UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE DE GRENOBLE

Spécialité : Nano-Electronique et Nano-Technologies

Arrété ministériel : 7 aotit 2006

Présentée par

Anis ur Rahman

These dirigée par Dominique Houzet et Denis Pellerin

préparée au sein du GIPSA-lab

et de I’Ecole Doctorale Electronique, Electrotechnique, Automatique &
Traitement du Signal

Face perception in videos: Contribu-
tions to a visual saliency model and
its implementation on GPUs

Thése soutenue publiquement le 12 April, 2013
devant le jury composé de:

Mr. Alain Tremeau

Université Jean Monnet, Saint-Etienne, France, Président
Mr. Simon Thorpe

Research Director at CNRS Toulouse, France, Rapporteur
Mr. Christopher Peters

KTH Royal Institute of Technology, Sweden, Rapporteur
Mr. Michel Paindavoine

Université de Bourgogne, France, Examinateur

Mr. Dominique Houzet

Institut Polytechnique de Grenoble, Grenoble, France, Directeur de théese
Mr. Denis Pellerin

Université Joseph Fourier, France, Co-Directeur de these







©2013 — AN1S UR RAHMAN
ALL RIGHTS RESERVED.






To THE MEMORY OF MY UNCLE, DR. N1AMATULLAH KHAN, WHOSE PASSION FOR SCIENCE INSPIRED
ME IN MY GRADUATE STUDIES AND IN LIFE.






Abstract

Studies conducted in this thesis focuses on faces and visual attention. We are interested to
better understand the influence and perception of faces, to propose a visual saliency model
with face features. Throughout the thesis, we concentrate on the question, "How people
explore dynamic visual scenes, how the different visual features are modeled to mimic the
eye movements of people, in particular, what is the influence of faces?" To answer these
questions we analyze the influence of faces on gaze during free-viewing of videos, as well as
the effects of the number, location and size of faces. Based on the findings of this work, we
propose model with face as an important information feature extracted in parallel alongside
other classical visual features (static and dynamic features). Finally, we propose a multi-GPU
implementation of the visual saliency model, demonstrating an enormous speedup of more
than 132x compared to a multithreaded CPU.






Résumé

Les études menées dans cette theése portent sur le role des visages dans l’attention visuelle.
Nous avons cherché a mieux comprendre l'influence des visages dans les vidéos sur les
mouvements oculaires, afin de proposer un modeéle de saillance visuelle pour la prédiction
de la direction du regard. Pour cela, nous avons analysé l'effet des visages sur les fixations
oculaires d’observateurs regardant librement (sans consigne ni tache particuliere) des vidéos.
Nous avons étudié I'impact du nombre de visages, de leur emplacement et de leur taille.
Il est apparu clairement que les visages dans une scéne dynamique (a l'instar de ce qui se
passe sur les images fixes) modifie fortement les mouvements oculaires. En nous appuyant
sur ces résultats, nous avons proposé un modele de saillance visuelle, qui combine des
caractéristiques classiques de bas-niveau (orientations et fréquences spatiales, amplitude
du mouvement des objets) avec cette caractéristique importante de plus haut-niveau que
constitue les visages. Enfin, afin de permettre des traitements plus proches du temps réel,
nous avons développé une implémentation parallele de ce modele de saillance visuelle
sur une plateforme multi-GPU. Le gain en vitesse est d’environ 130 par rapport a une
implémentation sur un processeur multithread.
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A problem well stated is a problem half-solved.
Charles Kettering

Introduction

HUMAN BEINGS HAVE FIVE TRADITIONAL SENSES. Visual, auditory, olfactory, gustatory and tactile
information each coming from a dedicated sensory system or organ. Only a fraction of
this incoming information is selected through a well-developed and sophisticated selection
process known as attention. Two factors are thought to drive the selection: (1) the inherent
ability of the stimuli to capture attention, and (2) the information’s behavioral importance to
goals or tasks at hand. Primarily, the function of selection is to dedicate the limited resources
only for significant information.

Human visual system is believed to be responsible for 90% of the information useful for
perception, and hence, considerably important to function in daily-life. However, our visual
system has limited capacity to process all the information falling on retina. To function
and to complete tasks, it is important to extract a relevant portion of this information. This
specific type of selection directing of computational resources to a small region, analogous
to a spotlight, is called selective visual attention. The spotlight of focus acts more than the
selection of a region of interest, but it is either captured by the low-level features of a region,
or is drawn towards an object based on the task demands. It involves both bottom-up and
top-down mechanisms, and their interactions making attentional capture work by planning
and executing eye movements.

1.1 Challenges

The notion of selective attention is becoming important in the field of computer vision, and
is an active area of research. The main purpose of selection of a region of interest is the
omission of unwanted and redundant information, to increase the visual processing quality,
while consuming less computing resources. It is a collaboration of earlier, parallel, exogenous
processes with coarser, serial, endogenous mechanisms. The mechanisms are extremely
efficient, but they are quite complex to imitate for artificial systems. Therefore, extensive
studies to increase our understanding of visual attention is required.

