Les deux formes doivent être gérées en transformant les deman-
des en plusieurs formes rectangulaires appelés bandes. Chaque bande peut
être prise en une fois par l’appareil photo du satellite. Un point est considéré
comme une seule bande. Si la zone est trop grande pour être prise en une
seule fois, un polygone est décomposé en plusieurs bandes. Toutes les bandes
ont la même largeur mais des longueurs variables. Un exemple de formes
demandées et d’ordre d’acquisition de bandes après gestion est illustré figure
2.2. Il y a deux directions possibles pour acquérir chaque bande. Les deux di-
rections sont parallèles à la longueur de la bande, mais dans des sens opposés,
comme le montre la figure 2.3. Parmi ces deux directions, une seule peut
être sélectionnée. La bande associée à une direction possible est appelée une
acquisition. Ainsi, chaque bande se compose de deux acquisitions possibles.
L’intervalle des dates de départ possibles pour la prise de chaque acquisi-
tion peut être calculé, en fonction du sens acquis, des temps de début et de
fin de visibilité des deux extrémités de la bande, et de la durée d’acquisition
de la bande. Dans le problème d’ordonnancement des observations pour les
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EOS agiles, certaines acquisitions seront sélectionnées et programmées afin
d’obtenir la séquence, qui constitue la solution de ce problème. La séquence
obtenue doit satisfaire les contraintes impératives du satellite. Les premières
contraintes sont liées aux fenêtres de temps, pendant lesquelles les acquisi-
tions sélectionnées doivent être traitées. Le deuxième groupe de contraintes
se réfère à des temps de transition suffisants pour déplacer la caméra du satel-
lite, à partir de l’instant de fin de l’acquisition précédente jusqu’à l’instant de
départ de la prochaine. Les troisièmes contraintes obligent l’une des deux di-
rections possibles de chaque bande à être sélectionnée pour l’acquisition. Les
quatrièmes contraintes implémentent les contraintes stéréo pour les photos
stéréo : si l’une des acquisitions jumelles est sélectionnée, l’autre doit égale-
ment être sélectionnée, où les acquisitions jumelles prennent la même bande,
dans la même direction, mais sous des angles différents.

Chaque acquisition génère un profit. Ainsi, pour le problème
d’ordonnancement des observations, l’objectif est la maximisation du
profit total. Ce profit total est calculé en fonction de la zone d’acquisition de
chaque demande. Le profit de chaque requête d’acquisition peut être calculé
en utilisant une fonction linéaire par morceaux du gain. Cette fonction est
associée à une fraction de la surface utile acquise sur toute la surface de
chaque requête, comme l’illustre la figure 2.4. La requête, dont plus de
surface de celle-ci est prise, donne également plus de profit.

Il existe plusieurs études concernant les EOS agiles. Par exemple, une
combinaison d’algorithmes génétiques et de recuit simulé a été proposée pour
résoudre ce problème dans [62]. La performance de l’algorithme proposé a
été comparée à celle d’un recuit simulé seul. Dans [61], quatre méthodes
composées d’un algorithme glouton, d’une procédure de programmation dy-
namique, d’un modèle de programmation par contraintes, et d’une méthode
de recherche locale ont été appliquées afin de résoudre une version simplifiée
du problème d’ordonnancement pour les EOS agiles.

Le challenge ROADEF 2003 considérait le problème de gestion des mis-
sions des EOS agiles (voir http://challenge.roadef.org/2003/
fr/). Le challenge vise à trouver un ordonnancement réalisable qui max-
imise le profit total, calculé à partir de la somme des gains des requêtes, qui
sont associés à l’acquisition totale ou partielle de chaque requête. La descrip-
tion des données et les critères d’optimisation sont expliqués dans [82]. Le
gagnant de ce challenge a utilisé un algorithme basé sur le recuit simulé pour
résoudre le problème d’ordonnancement [57]. Le deuxième lauréat a pro-
posé un algorithme basé sur la recherche Tabou [22]. Les auteurs ont adapté
l’algorithme de recherche Tabou unifié [21], qui a été développé pour le prob-
lème de tournées de véhicules avec fenêtres de temps. En outre, un algorithme
de recherche Tabou hybridé avec une recherche systématique a été appliqué
pour résoudre ce problème dans [47]. Ces travaux ont considéré le problème
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d’ordonnancement pour un EOS agile comme un problème d’optimisation
mono-objectif (maximisation du profit total).

