Conception d'un imageur CMOS à colonne active pour un biocapteur optique SPR

par Arnoldo Salazar Soto

Thèse de doctorat en Nanoélectronique et nanotechnologie

Sous la direction de Olivier Rossetto et de Sergio O. Martìnez-Chapa.

Le président du jury était Salvador Mir.

Le jury était composé de Olivier Rossetto, Sergio O. Martìnez-Chapa, Sergio Camacho-Leon.

Les rapporteurs étaient Michel Paindavoine, Heriberto Marquez-Becerra.


  • Résumé

    Cette thèse présente la conception et la mise en œuvre d'un imageur CMOS pour être utilisé dans biocapteurs intégrés basés sur Résonance Plasmonique de Surface (SPR). Tout d'abord, les conditions optimales pour la résonance plasmon dans une interface compatible CMOS / post-CMOS sont obtenus par modélisation avec COMSOL. Deuxièmement, un imageur CMOS de Colonne Actif (CMOS-ACS) du 32x32 pixels est mis en œuvre sur une technologie CMOS 0,35 um. Dans une interface d'or-eau avec une excitation de prisme, on constate que pour les prismes avec des indices de réfraction de 1,55 et 1,46, le couplage optimal avec le plasmon est obtenu pour des films d'or d'une épaisseur de 50 et 45 nm, respectivement. Dans ces conditions, environ 99,19% et 99,99% de l'énergie de la lumière incidente est transférée à le surface plasmon pour les deux prismes respectivement, à condition que la lumière incidente, avec une longueur d'onde de 633 nm, arrive avec un angle d'incidence de 68,45° et 79,05° respectivement. Il est également obtenu qu'un changement de RIU 10-4 de l'indice de réfraction du milieu diélectrique, produit un changement de 0,01 ° dans l'angle de résonance de plasmons qui, dans un schéma de modulation d'intensité de lumière produit une variation de 0,08% dans la lumière réfléchie au photodétecteur. En ce qui concerne le imageur CMOS, une photodiode n-well/p-substrate est choisi comme l'élément de photodétection, en raison de sa faible capacité de jonction, ce qui conduit à un rendement élevé et le gain de conversion élevé comparativement à une photodiode n-diff/p-substrate. Des simulations sur ordinateur avec Cadence et Silvaco produit une capacité de jonction de 31 FF et 135 fF respectivement. Le pixel de l'imageur est basé sur une configuration à trois transistors (3T) et présente un facteur de remplissage de 61%. Le circuit de lecture utilise une technique de capteur de colonne actif (ACS) pour réduire le bruit à motif fixe (Fixed Pattern Noise ou FPN en anglais) liée au le Capteur à Pixels Actif (APS) traditionnelle. En outre, Non-Corrélés Echantillonnage Double (Non-Correlated Double Sampling ou NCDS en anglais) et Delta double échantillonnage (DDS) sont utilisés comme techniques de réduction du bruit. Un montage optique expérimental est utilisé pour caractériser les performances de l'imageur, et nous avons obtenu un gain en conversion de 7,3 uV/e-, une capacité de jonction de la photodiode de 22 fF, un bruit de lecture de 324,5 uV, ce qui équivaut à 45 électrons, et une gamme dynamique de 50,5 dB. Les avantages de l'ACS et NCDS-DDS sont observées dans le niveau faible de FPN du pixel et de la colonne, avec une valeur de 0,09% et 0,06% respectivement. Le travail présenté dans cette thèse est une première étape vers l'objectif de développer une plateforme entièrement intégrée SPR pour biocapteurs, incorporant source de lumière, l'interface SPR, canal microfluidique, les éléments d'optique et imageur CMOS.

  • Titre traduit

    Design and Implementation of a CMOS imager with active column for SPR-based sensors


  • Résumé

    This dissertation presents the design and implementation of a CMOS imager for use in integrated biosensors based on Surface Plasmon Resonance. First, the optimal conditions for plasmon resonance in a CMOS/Post-CMOS compatible interface are obtained by COMSOL modelling. Second, a 32x32-pixel CMOS-Active Column Sensor (CMOS-ACS) is implemented on 0.35 um CMOS technology. In a gold-water interface with prism excitation, it is found that for prisms showing refractive indexes of 1.55 and 1.46, optimal plasmon coupling is obtained for gold films with thicknesses of 50 and 45 nm respectively. Under these conditions, approximately 99.19% and 99.99% of the incident light's energy is transferred to the surface plasmon for both prism respectively, provided that the incident light, with a wavelength of 633 nm, arrives with incidence angles of 68.45° and 79.05° respectively. It is also obtained that a change of 10-4 RIU in the refractive index of the dielectric medium, produces a change of 0.01° in the plasmon resonance angle, which under a light intensity modulation scheme produces a change of 0.08% in the reflected light's energy reaching the photodetector. Concerning the CMOS imager, a n-well/p-substrate photodiode is selected as the photosensing element, due to its low junction capacitance, which results in high efficiency and high conversion gain compared to the n-diff/p-substrate photodiode. Computer simulations with Cadence and Silvaco produced a junction capacitance of 31 fF and 135 fF respectively. The imager's pixel is based on a three-transistor (3T) configuration and shows a fill factor of 61%. The readout circuitry employs an Active Column Sensor (ACS) technique to reduce the Fixed Pattern Noise (FPN) associated with traditional Active Pixel Sensors (APS). Additionally, Non-Correlated Double Sampling (NCDS) and Delta Double Sampling (DDS) are used as noise reduction techniques. An experimental optical setup is used to characterize the performance of the imager, obtaining a conversion gain of 7.3 uV/e-, a photodiode junction capacitance of 21.9 fF, a read noise of 324.5 uV, equivalent to ~45 e- and a dynamic range of 50.5 dB. The benefits of ACS and NCDS-DDS are observed in the low pixel and column FPN of 0.09% and 0.06% respectively. The work presented in this thesis is a first step towards the goal of developing a fully integrated SPR-biosensing platform incorporating light source, SPR interface, microfluidic channel, optical elements and CMOS imager.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?