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Abstract

In the past few years, the mathematical theory of compressed sensing (CS) has emerged
as a new tool in the image processing field, leading to some progress in surpassing the
limits stated by the Nyquist sampling theory. In particular, the CS theory establishes
that a signal (image, video, etc.) can be reconstructed from a relatively small subset of
non-adaptive linear random measurements, assuming that it presents a sparse structure.
As this hypothesis actually holds for a large number of natural images, several imaging
applications have already benefited from this theory in various aspects.

The goal of the present PhD work is to investigate how the CS theory — and more
generally the ideas and methods developed in relation with sparse signal reconstruction
problematics — can be used to design effi cient optical sensing devices with high spatial and
temporal resolution for biological imaging applications. We first investigate some practical
issues related to the post-processing stage required by CS acquisition schemes, and to the
selection of sampling parameters. We then examine how CS can benefit to video sampling
applications. Finally, with the application of CS methods for denoising tasks in mind, we
focus on the error estimation issue in image denoising problems for low-light microscopy
applications.
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Résumé

Ces derniéres années, la théorie mathématique de ’échantillonnage compressé (compressed
sensing, CS) a émergé en tant que nouvel outil en traitement d’images, permettant notam-
ment de dépasser certaines limites établies par la théorie de I’échantillonnage de Nyquist.
En particulier, la théorie du CS établit qu’un signal (une image, une séquence vidéo, etc.)
peut étre reconstruit a partir d’un faible nombre de mesures linéaires non-adaptatives
et aléatoires, pourvu qu’il présente une structure parcimonieuse. Dans la mesure ol
cette hypothese se vérifie pour une large classe d’images naturelles, plusieurs applica-
tions d’imagerie ont d’ores-et-déja bénéficié a des titres divers des résultats issus de cette
théorie.

Le but du travail doctoral présent est d’étudier comment la théorie du CS — et plus
généralement les idées et méthodes en relation avec les problemes de reconstruction
de signaux parcimonieux (sparse) — peuvent étre utilisés pour concevoir des dispositifs
d’acquisition optiques & haute-résolution spatiale et temporelle pour des applications en
imagerie biologique. Nous étudions tout d’abord quelques questions pratiques liées a
I’étape de reconstruction nécessairement associée aux systémes d’acquisition exploitant
le CS, ainsi qu’a la sélection des parametres d’échantillonnage. Nous examinons ensuite
comment le CS peut étre utilisé dans le cadre d’applications d’échantillonnage de signaux
vidéo. Enfin, avec dans I’idée I'utilisation dans des problémes de débruitage de méthodes
inspirées du CS, nous abordons la question de ’estimation d’erreur dans les problemes de
débruitage d’images acquises en conditions de faible luminosité, notamment dans le cadre
d’applications de microscopie.
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Notations

We recapitulate here some of the notations and conventions used along this manuscript.

Mathematical sets and entities

N: set of natural integers, including 0.

Z: ring of relative integers.
* R: field of real numbers.

C: field of complex numbers.

R:: real numbers excluding 0. N-, Z-, C-, defined accordingly.
* R : positive real numbers including O.
o E9 with d PN : set of the d-tuples of elements of a set E.

e EM N with m,n PN : set of matrices with m lines and n columns with entries in E.
Unless otherwise mentioned, elements of EM are assimilated to elements of EM 1
(column matrices).

« FMN Eqg sets of functions defined over a domain Q and taking values in a set
E. Qs typically a subset of RY (continuous domain) or a subset of Z¢ (discrete
domain).

» [a,biwith a,bPZ: interval of all relative integers n such that ad n d b.

Arithmetic and miscellaneous notations

* |Q]: number of elements of the finite set Q.
o ttuwith t PR (“floor of t”): the largest relative integer smaller than or equal to t.
o rtswith t PR (“ceil of t”): the smallest relative integer larger than or equal to t.

e pamod Ngwith aPZ, N PN-: remainder of the Euclidian division of a by N, i.e.

unique r such that there exists qPZ with a“ "N ~ r.
“ | . . . .
. Ch m. binomial coeffi cient.
* Z with z PC: complex conjugate of z.