Notre travail considère le problème d’ordonnancement des acquisitions
d’un EOS agile, où les requêtes émanent de plusieurs utilisateurs. Nous
devons optimiser deux fonctions objectif, liées au fait de maximiser un profit
total et d’assurer en même temps l’équité du partage des ressources entre
tous les utilisateurs. Ainsi, ce problème est modélisé comme un problème
d’optimisation multi-objectif. Le deuxième objectif, qui est ajouté afin
d’assurer l’équité, revient à minimiser la différence maximale de profits entre
utilisateurs. Certains chercheurs ont étudié les problèmes d’optimisation
multi-objectif pour les applications spatiales [4][36][84]. En outre, quelques
articles considèrent comme objectif l’équité entre les utilisateurs [58]. Des
utilisateurs finaux multiples d’EOS agiles ont été considérés et des principes
de partage ont été adoptés pour sélectionner le sous-ensemble des candidats
en fonction des niveaux d’utilités. Dans [8] et [60], l’utilisation de deux
fonctions objectif liées à l’équité et efficacité a été proposée. Trois options
ont été discutées pour résoudre ce problème de partage : la première donne
la priorité à l’équité, la seconde à l’efficacité, et la troisième calcule un
ensemble de compromis pour aider l’humain à prendre des décisions. Pour
les méthodes multicritères, au lieu de construire un ensemble complet de
solutions non-dominées, les auteurs ont cherché uniquement une décision
proche de la ligne avec une pente spécifiée sur le plan de la fonction objectif.
Dans [13], les requêtes sélectionnées et ordonnancées pour le cas multi-
satellite, multi-orbite et multi-utilisateur ont été étudiées, et une recherche
tabou a été utilisée pour résoudre le problème. L’équité a été prise en compte,
mais elle n’a pas été considérée en tant que fonction objectif. Les auteurs ont
emprunté une moyenne pondérée et ordonnée de [86] pour assurer l’équité
des solutions. Les expérimentations ont permis de tester ces algorithmes avec
les instances de données fournies par le Centre National d’Etudes Spatiales
(CNES).

Notre travail propose deux algorithmes métaheuristiques multi-objectif
pour la sélection et l’ordonnancement du sous-ensemble de photographies
candidates. Ils s’agit d’un algorithme génétique à clés aléatoires biaisées
et une recherche locale multi-objectif basée sur des indicateurs. Les deux
fonctions objectif pour ce problème d’ordonnancement sont de maximiser
le profit total engendré par les photographies acquises et de minimiser la
différence maximale de profits entre les utilisateurs. Le second objectif
représente l’équité du partage des ressources entre les utilisateurs. En outre,
les solutions obtenues doivent également satisfaire les contraintes physiques
de l’EOS agile.

Ce document est organisé comme suit. Le chapitre 3 explique l’algorithme
génétique à clés aléatoires biaisées. La recherche locale multi-objectif basée
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sur des indicateurs est décrite dans le chapitre 4. Le chapitre 5 présente les ré-
sultats d’expériences. Enfin, les conclusions de cette étude et les perspectives
de travail sont discutées en fin de document.

Algorithme génétique à clés aléatoires biaisées

Les algorithmes génétiques sont des méthodes de recherche métaheuristiques,
qui peuvent résoudre les problèmes de grande taille et obtenir des solutions
satisfaisantes en un temps acceptable [77]. Ils commencent par générer une
population de p chromosomes, puis appliquent trois mécanismes : la sélec-
tion, le croisement et la mutation, pour créer les nouveaux chromosomes
pour la prochaine génération et ils itèrent jusqu’à ce que certaines conditions
d’arrêt soient rencontrées. Dans ce chapitre, nous utilisons un algorithme
génétique à clés aléatoires biaisées (BRKGA) [44], qui combine un algo-
rithme génétique et le concept de clé aléatoire, pour résoudre le problème
d’ordonnancement des observations pour un EOS agile. BRKGA a différents
moyens pour sélectionner les deux parents de l’opération de croisement, par
rapport à l’algorithme génétique à clés aléatoires original (RKGA) [9].

Sélection, croisement et mutation

Avec BRKGA, la population de la nouvelle génération est le résultat de trois
étapes : la sélection, le croisement et la mutation, comme illustré figure 1.6
[45].

