Fiber tracking and fiber architecture description in cardiac DT-MRI

par Hongying LI

Thèse de doctorat en Imagerie médical - traitement de l'image

Sous la direction de Yue Min Zhu et de Marc Robini.

Le président du jury était Pierre-Simon Jouk.

Le jury était composé de Yue Min Zhu, Marc Robini, Pierre-Simon Jouk, Nicole Vincent, Michel Desvignes, Yves Usson, Pierre Croisille, Isabelle E. Magnin.

Les rapporteurs étaient Nicole Vincent, Michel Desvignes.

  • Titre traduit

    Suivi et la description de l'architecture des fibres dans l'IRM-TD cardiaque


  • Résumé

    La connaissance de l’architecture tridimensionnelle (3D) des fibres est cruciale dans la compréhension de la fonction du cœur humain. L’imagerie par résonance magnétique du tenseur de diffusion (IRM-DT) est une technique permettant de mesurer la diffusion des molécules d’eau dans des tissus humains, et donc d’étudier de manière non-invasive l’architecture 3D des fibres du cœur humain. Dans l’IRM-TD cardiaque, la tractographie des fibres est essentielle pour représenter et visualiser l’architecture des fibres, mais souvent utilisée qualitativement comme une dernière étape qui consiste à visualiser sur l’écran l’architecture myocardique obtenue à partir des données IRM-TD. Cependant, cette visualisation qualitative n’est pas suffisante pour décrire de manière objective et complète l’architecture des fibres. L’objectif de cette thèse est de développer de nouvelles approches pour la tractographie et pour la description quantitative de l’architecture des fibres cardiaques du cœur humain en IRM-TD cardiaque. Les travaux de cette thèse se focalisent sur trois axes. Le premier est le développement d’un algorithme de tractographie probabiliste, qui prend en compte la corrélation spatiale des fibres pendant le suivi des fibres myocardiques. Les résultats expérimentaux montrent que la méthode proposée est robuste au bruit. Les fibres produites sont plus régulières et plus lisses, et la configuration des fibres cardiaques est plus facile à observer. Le second axe concerne une nouvelle notion de dépliement de fibres pour décrire les fibres du cœur humain, qui sont souvent complexes dans l’espace 3D. L’idée est d’analyser cette architecture 3D dans un espace réduit à deux dimensions (2D), en utilisant une technique d’apprentissage de variété. L’approche de dépliement proposée permet la description quantitative de l’architecture 3D de fibres cardiaques dans un plan 2D. Les résultats montrent qu’il est beaucoup plus facile d’observer et d’étudier les caractéristiques des fibres cardiaques après les avoir dépliées, et qu’il semble exister des formes de fibres caractéristiques du cœur humain. Le dernier axe consiste en la fusion de fibres, qui est obtenue en moyennant les fibres selon une grille. Cette approche fournit des architectures de fibres simplifiée à différentes échelles, et permet de mieux mettre en évidence la configuration des fibres cardiaques.


  • Résumé

    It is important to study the cardiac fiber architecture in order to understand the heart function. Diffusion tensor MRI (DT-MRI) is the only noninvasive technique that allows studying cardiac fiber architecture in vivo. Tractography is essential in representing and visualizing cardiac fiber architecture in DT-MRI, but is often employed qualitatively. The motivation of this thesis is to develop technique for studying the cardiac fiber architecture from the fiber tracts provided by the tractography process in cardiac DT-MRI. Our goal is to develop tractography algorithm and approaches for the quantitative description of cardiac fiber architecture. My work is composed of three main axis. The first is the development of a probabilistic tractography algorithm, which takes fiber spatial correlation into accounts in tracing fibers. Experimental results show that the proposed method is meaningfully more robust to noise than the streamlining method, and produces more regular and smoother fibers, which enables cardiac fiber configurations to be more clearly observed. The second concerns a new framework, namely cardiac fiber unfolding, which is an isometric mapping. Our fiber unfolding framework allows the quantitative description of three dimensional cardiac fiber architecture in a two dimensional plan. Our experimental results show that fiber tract pattern can be observed much easier by unfolding them in a plane, and several cardiac fiber patterns were found. The last axis consists in merging fibers, which is achieved by averaging fibers according to a grid. This fiber merging approach provide simplified fiber architecture at different scale as output that highlights the cardiac fiber configuration.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?