Detection and counting of Powered Two Wheelers in traffic using a single-plane Laser Scanner

par Yadu Prabhakar

Thèse de doctorat en Physique/Informatique

Sous la direction de Abdelaziz Bensrhair et de Jean-Philippe Tarel.

Le président du jury était Fawzi Nashashibi.

Le jury était composé de Éric Violette, Peggy Subirats.

Les rapporteurs étaient François Goulette, Jack-Gérard Postaire.

  • Titre traduit

    Détection de deux roues motorisées par télémètre laser à balayage


  • Résumé

    La sécurité des deux-roues motorisés (2RM) constitue un enjeu essentiel pour les pouvoirs publics et les gestionnaires routiers. Si globalement, l’insécurité routière diminue sensiblement depuis 2002, la part relative des accidents impliquant les 2RM a tendance à augmenter. Ce constat est résumé par les chiffres suivants : les 2RM représentent environ 2 % du trafic et 30 % des tués sur les routes.On observe depuis plusieurs années une augmentation du parc des 2RM et pourtant il manque des données et des informations sur ce mode de transport, ainsi que sur les interactions des 2RM avec les autres usagers et l'infrastructure routière. Ce travail de recherche appliquée est réalisé dans le cadre du projet ANR METRAMOTO et peut être divisé en deux parties : la détection des2RM et la détection des objets routiers par scanner laser. Le trafic routier en général contient des véhicules de nature et comportement inconnus, par exemple leurs vitesses, leurs trajectoires et leurs interactions avec les autres usagers de la route. Malgré plusieurs technologies pour mesurer le trafic,par exemple les radars ou les boucles électromagnétiques, il est difficile de détecter les 2RM à cause de leurs petits gabarits leur permettant de circuler à vitesse élevée et ce même en interfile. La méthode développée est composée de plusieurs sous-parties: Choisir une configuration optimale du scanner laser afin de l’installer sur la route. Ensuite une méthode de mise en correspondance est proposée pour trouver la hauteur et les bords de la route. Le choix d’installation est validé par un simulateur. A ces données brutes, la méthode de prétraitement est implémentée et une transformation de ces données dans le domaine spatio-temporel est faite. Après cette étape de prétraitement, la méthode d’extraction nommée ‘Last Line Check (LLC)’ est appliquée. Une fois que le véhicule est extrait, il est classifié avec un SVM et un KNN. Ensuite un compteur est mis en œuvre pour compter les véhicules classifiés. A la fin, une comparaison de la performance de chacun de ces deux classifieurs est réalisée. La solution proposée est un prototype et peut être intégrée dans un système qui serait installé sur une route au trafic aléatoire (dense, fluide, bouchons) pour détecter, classifier et compter des 2RM en temps réel.


  • Résumé

    The safety of Powered Two Wheelers (PTWs) is important for public authorities and roadadministrators around the world. Recent official figures show that PTWs are estimated to represent only 2% of the total traffic but represent 30% of total deaths on French roads. However, as these estimated figures are obtained by simply counting the number plates registered, they do not give a true picture of the PTWs on the road at any given moment. This dissertation comes under the project METRAMOTO and is a technical applied research work and deals with two problems: detection of PTWsand the use of a laser scanner to count PTWs in the traffic. Traffic generally contains random vehicles of unknown nature and behaviour such as speed,vehicle interaction with other users on the road etc. Even though there are several technologies that can measure traffic, for example radars, cameras, magnetometers etc, as the PTWs are small-sized vehicles, they often move in between lanes and at quite a high speed compared to the vehicles moving in the adjacent lanes. This makes them difficult to detect. the proposed solution in this research work is composed of the following parts: a configuration to install the laser scanner on the road is chosen and a data coherence method is introduced so that the system is able to detect the road verges and its own height above the road surface. This is validated by simulator. Then the rawd ata obtained is pre-processed and is transform into the spatial temporal domain. Following this, an extraction algorithm called the Last Line Check (LLC) method is proposed. Once extracted, the objectis classified using one of the two classifiers either the Support Vector Machine (SVM) or the k-Nearest Neighbour (KNN). At the end, the results given by each of the two classifiers are compared and presented in this research work. The proposed solution in this research work is a propototype that is intended to be integrated in a real time system that can be installed on a highway to detect, extract, classify and counts PTWs in real time under all traffic conditions (traffic at normal speeds, dense traffic and even traffic jams).


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.