La première étape est celle de la sélection. Un ensemble d’élite, qui con-
tient pe chromosomes préférés, est choisi dans la population actuelle. Dans
ce travail, nous adaptons BRKGA pour résoudre un problème d’optimisation
multi-objectif. L’indice de qualité de chaque chromosome doit tenir compte
de toutes les fonctions objectif. Nous pouvons choisir une méthode de sélec-
tion parmi plusieurs algorithmes efficaces, par exemple, un algorithme géné-
tique de tri non dominé (NSGA-II) [25], un algorithme d’optimisation multi-
objectif évolutif de sélection à métrique S (SMS-EMOA) [12], ou un algo-
rithme évolutif basé sur des indicateurs (IBEA) [92]. Dans ce travail, nous
avons opté pour IBEA et son concept d’hyper-volume puisque des expéri-
mentations précédentes montrent qu’il est plus efficace. L’IBEA adapté [92]
est appliqué dans ce travail, donc les valeurs objectif sont normalisées dans
l’intervalle [0, 1] en utilisant les valeurs limites supérieure et inférieure de
chaque objectif. Toutefois, le point de référence ne doit pas être égal à (0, 1),
car la valeur de l’hyper-volume aux points extrêmes de l’espace objectif ne
peut pas être calculée. Ainsi, pour le problème considéré, qui est de max-
imiser le premier objectif et de minimiser le deuxième objectif, le point de
référence pour calculer l’hyper-volume de chaque solution est pris égal à
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(−1, 2), comme illustré sur la figure 3.9. Ensuite, l’indice de qualité de toutes
les solutions est calculée. La sélection est réalisée en supprimant la pire des
solutions avec la plus faible valeur d’indice de qualité de la population et en
mettant à jour les valeurs d’indice de qualité des solutions restantes. La pire
solution est éliminée jusqu’à ce que le nombre de solutions restantes satisfasse
la taille recommandée de l’ensemble élite pour BRKGA.

La deuxième étape concerne l’ensemble mutant. Il s’agit d’un ensemble
de pm chromosomes générés pour éviter d’être pris au piège dans un optimum
local. Ces chromosomes sont générés aléatoirement par la même méthode
utilisée pour générer la population initiale.

La dernière partie est la partie de croisement pour lequel chaque descen-
dant de croisement est construit à partir d’un chromosome élite et d’un chro-
mosome de la population actuelle. Chaque élément du descendant de croise-
ment est obtenu à partir d’un élément dans le chromosome élite avec la proba-
bilité ρe. Le descendant de croisement est stocké pour remplir l’espace restant
de chromosomes dans la population suivante. Par conséquent, la taille de
l’ensemble des descendants de croisement est égal à p− pe− pm. Les valeurs
recommandées des paramètres sont affichées dans le tableau 1.1.

Codage et décodage

BRKGA utilise des étapes de codage et de décodage pour la gestion de la
solution. Le chromosome à clés aléatoires est généré dans l’étape de codage.
Chaque chromosome est formé de plusieurs gènes, qui sont codés par des
valeurs réelles générées de façon aléatoire dans l’intervalle [0, 1]. Il représente
une solution. Pour notre problème, chaque gène représente une acquisition,
qui est la bande associée à une direction possible. Ainsi, la taille du chromo-
some est égale à deux fois le nombre de bandes. Les opérateurs d’algorithmes
génétiques sont utilisés pour faire fonctionner ces chromosomes à clés aléa-
toires pour générer la population de la prochaine génération.

L’autre étape importante de BRKGA est celle de décodage. Elle est util-
isée pour transformer le chromosome à clés aléatoires en une solution pour
le problème considéré. Pour le problème d’ordonnancement des observa-
tions, chaque chromosome est décodé afin d’obtenir une séquence des acqui-
sitions sélectionnées. Dans cette étape de décodage, la priorité de sélection
et d’ordonnancement de chaque acquisition est considérée en fonction de la
valeur du gène associé. L’acquisition qui a la priorité la plus élevée est con-
sidérée en premier pour être ordonnancée dans la séquence. Trois méthodes
de décodage sont appliquées pour résoudre ce problème d’ordonnancement
des observations : un décodage de base, un décodage de la valeur du gène
avec une combinaison de priorité idéal, et un décodage hybride.
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Décodage de base

La priorité du décodage de base est définie en utilisant directement la valeur
du gène. Cette expression de décodage est donnée par

Priorityj = genej.

Ce décodage de base donne la plus haute priorité pour l’ordonnancement à
l’acquisition dont la valeur du gène est maximale. Ainsi, la priorité de cette
méthode de décodage ne dépend que de la valeur de la clé aléatoire.