Over the years, several models have been proposed for the pre-attentive or exogenous
processes. They mostly operate on low-level features, for example: intensity, color,
orientations, motion, etc. The values of these features determine the interest of any region in
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a visual scene. Apart from these features, faces can deliver the most relevant information due
to their social and evolutionary importance. Information regarding age, sex, race, emotions,
attractiveness, and gaze direction from the facial information can guide attention. Some
studies have found the faces to be processed during the early processing stages similar to
other features. Moreover, the evidence of specialized neuronal circuits strongly suggest their
capability of attentional capture, irrespective of the task demands. We consider that all these
factors contribute to an emphasis on faces; that is, allocation of more attentional resources
for faces by the visual system.

The first challenge, in this thesis, is to investigate the interest of faces using experiments
and evaluations. There are several questions regarding whether allocation of attention on
face is a function of its location, number, or size. They are arguably special, but what is the
impact of these attributes? How the attention is allocated, when a face is encountered? Also,
what can they convey? Is the interest task-dependent or not? How meaningful face signal is
required for allocation of attention? What type of face captures attention?

The second challenge is to incorporate the findings from the experiments and evaluations
into a computational model, or visual saliency model. In this thesis, the model studied is
bottom-up that computes visual saliency of a scene. It outputs a map with all the salient
regions highlighted, which can be used to extend and reduce the complexity of artificial
vision algorithms. The idea here is to preprocess the visual information, and then to apply
the computation to only the important or salient chunk of information.

The third challenge is with the inclusion of new features and improvements, which will
increase the complexity of the existing models. Hence, it is important to compute them
efficiently, and to be used by researchers. The objective here is to quickly compute and
evaluate the eye movement predictions. A popular method is to propose a parallelized
version of the model, which takes into account the speed factor, as well as the affordability
and power consumption. Ultimately, the goal is to build a visual saliency model that is fast,
accurate, robust, manageable and accessible.

The primary objective of the thesis is to study the interest of faces, and to incorporate a
dedicated face channel into a visual saliency model. Ultimately, an efficient implementation
of the model through parallelization will be useful for real-life vision systems.

1.2 Objectives

Based on the mentioned challenges, we clearly find the problem to be broad, and the solution
involving different fields of science from cognition, computational modeling, and computer
vision.

The first step is to perform human psychophysics experiments involving quantitative
behavioral studies. The studies identify different features processed by underlying attentional
mechanisms in the human brain. It also addresses the relevance of the common features
identified to perception. In the end, the findings from such studies can guide and build a
model for visual attention.

The second step involves computational modeling, to develop a description of the
observed behavior of humans visual attention. The resulting model is either evaluated
against experimental recordings of real subjects’ eye movements, or compared qualitatively
to other models. This generalization of the mechanisms deploying attention is important
to study the interest of different features in the visual scene. The output of the models is
often a saliency map with salient regions, which can have extensive implications in computer
and machine vision. For example, in cognitive robots, an artificial model of human attention



can be used to make real-time cognitive decisions based on selective information from the
surrounding environment.

The last step implements a vision system that works on low-resolution by the use of
selective attention as a preprocessing stage. It is important that the selection stage is real-
time or relatively faster, for example for autonomous robots and vehicles, object recognition,
target tracking, security monitoring and industrial inspection. All these applications take
advantage of selection in order to get efficient and effective resource allocation and utilization;
necessarily only using the relevant information.

1.3 Main Contributions

The thesis relies on previous works on modeling of visual saliency, and make use of an
already compiled video database and the corresponding experimental eye movements using
an eye tracker. The proposed model is extended to increase its predictability. Following are
main contributions made in this thesis.

% We investigate the influence of face on gaze in videos, with respect to location and
number of faces. We used data from an eye movement experiment, and hand-labeled
all the faces in the videos watched. We compared the eye positions and location of
faces using different criteria. For the analysis, we considered frames with either one
or two faces. In both cases, the scores decrease with increasing eccentricity. However,
in the case of two faces, the individual score of the face at lower eccentricity is higher
compared to its counterpart. In addition, we analyze fixation durations for one and
two faces. We find that faces in videos lead to long fixations, considerably longer in the
case of one face compared to the case of two faces. Furthermore, in the case of one face
the fixations at low eccentricities last longer compared to those in the case of two faces.

% Faces play an important role in guiding visual attention, and thus, the inclusion of face
detection into a classical visual attention model can improve eye movement predictions.
In this thesis, we proposed a visual saliency model to predict eye movements during
free viewing of videos. The model is inspired by the biology of the visual system and
breaks down each frame of a video database into three saliency maps, each earmarked
for a particular visual feature. (a) A ‘static’ saliency map emphasizes regions that differ
from their context in terms of luminance, orientation and spatial frequency. (b) A
‘dynamic’ saliency map emphasizes moving regions with values proportional to motion
amplitude. (c) A ‘face’ saliency map emphasizes areas where a face is detected with
a value proportional to the confidence of the detection. Here, the first two channels
are borrowed from Marat’s visual saliency model [Mar10; Mar+09]. We compared the
eye movements with the models’ saliency maps to quantify their efficiency. We also
examined the influence of center bias on the saliency maps and incorporated it into the
model in a suitable way. Finally, we proposed an efficient fusion method of all these
saliency maps. The fused master saliency map developed in this research is a good
predictor of participants’ eye positions.

