Epitaxial graphene on metal for new magnetic manometric systems

par Chi Vo Van

Thèse de doctorat en Nanophysique

Sous la direction de Olivier Fruchart.

Soutenue le 19-03-2013

à Grenoble , dans le cadre de École doctorale physique (Grenoble) , en partenariat avec Institut Néel (Grenoble) (laboratoire) .

Le président du jury était Matthieu Jamet.

Le jury était composé de Olivier Fruchart, Johann Coraux, Abdelmadjid Anane, Rodolfo Miranda.

Les rapporteurs étaient Stefano Rusponi, Eric Beaurepaire.

  • Titre traduit

    Graphène épitaxié sur métal pour nouveaux systèmes magnétiques nanométriques


  • Résumé

    Graphène est un candidat pour la préparation de dispositifs spintroniques de nouvelle génération tirant partie de sa grande longueur de diffusion de spin et de la grande mobilité de ses porteurs de charge. En interagissant avec matériau ferromagnétique, il pourrait en outre devenir un élément actif, comme le suggèrent des études récentes par physique des surfaces, qui mettent en évidence un moment magnétique de quelques fractions de magnéton de Bohr dans le graphène en contact avec du fer, et une séparation en spin des bandes électroniques du graphène, d'environ 10 meV, par un effet Rashba au contact d'un élément de grand numéro atomique (l'or). La façon dont le graphène peut influencer les propriétés, par exemple magnétiques, des matériaux qui y sont contactés, reste peu étudiée. Les systèmes hybrides de haute qualité, constitués de graphène en contact avec des couches minces magnétiques ou des plots de taille nanométrique, sont des terrains de jeu pour explorer les deux aspects, la manipulation des propriétés du graphène par son interaction avec d'autres espèces, et vice versa. Dans le graphène contacté à des couches magnétiques ultra-minces par exemple, de forts effets d'interface pourraient être exploités pour contrôler l'aimantation du matériau magnétique. L'auto-organisation quasi-parfaite récemment découverte pour des plots nanométriques sur graphène, pourrait permettre d'explorer les interactions magnétiques, potentiellement transmises par le graphène, entre plots. Trois systèmes hybrides de haute qualité, intégrant du graphène préparé par dépôt chimique en phase vapeur sur le surface (111) de l'iridium, ont été développés sous ultra-haut vide (UHV) : des films ultra-minces de cobalt déposés sur graphène, et intercalés à température modérée entre graphène et son substrat, ainsi que des plots nanométriques riches-Co et -Fe, organisés avec une période de 2.5 nm sur le moiré entre graphène et Ir(111). Auparavant, des films de 10 nm d'Ir(111), monocristallins, déposés sur saphir, ont été développés. Ces films ont été par la suite utilisés comme substrats en remplacement de monocristaux massifs d'Ir(111). Ces nouveaux substrats ont ouvert la voie à des caractérisations multi-techniques ex situ, peu utilisées jusqu'alors pour étudier les systèmes graphène/métaux préparés sous UHV. Au moyen d'une combinaison de techniques de surface in situ et de sondes ex situ, les propriétés structurales, vibrationnelles, électroniques et magnétiques des trois nouveaux systèmes hybrides ont été caractérisées et confrontées à des calculs ab initio. Un certain nombre de propriétés remarquables ont été mises en évidence. L'interface entre graphene et cobalt implique de fortes interactions C-Co qui conduisent à une forte anisotropie magnétique d'interface, capable de pousser l'aimantation hors de la surface d'un film ultra-mince en dépit de la forte anisotropie de forme dans ces films. Cet effet est optimum dans les systèmes obtenus par intercalation entre graphène et iridium, qui sont par ailleurs naturellement protégés des pollutions de l'air. Les plots nanométriques, au contraire, semblent peu interagit avec le graphène. Des plots comprenant environ 30 atomes restent superparamagnétiques à 10 K, n'ont pas d'anisotropie magnétique, et leur aimantation est difficile à saturer, même sous 5 T. D'autre part, la taille des domaines magnétiques semble dépasser celle d'un plot unique, ce qui pourrait être le signe d'interactions magnétiques entre plots.


  • Résumé

    Graphene is a candidate for next generation spintronics devices exploiting its long spin transport length and high carrier mobility. Besides, when put in interaction with a ferromagnet, it may become an active building block, as suggested by recent surface science studies revealing few tenth of a Bohr magneton magnetic moments held by carbon atoms in graphene on iron, and a Rashba spin-orbit splitting reaching about 10 meV in graphene on a high atomic number element such as gold. The extent to which graphene may influence the properties, e.g. magnetic ones, of the materials contacted to it was barely addressed thus far. High quality hybrid systems composed of graphene in contact with magnetic thin layers or nanoclusters are playgrounds for exploring both aspects, the manipulation of the properties of graphene by interaction with other species, and vice versa. In graphene contacted to ultra-thin ferromagnetic layers for instance, strong graphene/ferromagnet interface effects could be employed in the view of manipulating the magnetization in the ferromagnet. The recently discovered close-to-perfect self-organization of nanoclusters on graphene, provides a way to probe magnetic interaction between clusters, possibly mediated by graphene. Three high quality hybrid systems relying on graphene prepared by chemical vapor deposition on the (111) surface of iridium have been developed under ultra-high vacuum (UHV): cobalt ultra-thin and flat films deposited on top of graphene, and intercalated at moderate temperature between graphene and its substrate, and self-organized cobalt- and iron-rich nanoclusters on the 2.5 nm-periodicity moiré between graphene and Ir(111). Prior to these systems, 10 nm-thick Ir(111) single-crystal thin films on sapphire were developed: they were latter employed as a substrate replacing bulk Ir(111) single-crystals usually employed. This new substrate opens the route to multi-technique characterizations, especially ex situ ones which were little employed thus far for studying graphene/metal systems prepared under UHV. Using a combination of in situ surface science techniques (scanning tunneling microscopy, x-ray magnetic circular dichroism, spin-polarized low-energy electron microscopy, auger electron spectroscopy, reflection high-energy electron diffraction) and ex situ probes (x-ray diffraction, transmission electron microscopy, Raman spectroscopy, MOKE magnetometry) the structural, vibrational, electronic, and magnetic properties of the three new graphene hybrid systems were characterized and confronted to first-principle calculations. Several striking features were unveiled. The interface between graphene and cobalt involves strong C-Co interactions which are responsible for a large interface magnetic anisotropy, capable of driving the magnetization out-of-the plane of the surface of an ultra-thin film in spite of the strong shape anisotropy in such films. The effect is maximized in the system obtained by intercalation between graphene and iridium, which comes naturally air-protected. Nanoclusters, on the contrary, seem to weakly interact with graphene. Small ones, comprising ca. 30 atoms each, remain super paramagnetic at 10 K, have no magnetic anisotropy, and it turns out difficult, even with 5 T fields to saturate their magnetization. Besides, the magnetic domains size seem to exceed the size of a single cluster, possibly pointing to magnetic interactions between clusters.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?