Décodage de la valeur du gène avec une combinaison de priorité idéale

Cette méthode de décodage est empruntée à [65]. Elle a été appliquée pour
le problème d’ordonnancement de projet sous contraintes de ressources
(RCPSP). Ce décodage définit la priorité de chaque acquisition en fonction
de deux valeurs : la valeur du gène associé comme dans le décodage de
base et sa valeur de priorité idéale calculée. Pour le concept de priorité
idéale dans [65], le travail, qui a l’instant de départ possible le plus tôt,
doit être choisi en premier et être ordonnancé en début de la séquence de
solutions. Par conséquent, la priorité idéale donne une plus grande priorité
pour sélectionner et ordonnancer le travail avec une date de départ possible
au plus tôt. Cette priorité idéale est donnée par

LLPj

LCP
,

où LLPj est la longueur du chemin le plus long depuis le début du travail j
jusqu’à la fin du projet et LCP est la longueur du chemin critique du projet.

Le coefficient qui ajuste la priorité pour tenir compte des valeurs des
gènes du chromosome à clés aléatoires est donnée par (1 + genej)/2. Ainsi,
l’expression de décodage de chaque travail j est

Priorityj =
LLPj

LCP
×

[

1 + genej
2

]

Dans [65], la minimisation de la durée totale d’ordonnancement
(makespan) est le seul critère pris en compte. Dans notre travail, la notion
de priorité idéale est modifiée afin d’être plus appropriée pour résoudre
le problème d’ordonnancement des observations multi-objectif. Par con-
séquent, la priorité idéale donne une plus grande priorité pour sélectionner et
ordonnancer l’acquisition avec un temps de départ possible au plus tôt. Cette
priorité idéale est donnée par

TmaxL − Tminj

TmaxL

,
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où TmaxL est la date de début le plus tard de la dernière acquisition possible
et Tminj la date de début au plus tôt de l’acquisition j.

Le même facteur que dans [65] est utilisé pour régler la priorité. Ainsi,
l’expression de décodage de la valeur du gène combinée à la priorité idéale
pour chaque acquisition j est

Priorityj =
TmaxL − Tminj

TmaxL

×

[

1 + genej
2

]

.

Un exemple de calcul de priorité idéale de la deuxième méthode de dé-
codage est illustré figure 3.4. Il est appliqué au problème d’ordonnancement
d’observation d’un EOS, qui doit sélectionner et ordonnancer quatre acquisi-
tions, a, b, c et d. Pour cet exemple, l’ordre des acquisitions, qui sera consid-
éré comme étant affecté à la séquence selon la priorité idéale, est le suivant:
b, c, d, a.

La priorité idéale, qui est utilisée dans l’équation de ce second décodage,
est calculée en utilisant les valeurs des données du problème. Il peut rendre
cette méthode de décodage plus rapide pour atteindre une solution optimale,
qui peut être un optimum local. Par conséquent, il faut être prudent avec la
prise au piège dans un optimum local.

Décodage hybride

Enfin, nous proposons la troisième méthode de décodage. Elle combine
les première et deuxième méthodes de décodage. Cette méthode hybride
obtient deux solutions d’un chromosome. Lors de l’application du décodage
hybride, les méthodes pour gérer l’ensemble d’élite doivent être définies.
Plusieurs méthodes différentes peuvent être utilisées pour sélectionner
l’ensemble d’élite. Toutefois, une méthode de gestion de l’ensemble élite est
présentée dans ce travail. Chaque chromosome de la population est décodé
à partir des deux méthodes de décodage. La première solution est obtenue
à partir du décodage de base et la seconde solution est obtenue à partir du
décodage de la valeur du gène avec combinaison de priorité idéale. Ensuite,
les deux solutions, avec la valeur de la fonction objectif correspondante,
sont comparées à l’aide de la relation de dominance au sens de Pareto. Si
une solution peut dominer l’autre, la solution dominante est choisie pour
être stockée dans l’ensemble des solutions. Dans le cas contraire, l’une des
deux solutions est choisie au hasard. Le processus de décodage est répété
jusqu’à ce que tous les chromosomes de la population soient décodés. Quand
il termine, la taille de l’ensemble des solutions est égale à p. Ensuite, les
pe solutions sont sélectionnées pour devenir l’ensemble élite en utilisant
les mêmes méthodes avec un seul décodage. Le principe de la gestion de
l’ensemble élite est représenté sur la figure 3.10.
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Au cours de l’étape de décodage, les contraintes impératives sont véri-
fiées pour chaque acquisition séquentiellement en fonction de sa priorité.
Chaque acquisition considérée peut être affectée à la séquence, seulement
si la séquence obtenue peut satisfaire toutes les contraintes. L’organigramme
de vérification de contraintes et d’affectation d’acquisitions est indiqué sur
la figure 3.5. L’exemple d’une solution de l’instance de plus petite taille est
représenté sur la figure 3.6. Cette instance se compose de deux bandes. Ainsi,
le nombre de gènes à clés aléatoires, qui sont associés aux acquisitions, est
égal à quatre. Cet exemple montre la solution décodée à partir du décodage de
base (la priorité pour sélectionner et ordonnancer chaque acquisition est égale
à sa valeur de gène). L’étape de décodage est utilisée pour obtenir la séquence
d’acquisitions sélectionnées et les valeurs des deux fonctions objectif.