% The proposed visual saliency model is complex and compute-intensive, and it requires
a faster implementation to analyze the results as early as possible to efficiently move
forward to analyze the predictability performance of the model. We propose a very
efficient implementation of this model with multi-GPU. We present the algorithms of
the model as well as several parallel optimizations on GPU with higher precision and



execution time results. The real-time execution of this multi-path model on multi-GPU
makes it a powerful tool to facilitate many vision related applications.

1.4 Thesis Organization

Outline of this thesis is as follows. Chapter 1 introduces the scope of the thesis and highlights
the different challenges, and the contributions made to tackle them. Chapter 2 brings
the background material and forms the basis for next chapters. Background literature is
reviewed from two perspectives: a) visual attention and face perception, b) and visual saliency
modeling and its application. Chapter 3 explores the preference of faces in human visual
system by analyzing eye fixations and saccades. This chapter forms a basis for Chapter 4 for
saliency modeling with a dedicated face pathway. Chapter 5 summarizes our implemented
parallel algorithm with different optimizations made. We report speedups, profiling results,
and evaluate their validity. In Chapter 6, we conclude and give several perspectives.



I have found that the greatest help in meeting any
problem is to know where you yourself stand. That is,
to have in words what you believe and are acting from.

William Faulkner

Background

2.1 Human visual system

HUMAN VISUAL SYSTEM (HVS) Is IMPORTANT as it account for 90% of the information coming
from the five senses. Therefore, it is a crucial mean to interact with the environment, such as
perception of objects, interpersonal communication and social interaction. HVS (Figure 2.1)
can be described as consisting of two functional parts: a sensory system and a perceptual
system, simply the eyes and the brain. The former is analogous to a biological camera
performing the initial preprocessing and compression of the incoming visual information,
while the later system performs complex operations on it.

The light entering the eyes first hits the cornea. It refracts, and passes through the
aqueous, iris, lens and vitreous mucus to hit the wall of the retina, where the image is
perceived. The retina contains 100 million rods and 6.5 million cones. Rods provide low-
order illumination, whereas cones provide higher-order illumination responsible for color
vision. The cones are mostly concentrated in the center, called the fovea. The concentration
in highest within 1° of the fovea, and it drops considerably outside. To effectively process the
incoming visual information using limited resources, HVS employs specialized mechanisms
to effectively explore the entire visual scene within a small number of eye movements.

2.2 Human visual attention

Visual attention is to allocate visual processing resources to only the selected aspects of the
visual scene, to gain as much information as possible. The main goal is to function better
by faster and more robust visual cognitive processing of the information. For example, it is
also important to detect a change or an event, and resultantly allocate attentional resources
towards that change.

The different regions involved in driving visual attention are: visual cortex,
inferotemporal cortex (IT), posterier parietal cortex (PPC), prefrontal cortex (PFC) and superior
colliculus (sC) [Pal99; BI11]. The visual information enters through the visual cortex (V1, V2,
V3, V4 and V5/MT), bifurcates into two separate pathways—ventral and dorsal streams. The
dorsal stream’s main function is fixating the region of interest, and occurs in the PPC. This
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Figure 2.1: Human visual system is composed of two functional parts: a sensory system (eye) and
a perceptual system (visual areas).

suggests the independence of dorsal stream from goal-driven control; that is, the attention is
directed using low-level features. On the other hand, the ventral stream is connected to the
IT involving higher mechanisms. PFC is bidirectionally connected to PPC and IT, and it acts as
a modulator of the two streams. Aside from the modulation function, PFEC also controls the
eye movements through the SC.

The main functions of visual attention include:

% Selection of the region of attention. Brain is not capable of processing the entire
incoming information, hence selective attention is used to select and prioritize
information. These mechanisms provide information manageable, computationally
efficient, localized, and relevant to the task demands.

% Extraction of different features from object stimuli, their organization by higher
mechanisms for object recognition, and ultimately resolution of their value.

% Manipulation of incoming information. Human vision is not merely limited to selection,
but involve more complex and highly parallel mechanisms working with more coarser
information for detailed analysis of the visual scene.

R
oo

Initiation of attentional shift by planning eye movements combined with knowledge,
expectations and task demands. The movements comprise of saccades and following
fixations, when aggregated result in a complete scan path.

Visual attention is thought to be driven by two types of processes. Exogenous or bottom-
up visual attention—intrinsic, automatic and subconsciously performed eye movements—are
mostly influenced by the low-level features of the stimulus independent from high-level
mechanisms [The90; The94; YJ96; PN04]. The pre-attentive selection of regions of interest, or
the salient regions is important due to the limited information carrying capacity of the optic
nerve [PLNO02], and lasts for only 25— 50ms. On the other hand, endogenous or top-down
attention is based on the task demands or expectations, irrespective of the features of the
objects in the visual scene [FR]92; FRW94; BE94]. The mechanisms are longer around 200ms.

