Acoustic Space Mapping : A Machine Learning Approach to Sound Source Separation and Localization

par Antoine Deleforge

Thèse de doctorat en Mathématiques et Informatique

Sous la direction de Radu Horaud.

Soutenue le 26-11-2013

à Grenoble , dans le cadre de École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble) , en partenariat avec Laboratoire Jean Kuntzmann (laboratoire) et de Information Scientifique et Technique (IST) - Inria Grenoble Rhône-Alpes (laboratoire) .

Le président du jury était Laurent Girin.

Le jury était composé de Geoffrey Maclachlan, Florence Forbes.

Les rapporteurs étaient Jonathon Chambers, Rémi Gribonval.

  • Titre traduit

    Projection d'espaces acoustiques : Une approche par apprentissage automatisé de la séparation et de la localisation de sources sonores


  • Résumé

    Dans cette thèse, nous abordons le problème longtemps étudié de la séparation et localisation binaurale (deux microphones) de sources sonores par l'apprentissage supervisé. Dans ce but, nous développons un nouveau paradigme dénommé projection d'espaces acoustiques, à la croisé des chemins entre la perception binaurale, de l'écoute robotisée, du traitement du signal audio, et de l'apprentissage automatisé. L'approche proposée consiste à apprendre un lien entre les indices auditifs perçus par le système et la position de la source sonore dans une autre modalité du système, comme l'espace visuelle ou l'espace moteur. Nous proposons de nouveaux protocoles expérimentaux permettant d'acquérir automatiquement de grands ensembles d'entraînement qui associent des telles données. Les jeux de données obtenus sont ensuite utilisés pour révéler certaines propriétés intrinsèques des espaces acoustiques, et conduisent au développement d'une famille générale de modèles probabilistes permettant la projection localement linéaire d'un espace de haute dimension vers un espace de basse dimension. Nous montrons que ces modèles unifient plusieurs méthodes de régression et de réduction de dimension existantes, tout en incluant un grand nombre de nouveaux modèles qui généralisent les précédents. Les popriétés et l'inférence de ces modèles sont détaillées en profondeur, et le net avantage des méthodes proposées par rapport à des techniques de l'état de l'art est établit sur différentes applications de projection d'espace, au delà du champs de l'analyse de scènes auditives. Nous montrons ensuite comment les méthodes proposées peuvent être étendues probabilistiquement pour s'attaquer au fameux problème de la soirée cocktail, c'est à dire localiser une ou plusieurs sources émettant simultanément dans un environnement réel, et reséparer les signaux mélangés. Nous montrons que les techniques qui en découlent accomplissent cette tâche avec une précision inégalée. Ceci démontre le rôle important de l'apprentissage et met en avant le paradigme de la projection d'espaces acoustiques comme un outil prometteur pour aborder de façon robuste les problèmes les plus difficiles de l'audition binaurale computationnelle.


  • Résumé

    In this thesis, we address the long-studied problem of binaural (two microphones) sound source separation and localization through supervised leaning. To achieve this, we develop a new paradigm referred as acoustic space mapping, at the crossroads of binaural perception, robot hearing, audio signal processing and machine learning. The proposed approach consists in learning a link between auditory cues perceived by the system and the emitting sound source position in another modality of the system, such as the visual space or the motor space. We propose new experimental protocols to automatically gather large training sets that associates such data. Obtained datasets are then used to reveal some fundamental intrinsic properties of acoustic spaces and lead to the development of a general family of probabilistic models for locally-linear high- to low-dimensional space mapping. We show that these models unify several existing regression and dimensionality reduction techniques, while encompassing a large number of new models that generalize previous ones. The properties and inference of these models are thoroughly detailed, and the prominent advantage of proposed methods with respect to state-of-the-art techniques is established on different space mapping applications, beyond the scope of auditory scene analysis. We then show how the proposed methods can be probabilistically extended to tackle the long-known cocktail party problem, i.e., accurately localizing one or several sound sources emitting at the same time in a real-word environment, and separate the mixed signals. We show that resulting techniques perform these tasks with an unequaled accuracy. This demonstrates the important role of learning and puts forwards the acoustic space mapping paradigm as a promising tool for robustly addressing the most challenging problems in computational binaural audition.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.