Recherche locale multi-objectif basée sur des
indicateurs

Dans ce chapitre, nous proposons une approche de recherche locale multi-
objectif basée sur des indicateurs (IBMOLS) pour résoudre le problème
d’ordonnancement des observations multi-utilisateurs pour un EOS agile. IB-
MOLS est un algorithme générique, qui combine l’utilisation de la recherche
locale de base et d’un indicateur binaire de l’algorithme évolutionnaire basé
sur des indicateurs. Il a été proposé initialement dans [7].

Adapté à notre problème bi-objectif, IBMOLS fonctionne comme suit. Le
front de Pareto approximé PO est initialisé à l’ensemble vide et il est mis à
jour à la fin de chaque itération. Deux procédures sont utilisées dans ce tra-
vail. La première est appliquée pour la première itération et la seconde est
appliquée pour les autres itérations. Ensuite, les solutions non dominées de
la population sont stockées dans l’ensemble archive A. Les valeurs d’indice
de qualité de tous les individus de la population sont calculées en utilisant
l’indicateur basé sur le concept d’hyper-volume de [92] et l’étape de recherche
locale est appliquée pour chaque individu. Après cela, la population mise à
jour est combinée avec l’ensemble archive A et les solutions non dominées
de cet ensemble combiné sont stockées dans le nouvel ensemble archive A.
Si l’ensemble archive A change, le processus applique à nouveau l’étape de
recherche locale. Sinon, cette itération est terminée et l’ensemble archive A
final est obtenu. Ensuite, le front de Pareto approximé PO est mis à jour en
combinant l’ensemble archive obtenu A avec le front de Pareto approximé
PO, et l’ensemble des solutions non dominées de l’ensemble combiné de-
vient alors le nouveau front de Pareto PO. L’itération suivant se poursuit, si
l’algorithme ne satisfait pas les critères d’arrêt.
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Génération de population – première itération

Pour la première itération d’IBMOLS, N individus sont générés au hasard
pour composer la population initiale. Chaque individu représente une solu-
tion, qui est une séquence des acquisitions sélectionnées.

L’organigramme de la génération de la population initiale pour la pre-
mière itération est représenté figure 4.2. Toutes les acquisitions sont as-
signées pour être les éléments de l’ensemble d’acquisitions sélectionnées.
Pour chaque acquisition selon un ordre aléatoire, il est vérifié qu’elle satis-
fait à la contrainte de temps de transition suffisant et la contrainte de fenêtre
de temps. Si elle satisfait les deux contraintes, la date de départ est cal-
culée et fixée dans l’ensemble des dates de départ. Par ailleurs, l’acquisition,
qui concerne la direction acquise opposée de la même bande, est retirée de
l’ensemble des acquisitions sélectionnées. Sinon, l’acquisition considérée est
retirée. Le procédé pour la vérification de ces contraintes est répété jusqu’à ce
que toutes les acquisitions de l’ensemble d’acquisitions sélectionnées soient
testées. Après cela, les ensembles temporaires des acquisitions sélectionnées
et des dates de départ sont obtenus. Dans cette étape, la contrainte stéréo doit
être vérifiée pour chaque acquisition sélectionnée une par une dans l’ensemble
temporaire. Si l’acquisition considérée vient d’une bande stéréo, sa jumelle
doit également être assignée. Si cette acquisition liée n’est pas assignée,
l’acquisition considérée est retirée. Lorsque toutes les acquisitions sélection-
nées sont vérifiées, l’ensemble des dates de départ est recalculé.

Génération de population – autres itérations

Dans IBMOLS, une recherche locale itérative est utilisée pour rechercher les
solutions non-dominées en commençant la recherche à partir de différentes
populations initiales. Un mécanisme de perturbation est appliqué afin
d’échapper à des optima locaux. Toutefois, le nombre de composants de
solution modifiés doit être défini avec précision. Si la perturbation est trop
forte, de meilleures solutions peuvent être trouvées, mais avec une très faible
probabilité. D’autre part, si la perturbation est trop faible, la recherche locale
va retomber dans l’optimum local qui vient juste d’être visiter [63].