Both bottom-up and top-down components are important, as experiments with tasks
can cause voluntary control immediately after the visual scene onset. This is because of
the interactions between stimulus-driven properties and goal-driven mechanism, both



complementing one another in selection and deployment of attention by making eye
movements.

Many theories and hypothesis regarding the working of visual attention in primates have
been proposed. Nevertheless, there are still plenty of open questions to answer, involving
fields ranging from biology, psychology, neuroscience and computer science.

2.3 Eye movements

Eye movements are important in natural and complex scenes [Yar67]. The pattern of
movements exhibited is cognitive and task dependent, for example, usually the most salient
region is fixated during free-viewing of a visual scene. Moreover, the number of fixations on
a region determines its informativeness [SFH86; HS595; DS96; BS97; MMN99].

In case of stationary objects of interest, eye movements follow a two-pass location
perception model [AKH93]. First a movement based on its coarser location information, and
then followed by small refined movement to fixate the object. The resulting foveation is
important to collect more detailed information. There are influences of both stimulus-driven
and goal-driven attention on eye movements. In early vision, the former is thought to devise
a model of the visual scene, which acts as a precursor to plan eye movements to complete the
task.

On the scene onset, there is a delay of about 200ms, the initial saccades planning
time [FW93; Hof98]. This delay is immediately followed by jumpy eye movements lasting
20— 200ms, called saccades, towards the locality of the salient region. The initiation and
planning of saccades is important for understanding the importance and working of visual
attention [HS95; Hof98]. The initial saccade with higher velocity is followed by decelerated
ones. This deceleration is attributed to the more information to collect, and consequently use
to direct the eye movements towards the salient regions. Only a small portion of the visual
field is attended through the fovea (around 2 to 3°), which lasts for about 250—500ms [Viv90].
To explore the scene, a series of foveations are required, called fixations. These aggregated
with the saccades result in a scanpath [NS71] (Figure 2.2).

The distance traveled by a saccade is its amplitude, varying around 0° to 40° with a peak
velocities from 30 to 700°/s. The saccade duration depends on the distance covered, as well
as, the viewing conditions that include the screen size, visual quality, etc. As the amplitude
of the saccades increases, it is considered that most of the visual scene is ignored.

Visual attention can be either overt or covert. Overt when the sensory organs are directed
towards the focused stimuli, whereas covert when possible candidates to attend are mentally
focused. The later is linked to the neuronal circuitry responsible for planning the shift
of gaze. It is a mechanism making quick scans of the entire scene for potential regions
of interest, and then to facilitate in setup of slower saccades towards the selected region.
Different studies have found covert attention precede overt attention, which is the region
where the attention subsequently lands. Therefore, visual attention is capable of anticipating
the next eye movements using the limited information about the potential targets.

The eye movements recording (eye fixations and saccades) during psychophysics
experiments are used to determine relationship between the responses of the participants
and stimuli presented on the screen. The relationship can help understand the behavioral
choices made depending on information acquired, location of attention, emotional state, or
task-related.
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Figure 2.2: A scanpath during viewing of a dynamic scene (illustrated as overlapped first,middle
and last frames). The circles are the fixations connected by preceding saccades, while the
diameter of the circles corresponds to fixation duration. We observe that the entire scanpath
remain on the object of interest in the scene, the face.

2.4 Saliency-based model of visual attention

The very first model was proposed by Triesman and Gelade [TG80], called feature integration
theory (FIT). The theory was developed using findings from experiments involving visual
search. The first finding, addresses pop-out factor of a target when it is surrounded by
distractors; that is, the participants show constant reaction times. The second finding,
observes that when a target is discriminated based on combination of features, it shows linear
increase in reaction times with increasing number of distractors. FIT models these findings
into a two-step strategy called unified perception. The strategy starts with the division of
information into distinct subsystems, which is analyzed for the properties. In the end, the
information is combined together.

Different psychophysics studies and experiments conclude that attention follows two-step
strategy. The first step is parallel operating on the entire visual field, while second step is
sequential selecting only the relevant regions. Using this theory numerous models have
been developed, in other words, such models find, code and unify feature characteristics
using different methods. On example of such models is Guided search model proposed by
Wolfe [WG97]. The model uses retinotopic-like feature maps to get a saliency map, which
then drives visual attention in a serial fashion across the different salient regions.

The biologically plausible computational model for visual attention is based on neuro-
physiological processes in human vision system. Such models are stimulated by similar
visual features in the visual scene as in primates, and in consequence attracting focus. The
very first biologically plausible model is proposed by Koch and Ullman [KU85]. The model
takes into account the entire visual field. It is stimulus-driven using basic features like color
and orientations to get a saliency map. The map represents the locations highly influenced
by saliency of their surrounding regions. Each highly salient region is visited for spotlight or
attention in sequence using inhibition of return. Necessarily, the model works in three stages:
separate and code different features in parallel, combine the feature maps to get saliency
map, which is used to direct attention in serial to different locations.