15



Notations

Linear algebra

o Xk, fx: kM coeffi cient of a vector x PCN (typically a rasterized image) or a function
f returning a vector.

. }X}p with pPN- Y t* 8 u: lp-norm of a vector x PCN. Formally:

5

1

y P

X}y © IxlP for any pPN: Ix}g © max x|
k

* }Xx}o: number of non-zero coeffi cients (also called lo-pseudo-norm) of a vector x P cN.
r
 XX|yy* Xk “Yk: canonical inner product between two vectors X,y P CcN.

« x~ y PCN with x,y P CN: pointwise product (also called Hadamard product)
between two vectors X and Y.

* 0,1: constant vectors with all entries equal to O or 1 respectively.

e e¢ PCN with k P[O,N ~ 1t k'™ vector of the canonical basis of CN; all its entries
are 0, except the k" one, equal to 1.

e 1d PCN"N: identity matrix of CN™ N: all its entries are 0, except the N ones on the
main diagonal, equal to 1.

« W withwW PCM ™ N: adjoint of the matrix W . If W has real-valued entries, W )
is simply its transpose.

%1 operator norm of W PCM™ N

e TrpVg“ | Wkk: trace of a square matrix W P CN" N whose entries are denoted
as Wk | (k,| PO,N "~ 1D).

oWt sup,

Differential calculus

-

Iff PF RV N R, the gradient of f at point x PRN is denoted as Vf pcqP RN, and
its Hessian matrix at X as V2f gcqPRN" N (assuming that f is regular enough for these
objects to exist). Formally:

» fi » B%f B2f B2f fi
_BTOFXQ - BxoBx; PXd Brobxy 1 X
Vg g B Ped V2 g é sose XA BEPA T Bt
- | _: |
5o X %p&q %F’(q %p(q

The usual notation % is used to denote the k' partial derivative of a function depending
on a variable whose “natural symbol” is x PRN .

16



Notations

Random variables

e EtXu expected value of a random variable X .

* VartXu variance of a random variable X .

e Npu,2qwith p PRN and ¥ PRN'N a symmetric positive matrix: probability
distribution of Gaussian vectors with mean | and covariance matrix X .

+ Pp\gwith A PRY: probability distribution of vectors composed of N independent
entries, with the k' entry following a Poisson law of parameter Ay for all k.
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General introduction

Nowadays, microscopy techniques play an increasing role in the development and advances
in modern biological science, which requires increasing imaging capabilities in terms of
depth penetration, optical resolution, acquisition speed, sensitivity, etc. To tackle these
challenging issues, several microscopy imaging modalities have been developed in the last
ten to twenty years: two-photon excitation microscopy [Denk90] permits to observe sam-
ples at very high depths, structured illumination microscopy (SIM) [Gustafsson00] or
single-molecule imaging techniques (PALM/STORM) [Betzig06, Rust06] allow to obtain
spatial resolutions beyond the diffraction limit, selected plane illumination microscopy
(SPIM) [Huisken04] enables fast acquisition and “3D+Time” imaging of living samples.
In terms of signal processing, these imaging techniques produce very large sets of data,
due to their increased resolution and/or to the multi-dimensional nature of the acquired
images. Handling such large sets of data may raise diffi culties, and imposes strong techni-
cal constraints on the design of the acquisition systems. Using smart sensing techniques
stemming from the compressed sensing (CS) theory, we believe that these constraints can
be relaxed by reducing the number of samples that need to be acquired to reconstruct
these large optical microscopy images.

In this thesis, we propose to study how the compressed sensing theory can benefit to
optical imaging, with in mind the design of efficient optical microscopy systems. More
precisely, following the approach initiated by Marcio Marim’s PhD work [Marimlla], we
focus on the study of Fourier-based compressed sensing: in such acquisition model, the
imaged scene is observed through an optical set-up whose role is to implement an optical
Fourier transform [Goodman96|, and an array of photo-electric transducers properly po-
sitioned downstream to this optical set-up is in charge of the actual acquisition task. The
organisation of the manuscript reflects the different problematics tackled during this PhD
work.