Pour la perturbation, un individu est généré en modifiant une solution du
front de Pareto approximé PO de l’itération courante. Dans ce travail, les
solutions du front de Pareto approximé sont choisies aléatoirement. Le nom-
bre de solutions sélectionnées est égal à la taille N de la population initiale.
Chaque solution contient l’ensemble d’acquisitions sélectionnées. Il est mod-
ifié en supprimant certaines acquisitions à la position aléatoire j de l’ensemble
d’acquisitions sélectionnées. Le nombre d’éléments éliminé est d’environ
1/4 de la taille nori de l’ensemble d’acquisitions sélectionnées initial. Par
ailleurs, au cours de l’élimination, la contrainte stéréo doit être vérifiée. Si



127

R
es
um

e
lo
ng

l’acquisition retirée fait partie d’une demande stéréo, sa jumelle doit égale-
ment être retirée. L’élimination d’acquisition est répétée jusqu’à ce que le
nombre d’acquisitions restantes dans l’ensemble d’acquisitions sélectionnées
ou nmodi soient inférieur ou égal à 3/4 de la taille nori de l’ensemble original.
Ensuite, l’ensemble d’acquisitions sélectionnées modifié deviendra la partie
de l’individu, qui est un membre de la population initiale dans l’itération suiv-
ante. La génération de la population à l’aide de la perturbation est expliquée
dans l’algorithme 7.

Dans le processus de perturbation, nous devons éviter la génération d’une
solution déjà visitée. Par conséquent, le nombre d’acquisitions enlevées
est pré-calculé. S’il est inférieur ou égal à un, la perturbation va générer
l’individu, qui a été visité. Dans ce cas, la génération aléatoire sera utilisée
pour générer l’individu, au lieu d’utiliser la perturbation.

Etape de recherche locale

L’étape de recherche locale commence à partir d’un individu de la popula-
tion P et se déplace itérativement vers un voisin. Dans l’IBMOLS orig-
inal, une première stratégie d’amélioration est utilisée pour sélectionner le
voisin. Cependant, dans ce travail, une meilleure stratégie d’amélioration est
préférable. Au cours de l’exploration du voisinage, les valeurs d’indice de
qualité de chaque voisin sont calculées. Le voisin avec la meilleure indice
de qualité est généré et sélectionné pour remplacer la plus mauvaise solution
dans la population. Le voisinage de tous les individus de la population P est
exploré. La population et l’ensemble archive sont mis à jour. Si l’ensemble
archive mis à jour A ne change pas, l’étape de recherche locale est arrêtée.
Sinon, une autre étape de la recherche locale est effectuée.

Le voisinage qui est utilisé dans ce travail se compose de quatre types
de mouvement: i) insérer une acquisition mono i ; ii) retirer une acquisi-
tion mono i ; iii) insérer des acquisitions jumelles i et j, et iv) supprimer
des acquisitions jumelles i et j. Pour chaque type de mouvement, toutes les
acquisitions mono ou toutes les paires d’acquisitions jumelles sont essayées
pour être insérées ou retirées une par une.

Parmi les quatre types de mouvement, dans le cas de l’insertion, la fais-
abilité du voisin doit être vérifiée. Une acquisition non-assignée peut être in-
sérée à une position de l’ensemble des acquisitions sélectionnées uniquement
si toutes les contraintes impératives sont satisfaites. Pour l’acquisition mono,
les trois contraintes, qui consistent en la contrainte de fenêtre de temps, la
contrainte de temps de transition suffisant et la contrainte que la même bande
ne peut être sélectionnée et acquise que dans une seule direction, doivent être
vérifiées. De plus, pour l’acquisition stéréo, la contrainte stéréo doit être véri-
fiée.
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On calcule la plus grande date de début au plus tard des acquisitions sélec-
tionnées, qui sont ordonnancées derrière la position d’insertion, avant de véri-
fier la faisabilité. Elles sont ordonnancées pour être prises le plus tard possible
c’est-à-dire à leur date de début au plus tard. Ainsi, le plus grand espace est
libéré pour supporter l’insertion de l’acquisition non-assignée. Par exemple,
l’acquisition non-assignée Acq k est choisie pour tenter d’être insérée devant
l’acquisition sélectionnée sa3. Les autres acquisitions suivant sa3 peuvent
être déplacées vers la droite le plus tard possible. Cet exemple est illustré sur
la figure 4.7.