The first implementation of the model [Cha90] uses sets of feature maps to compute
activation maps, a result of thresholds rather than lateral inhibitions proposed by Koch and



Ullman. Another model named selective tuning model [CT92] skips the computation of
saliency map, and uses a hierarchically organized winner-takes-all (WTA) approach. The
location with activity is beamed from the top level, moving through the inner layers of the
pyramid, and at the lowest level corresponds to the focus of attention. Milanese [MGP95]
implemented all three stages of selective attention model, while Itti [IKN98] proposed a more
computationally efficient version using a multi-scale hierarchically structured approach for
computation of feature maps. The later model is quite popular in the community. It extracts
information from color, orientation and intensity cues, and uses a WTA approach to select the
salient region. All these models have been compared with psychophysics studies, and it has
been demonstrated that the three-stage model for selective attention works.

Traditionally, it is thought that bottom-up mechanisms only processes very basic visual
features, while top-down mechanisms are behind the processing of complex features. The
boundary between the two mechanisms is somewhat blur because recent studies [HHO05] show
that early pre-attentive mechanisms can process complex stimuli such as socially meaningful
faces. Based on this fact, different bottom-up visual saliency models are augmented with
face features for still images [CFK09; SCHO09; Ton+10; WWZ10; SS12]. The results show an
improved predictability of eye movements.

The models mentioned are efficient to compute because they involve low-level attributes
with no learning phase. But, in case of high-level tasks, for example object detection and
recognition, the models cannot differentiate between salient information in foreground or
background. Hence, top-down modulated saliency model outperforms pure low-level stimuli-
driven model to predict eye positions. Initially, task-related influences were added to the
spatial-based attention model as a simple top-down component [CF89; CW90], while others
used the knowledge from the scene to set the parameters for feature maps [OAVE93; PS00].
Recent models combine both bottom-up and top-down information to modulate, or assign
weights to the salient regions [Tor+06; Kan+09]. In these models, target features combined
with low-level features are used to guide eye movements. Overall the predictability of human
vision system can be improved by taking advantage of multiple sources of information.

As the methods in computer vision are becoming more and more complex every day,
a preprocessing stage using visual saliency is becoming popular—to limit the amount of
information to process. The approach is potentially very interesting in a lot of applications
because the use of relevant information based on saliency get improve the performance
of the goal. Example of such applications include: image retargeting [Liu+10; Fan+12],
compression [MZ08; HB11], recognition [Rut+04; GHV09; RAKO09], automatic target
detection [SM10], and many more. To make this possible, it is important to understand
the mechanisms behind visual saliency, and devise a biologically plausible model. This
might involve people doing psychophysics and neurophysiology experiments, as well
as computational modeling. Although there are plenty of studies about the underlying
mechanisms of visual attention. However, a complete neuromorphic bottom-up or top-down
model is not yet unraveled.

2.5 Influence of faces on gaze

Faces play an important role in guiding visual attention, and they immediately attract
the eyes when people are looking at static images [Cer+07]. Their explicit representation,
speedier processing and automatic attentional shifts without endogenous control [Dri+99;
LB99] strongly suggests that faces are preferred by primates. The preference might be linked
to the social and biological importance of faces, or the information conveyed by them, such
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as eye gaze, visual speech, and facial emotions [And98; BBK08]. Over the years, many studies
provide evidence for the existence of several perceptual and attentional face processing
mechanisms.

Information about the presence of a face can be extracted shortly after scene
onset [Liu+09]. Different neuroimaging studies claim that face detection is coded in a
specific cortical area of the brain; the fusiform face area (FFA) [Mec+04; KY06; Sum+06].
Similarly, electrophysiological studies show that face processing is remarkably fast, and
human faces evoke a negative potential around 172ms (N170) [Ben+96]. Others have found
the early neuronal face-selective responses to occur around 100ms [LHK02; CKT10], and in
one case as early as 70ms [OP92; Geo+97; BBS01]. Thus, face information can control the
initial eye movements.

Face being perceptually important [JMO01; Tau09] also exhibits some attentional
preference [FW+08]. Many studies have found it to be behind the early-onset responses
to face stimuli [RRLO1; VuiOO0]. In natural scenes, it can pop-out. It is fixated for longer
intervals compared to the rest of the body [BBK08; BBK09]. Any changes in it can be
detected rapidly [RRLO1], and it is more effective when with emotions [MB99; Fox+00;
OLEO1; Com03; FG05]. This advantage of face is thought to be caused by some holistic face
processing mechanism [HHO05; HHO06] in HVS that can process faces as a whole in parallel.
The automatically processed face information is used to complete the task at hand. As a
consequence, it leads to a slight delay in the deployment of complete endogenous or voluntary
control for attention [MF88; MR89; SM89; CL91].

A face is preferred when presented alongside other objects because they are processed
differently. Interestingly, they are difficult to ignore when presented as distractors. On the
contrary, other object-stimuli can easily be avoided when the target is a face. In a relevant
categorization experiment [Bin+07], face and object stimuli are presented in opposite cue
locations—to the left and right of fixation. The response times towards the target cue
locations are faster when it is a face, necessarily due to the attentional bias for faces. However,
when the participants are asked to ignore faces completely, the response times towards
object cue locations became faster. Furthermore, an upright face is processed effectively
from distractors compared to line-drawn, inverted, scrambled, or animal faces [BHF97].
A study [Ros+00] about face inversion effect [Yin69] shows that there is an impact on
recognition task performance when face stimuli is inverted. This is not the case for other
object stimuli.

In conclusion, there is evidence that faces are special, and they are preferred when
attentional resources are limited. There are many studies done that suggest the existence
of both exogenous and endogenous processes in HVS to process faces. However, it is not yet
completely clear, what exactly are the underlying perceptual and attentional mechanisms for
faces, and how they process faces?

2.6 Interest of high-performance computing

Parallelization of an algorithm is in fact not a straightforward solution. It demands expertise
to parallelize algorithms, as well as requires considerable effort depending on the target
architecture. To cope with increasing computational demands of algorithms, designers have
come up with many variations of hardware with different capabilities. The main goal is to
achieve fast computation times, while keeping the problems of memory and power at bay.
But, the variation across different platforms makes parallelization a challenging task. Thus,
it is important to choose a platform based on the requirements of the algorithm, and the time
constraints related develop and optimize accordingly.
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In most cases of image processing and computer vision algorithms, there is an abundance
of independent computations on every pixel. This concurrency or data parallelism can be
exploited, but some algorithms might be strictly serial. The case includes algorithms using
data-based on some priority, or every single iteration of computation is dependent on the
previous iteration — iterative algorithms. In other words, it is important to have enough
independent computing steps that can be mapped on to all the available processing units,
necessarily use all the computational power available.

Two points are important when parallelizing an algorithm: first, it is crucial to minimize
and optimize memory access operations because memory bandwidth could not keep up
with the increasing trend of hardware vendors adding processing units on a single die. In
a nutshell, the objective is to achieve a balance between compute and memory operations.
Second, aside from just parallelizing the algorithms, a significant improvement sometimes
requires reformulation of the existing problem, proposing an innovative algorithm that scales
better on parallel machines.

The motivation here is to model HVS, and use it in real-life applications. The
implementation of the model can be considered real-time only when it can process input
efficiently to make decisions, or to guide a control in real-life scenarios. Inherently, the
algorithms are compute-intensive, and exhibit parallelism. Hence, similar to other computer
vision algorithms, they are natural candidates of high-performance computing.

2.7 Relationship to Past Work

The thesis presents a visual saliency model based on one proposed by Marat in her
thesis [Mar+09; Mar10]. The model decomposes visual information into two channels:
static and dynamic. Both these channels are treated independently with several common
modules. This processing to extract salient information is somewhat bio-inspired. In the
final stage, the saliency maps from the two channels are fused together to get a master
saliency map. The thesis also proposed a three pathway visual saliency model after taking
into account that face can improve the predictions of the visual model.

Many recent works have successfully incorporated a face channel into different models
for still images [CFK09; SCHO09; Ton+10; WWZ10; SS12]. All these studies use different
methods to detect faces depending on requirements of the applications, in some cases a
skin-color model might work well, while in other situations a complex face detector could be
necessary.

Since many of the previous works use still images, in this thesis, we argue that faces are
preferred in dynamic scenes. We expect that there is an improvement in predictions with
the inclusion of a face channel into our visual saliency model. Also, it is important to have
different channels, to make the model compute saliency of varying stimuli. We evaluate the
model against a couple of video databases. The main objective is to test the consistency of
the visual saliency predictor. In summary, our original contributions relate mainly to the
face channel and parallelization of the entire model. This will help to efficiently understand
the complex process of human visual attention.






A man’s face as a rule says more, and more interesting
things, than his mouth, for it is a compendium of
everything his mouth will ever say, in that it is the
monogram of all this man’s thoughts and aspirations.

Arthur Schopenhauer

Face Perception in Videos

GAZE 1S HIGHLY INFLUENCED BY FACES in visual scenes compared to other object stimuli. Several
studies have reported the preference of faces in static images, and their influence on gaze.
Contrarily, the influence of faces has rarely been reported for dynamic stimuli. In videos,
object stimulus patterns degrade due to the loss of information as it moves away from the
foveal region. This degradation of information seems likely to influence the preference of
faces in videos. In addition to effects of location in a scene, the number of faces also limits
the preference of faces, as they compete for the limited attentional resources. Both these
limiting factors can be alleviated by the size of faces, which causes stimulus magnification to
maintain foveal performance of faces, and to diminish the effects of competition.