Résultats expérimentaux

Les méthodes ont été testées sur des instances modifiées du challenge
ROADEF 2003 (Testset A). Elles sont modifiées pour les exigences de 4
utilisateurs et le format des noms d’instance est modifié pour devenir a_b_c,
où a est le nombre de demandes, b est le nombre de demandes stéréo, et c
est le nombre de bandes.

Pour l’algorithme génétique à clés aléatoires biaisées (BRKGA), les
valeurs des paramètres de l’algorithme ont été expérimentalement réglées
pour notre travail. La taille de la population de BRKGA est fixée égale
à la longueur du chromosome à clés aléatoires ou à deux fois le nombre
de bandes. Les tailles des trois parties, qui sont composées pour être la
population pour la prochaine génération, sont réglées en accord avec les
valeurs recommandées du tableau 1.1. La taille de l’ensemble élite est égal
au nombre d’ordonnancements non-répétés des solutions non-dominées,
mais elle n’est pas plus grande que 0.15p. La taille de l’ensemble mutant est
égale à 0.3p. La probabilité d’héritage d’élément élite pour l’opération de
croisement est réglée à 0.6. A chaque itération, les solutions non-dominées
sont stockées dans une archive. S’il existe au moins une solution de la
population actuelle qui peut dominer des solutions dans l’archive, l’archive
sera mise à jour. Par conséquent, nous utilisons le nombre d’itérations
depuis la dernière amélioration de l’archive pour être un critère d’arrêt. La
valeur d’arrêt est définie à 50. Trois méthodes de décodage sont considérées
dans ce travail. Pour la recherche locale multi-objectif basée sur indicateur
(IBMOLS), les résultats obtenus sont comparés avec les résultats de BRKGA.
Les valeurs des paramètres de taille de la population et les valeurs d’arrêt
doivent être réglées par les expérimentations. Nous utilisons le nombre
d’itérations depuis la dernière amélioration du front de Pareto approximé
comme critère d’arrêt. La taille des populations de 10 et la valeur d’arrêt de
50 itérations sont utilisées.

Les deux algorithmes proposés sont implémentés en C++ et trente exé-
cutions par instance sont testées. Les hyper-volumes du front de Pareto ap-
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proximé sont calculés en utilisant un point de référence de 0 pour le premier
objectif (maximiser le profit total) et le maximum des sommations de profit
de chaque utilisateur pour le second (minimiser la différence de profit entre
les utilisateurs). Les valeurs des hyper-volumes, qui sont obtenues à partir des
deux algorithmes proposés, sont tracées par des diagrammes en boîte.

Dans le premier type de comparaison, on oppose principalement les résul-
tats des différentes méthodes de décodage de BRKGA, qui sont le décodage
de base (D1), le décodage de la valeur de gène avec la combinaison de pri-
orité idéale (D2), et le décodage hybride (HD). Les diagrammes en boîte des
valeurs des hyper-volumes et les temps de calcul moyens sont présentés dans
la figure 5.7.

Pour la plus petite instance (instance 2_0_2), les résultats ne peuvent
pas être atteints. En effet, la taille de la population, qui est égale au double
du nombre de bandes, est trop petite pour générer la nouvelle génération à
partir des trois ensembles de chromosomes dans le processus BRKGA. La
plupart des résultats montrent que le décodage hybride obtient les meilleurs
résultats, comparé aux deux décodages simples. En effet, le décodage hybride
cumule les avantages des deux décodages simples pour toutes les instances.
Par exemple, dans l’instance 12_2_25, la première méthode de décodage
obtient de meilleurs résultats que la seconde, ainsi le décodage hybride obtient
des résultats similaires à la première méthode. Pour l’instance 77_40_147,
le décodage hybride obtient des résultats similaires au second décodage, qui
obtient de meilleurs résultats que le premier. Ainsi, la méthode de décodage
hybride est efficace pour résoudre la plupart des instances. Par rapport à D1,
il peut réduire la gamme des valeurs des hyper-volumes. Cela signifie que
le décodage hybride peut fournir des résultats avec de meilleurs écarts-types.
En outre, pour certaines instances où le second décodage se confine dans un
optimum local, le décodage hybride est capable d’atteindre l’optimum global.
En ce qui concerne le temps de calcul, la méthode de décodage hybride passe
plus de temps à chaque itération, mais elle peut obtenir de bonnes solutions
en un temps de calcul global raisonnable.