The purpose of the current chapter is to study the influence of faces on gaze during
free-viewing of videos, and analyze the effects of the number, location and size of faces.
We hypothesized that faces have a preference in videos. It is preferred even at large
eccentricities unless there are no other competing faces. The study reported examines
the different influencing factors: number of faces, eccentricity of faces and area of faces, and
tests the hypothesis by analyzing different combinations of these influencing factors using
several evaluation criteria and other eye movement attributes like fixation dispersion among
participants, fixation duration and fixation proportion. The findings from this work could
support the possibility of adding a separate face pathway to a visual saliency model—to
accurately predict eye movements.

3.1 Related work

Information about presence of faces can be extracted shortly after scene onset [Liu+09].
Different studies claim that face detection is coded in a specific cortical area of the brain;
the fusiform face area (FFA) [KY06]. Related electrophysiological studies show that face
processing is remarkably fast, and human faces can evoke a negative potential around
172ms (N170') [Ben+96]. Some studies found these early neuronal face-selective responses

IThe N170 is a component of the event-related potential reflects the neural processing of faces. It is an increase
in negative potential over electrodes located at the fusiform and inferior-temporal gyri, when face images are
presented.
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occurring around 100ms [CKT10], while in one case as early as 70ms [BBS01]. This explicit
representation of faces allows to control the eye movements, and hence, suggests their
importance for primates during social interaction [And98].

Over the years, a number of studies have been conducted regarding the influence of faces
on gaze, mostly using static stimuli [Lev+01; MLHO02; Has+02; RMFT03; Rou+05; Jeb+09;
FRW10; JR04; JR06; BSB09; HS10]. There is enough evidence that faces can be processed at
the earliest after stimulus presentation [RRLO1; Vui00], and they are preferentially processed
by the human visual system compared to other object categories [Ros+00]. The preference is
thought to be influenced by several different factors like face eccentricity from fixation, face
area, and closeness to other faces.

Degradation of information in periphery has been studied thoroughly in the literature. It
is most likely linked to the size of underlying processing mechanisms [Cur+90]; that is, early
visual areas in primates are retinotopically organized with center-periphery organization
extending well beyond the retina into higher visual areas. Evidence shows that the
accuracy and quality of visual performance in the periphery is identical to one in the foveal
vision [STB89; BSA91], but the drop is due to progressive under-sampling of information
presented away from fixation. Consequently, the degradation of details limits the capacity of
human visual system to extract information, which is important to attend objects in a natural
scene. Over the years, the influence of peripheral vision on faces have been thoroughly
studied, with controlled presentation of visual stimuli at predefined locations on rings of
different eccentricities [Par+03; RRK06; Jeb+09; Her+10; Rig+11]. Most found a drop in
performance of object stimuli, in the case of faces in periphery, a steep drop in face-selective
responses. The main question in this study is whether eccentricity-dependent sensitivity loss
of faces occurs when viewing dynamic stimuli.

The direct effect of eccentricity on stimuli can be compensated using some linear
eccentricity-dependent magnification, or size scaling [VR79; Dow+81; LKA85; JG10]. A
single magnification factor based on eccentricity will fail to compensate for eccentricity-
dependent loss depending on the task demands, and increased interference caused by visual
crowding with eccentricity [Mel+00; CLL07; PPMO04].

Event-related response to face stimulus, the N170, reduce considerably when more stimuli
are presented in the visual field [MGG93; RT95]. This suppression of neural representation
for stimuli is referred to as competition [KUO1; JR04; JR06]. A recent study [JR04] showed
that the response to foveal faces is reduced when another face is presented parafoveally. The
suppression remained even when a scrambled face was presented as a competing stimuli.
This suggests that there is certainly some sensory competition rather than simply an effect of
reduced spatial attention.

Faces are equally distinguishable in the periphery, as they are in the periphery, unless
there are no other competing faces [FRW10]. In the later condition of competing face stimuli,
the foveal face gets more competing advantage against to the underrepresented peripheral
faces [JR06]. When face stimuli are presented in the periphery, the suppression effects on
faces disappear, and the competition is modulated by a foveal bias [Rou+05].

In the chapter, we first describe the eye movement experiment and video database used
(Section 3.2). To study the influence of different factors (Section 3.3), such as eccentricity,
area and number of faces, we evaluated eye fixations data for scenes with faces using several
evaluation measures. First, we analyze dispersion among participants when face is presented
(Section 3.4.1), and distance of fixations made from the face Section 3.4.2. Second, we present
the findings from comparison criteria for one face and two faces (Section 3.5). Last, we
analyze the influence of the different factors on fixation durations. We conclude the study



3.2 Eye movement experiment 15

using video database with a discussion in Section 3.7. Finally, using the findings of the work,
we propose a modulated face pathway described in Section 3.8.

3.2 Eye movement experiment

We used the eye position data from a previous experiment described in [Mar+09]. The
experiment aimed to record eye movements of participants when looking freely at videos
with various contents. We used this data to understand the features that best explain eye
movements and fixated locations. Here, we recall some of the main aspects of this experiment.