Dans le deuxième type de comparaison, nous comparons principalement
les résultats entre BRKGA et IBMOLS. Pour BRKGA, les résultats sont
obtenus à partir du décodage hybride, qui utilise la méthode de sélection de
l’algorithme évolutionnaire basé sur des indicateurs (IBEA) pour sélectionner
les chromosomes préférés pour devenir l’ensemble élite. En outre, la sélection
de la solution dominante est utilisée pour gérer l’ensemble élite dans le pro-
cessus de décodage hybride. Pour IBMOLS, les résultats sont obtenus en util-
isant la structure de voisinage, qui consiste en l’insertion et le retrait des ac-
quisitions mono et stéréo. La méthode de vérification de la faisabilité, qui cal-
cule la date de début au plus tard avant de vérifier la faisabilité de l’insertion,
est appliquée. Pour générer la population initiale, la génération aléatoire est
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utilisée dans la première itération et la perturbation est appliquée dans les
autres itérations. Le nombre de 50 itérations depuis la dernière amélioration
d’archive est utilisé comme critère d’arrêt pour les deux méthodes, BRKGA et
IBMOLS. Les diagrammes en boîte des valeurs des hyper-volumes et le temps
de calcul moyen de BRKGA et IBMOLS sont présentés sur la figure 5.13. La
première colonne illustre les résultats de BRKGA, la deuxième colonne ceux
d’IBMOLS.

Les diagrammes en boîte montrent qu’IBMOLS obtient des valeurs
médianes des hyper-volumes meilleures pour toutes les instances, de même
que de meilleurs écarts-types pour la plupart des résultats. En outre,
IBMOLS utilise moins de temps de calcul que BRKGA, en particulier
pour les grandes instances. La figure 5.14 représente l’amélioration des
valeurs des hyper-volumes en fonction du temps de calcul pour les instances
moyennes et grandes. Dans chaque graphique, l’amélioration des valeurs
des hyper-volumes entre le processus BRKGA et le processus IBMOLS
est analysé. Les résultats montrent qu’IBMOLS obtient des solutions plus
proches de l’optimum global pour les instances moyennes et grandes. En
outre, IBMOLS peut converger vers l’optimum global plus rapidement que
BRKGA.

Enfin, les meilleurs fronts de Pareto approximés de toutes les instances
sont illustrés sur la figure 5.15. Pour chaque instance, le profit total est
présenté en abscisse et la différence maximale de profits entre les utilisateurs
est présentée en ordonnée.

Conclusions

Un algorithme génétique à clés aléatoires biaisées (BRKGA) et une recherche
locale multi-objectif basée sur des indicateurs (IBMOLS) sont utilisés pour
résoudre un problème d’optimisation multi-objectif associé à la sélection et
l’ordonnancement des prises de vue d’un satellite agile d’observation de la
Terre. Les instances du challenge ROADEF 2003 sont modifiées afin de pren-
dre en compte explicitement les exigences de 4 utilisateurs. Deux fonctions
objectif, maximiser le profit total et minimiser la différence maximale de prof-
its entre les utilisateurs pour l’équité du partage des ressources, sont consid-
érées et les contraintes impératives doivent être respectées.

Pour BRKGA, le codage à clés aléatoires génère chaque chromosome de
la population et les chromosomes sont décodés pour être les séquences des
acquisitions sélectionnées. Trois méthodes de décodage, un décodage de base,
un décodage de la valeur du gène avec combinaison de priorité idéale, et un
décodage hybride, sont présentés dans ce document. La méthode de sélection
des élites d’IBEA est utilisée pour sélectionner les solutions préférées pour
devenir l’ensemble élite de la population. Un ensemble élite, un ensemble des
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descendants du croisement, et un ensemble mutant sont combinés pour former
la population suivante. Les valeurs des hyper-volumes des trois méthodes de
décodage sont comparées. La plupart des résultats montrent que le décodage
hybride obtient de meilleures valeurs moyennes des hyper-volumes, de même
qu’il peut réduire la gamme des valeurs des hyper-volumes en des temps de
calcul raisonnables.

En outre, IBMOLS est implémenté par la génération de la population ini-
tiale en utilisant une génération aléatoire pour la première itération et une
perturbation pour les autres itérations. L’affectation de la valeur de la fonc-
tion d’évaluation basée sur des indicateurs avec le concept d’hyper-volume
d’IBEA est appliquée pour comparer les solutions dans la population. Les
valeurs des hyper-volumes d’IBMOLS et de BRKGA sont comparées. La
plupart des résultats montrent qu’IBMOLS obtient de meilleures solutions et
nécessite moins de temps de calcul.
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