3.2.1 Video dataset

Fifty-three videos (25fps, 720 x 576 pixels per frame) were selected from different video
sources, for example: indoor scenes, outdoor, scenes of day and night (Figure 3.1). The videos
are converted to grayscale before presenting them to the participants.

Figure 3.1: Some examples of images from different video sources, for example: indoor scenes,
outdoor, scenes of day and night.

The videos were cut into 305 clip snippets each of 1-3s. This was done in manner to get
snippets with minimum change in plane. Finally, these clip snippets were strung together to
obtain 20 clips of 30s, as shown in Figure 3.2. Each clip comprised of a clip snippet from every
source. The duration of the clip was random to eliminate any transition anticipations made
by the participants during viewing.

3.2.2 Participants

Fifteen young adults (3 women and 12 men, range 23-40 years) participated in the experiment.
All participants had normal or corrected to normal vision. Each participant sitting with
his/her head stabilized on a chin rest, in front of a monitor at 57cm viewing distance (40°x30°
field of view), was instructed to look at the videos without any particular task.
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Figure 3.2: Videos were cut into 305 clip snippets of 1-3s, strung together to obtain 20 clips of
around 30s.

3.2.3 Data acquisition

An eye tracker (SR Research EyeLink II) was used to record eye movements. It composed of
three miniature cameras mounted on a helmet. Two in front of each eye to provide binocular
tracking, while the third on a head-band for head tracking. The recordings from the former
two cameras when compensated for head movements gives the gaze direction of participant.

3.3 Method

Faces are interesting in dynamic scenes, and they influence eye movements. In this study,
we test a video database comprising faces to analyze their interest during free-viewing. We
also evaluate the influence of different factors on the interest of faces, such as number of
faces, face eccentricity, face area, and closeness between two faces. In this section, we first
define these influencing factors. Second, we detail several evaluation measures to analyze
the influencing factor. Third, we present the data used for the evaluation that includes the
hand-labeled faces of the entire video dataset, and the eye fixations recorded during the eye
movement experiment. Last, we summarize the methods used for statistical analysis of the
data.

3.3.1 Influencing factors

The study was designed to provide an insight into the extent to which different visual factors
of the faces affect their perceived interest. In addition to the number of faces in a scene, we
annotate each face in the scene with its area and eccentricity, and closeness to other faces.
These are measured as follows:

s Number. is a simple count of faces present in a scene. It determines the complexity of
the scene. For clarity, we only consider cases of frames with one face and two faces.

% Eccentricity is the distance from participant’s fovea to the edge of face ellipse in degrees.
In Figure 3.3, (d — r(a)) is the eccentricity of the face ellipse with origin (O, O,) from
the fixation position (C,, Cy). To compute the eccentricity E of a face, we first compute
the eccentric angle of the fixation position from the face ellipse.

|Ox_cx|)

b
a = arctan| — | = arctan| ———
(a ) (|Oy - Cy|
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The distance of the origin of ellipse (O,, O,) from position at angle « on the ellipse is
computed as:

Yy 1y
V(ry - cos(a))? + (r, - sin(a))?

where r, and r; are the major and minor axis of the ellipse, corresponding to one-half
of the width and height of the face respectively.

r(a)=

The distance from the fixation to the position on the face ellipse at radius r(a) is defined
as the eccentricity E of the face from the fixation. It is computed by subtracting the
radius r(a) from the euclidean distance d between fixation (C,, C;) and origin of face
ellipse (Oy, Oy).

E- d-r(a) if (r(a)<d)
h 0 otherwise

face f

(Ca, Cy)
Fixation position

Figure 3.3: Eccentricity of face presented on screen from fixation. Consider a face ellipse f with
major and minor axis, r, and rp, equal to face dimensions. r(a) is the radius to the position on
the ellipse at angle a of a right angle triangle with legs of length a and b. The angle is measured
from the major axis of the face ellipse f to the fixation position (Cy, C,). Finally, the radius r(a)
is subtracted from the euclidean distance d between the origin of the face ellipse (O, O},) and
fixation position to get eccentricity of the face.

% Area is the two-dimensional surface of face ellipse in squared degrees. It is calculated as

ntab, where a and b are one-half of the face ellipse’s major and minor axes respectively.

% Closeness: between the faces f' and f? in the case of two faces is the euclidean distance

between the two face regions. In Figure 3.4, (d — (r(a) + r(B)) is the closeness between
the face ellipses with origins Of" and Of’. To compute the closeness C of a face, we
first compute the eccentric angle of the counterpart face’s origin to the origin of the
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face considered. Angle a for face f!, and angle § for face f2.

(b) 180
o = arctan E (—)

TC
a 180
ﬁ—a“ta“(z)'(?)
AfAf?
where, a_lO? O’}z'

The distance of the origin of face ellipse from position at angle 6 on the face ellipse is
computed as:

1

sin @ )2 n (cos@ )2
L Ty

r(0) =

where r, and r;, are the major and minor axis of the ellipse, corresponding to one-half
of the width and height of the face respectiv