In chapter I, we present the mathematical theory of compressed sensing. We introduce
the CS formalism and notions, and recall some of the main theoretical results obtained
in the CS framework. We finally illustrate the interest of this theory by presenting four
examples of imaging applications that benefited from CS results or whose design were
directly inspired by them.

Chapter II is dedicated to the reconstruction issues raised by CS acquisition schemes.
We present how the CS reconstruction problem may be formulated in practice, focusing in

19



General introduction

particular on convex optimization formulations. We then propose a review of the existing
algorithmic methods that solve these convex optimization problems, by presenting the
general characteristics and principles of these optimization algorithms, and comparing
their performances in practical situations.

In chapter III, we discuss the different parameters associated to the sensing operation
in Fourier-based CS, namely the position in the Fourier domain where samples should
be acquired (i.e. the sampling strategy), and the number of such samples (i.e. the sam-
pling rate). We first review the works addressing the determination of the best sampling
strategy, and show that, currently, answers to this problem remain mostly based on em-
pirical observations, in spite of recently released theoretical works on this issue. We also
investigate the incidence of the choice of a sampling rate on the effi ciency of the CS ac-
quisition and reconstruction scheme, and the artifacts observed in reconstructed images
in the context of two representative sampling strategies, namely uniform and Gaussian
random sampling.

In chapter IV, we study how Fourier-based CS can be applied to video sensing and
reconstruction applications. We first consider the case of a video to be reconstructed from
partial Fourier measurements acquired on each of its frames, focusing in particular on
the sparsity models to use for effi cient video reconstruction: we compare several existing
sparsity models, and introduce a new one based on 3D total variation, which improve the
quality of the reconstructed sequences. We then switch to a non-linear acquisition model
— beyond the “pure” CS framework — in which only the modulus of the Fourier transform
of the signal would be acquired: for this different reconstruction problem, we show that
we can exploit the same sparsity properties exhibited by video sequences than the ones
used in the linear acquisition scenario to implement a “phase-retrieval-like” reconstruction
procedure.

Finally, chapter V focuses on the design of an estimator of the mean squared error
in denoising problems, in a context of a mixed Poisson-Gaussian noise model, that is
relevant to model the noise present in low-light microscopy applications. Although this
work goes off the general point of this thesis, it was originally motivated as part of the
extension of CS denoising methods, as proposed by [Marim09, Marim1la]. We however
derive a practical formulation for our PG-URE estimator that make this tool usable “out
of the box” with almost any existing denoising algorithm. In particular, we present some
examples of denoising parameter optimizations involving standard denoising methods and
phantom test images, and show that our framework leads to results similar than the ones
obtained using an oracle-based approach.

20



Chapter I

Introduction on CS theory

Compressed sensing (CS) is a theory that has emerged and developed over the last ten
years, based on the seminal works of Candés, Romberg and Tao [CandesO6a] on the one
hand, and Donoho [Donoho06] on the other hand; the goal of this theory is to study a class
of inverse problems involving signals that have a sparse structure. To be more precise, the
problem tackled by CS consists in recovering a signal of interest x PCN from a vector of
observations y “ ®x PCM constituted by linear projections of this signal X, the number
M of scalar projections being significantly smaller than the size N of the signal (M ! N):
in this context, the linear operator ® P CM™N is called the measurement operator. In
order to remove the indeterminacy due to the small size of the observation vector y, some
assumptions have to be made on the structure of the signal of interest X to recover: in the
case of CS, this consists in assuming that X has a sparse representation in some known
basis or dictionary W, i.e. there exists a vector s PCt such that x * Ws whose most of
the coeffi cients are zero. In this case, ¥ P CN" L is called the sparsity basis or sparsity

dictionary.

The goal of this introductory chapter is to give a brief overview of this theory. We
start by describing the general formalism used for signals and images throughout this
manuscript, and by stating some more specific definitions about the notion of sparsity as
it is at the heart of the CS theory. We will then review some of the important theoretical
results that were established in the theory of CS, including the related precursory works.
Finally, we will conclude by presenting some imaging applications that have benefited from
CS or that were developed subsequently to the emergence of this theory.

I.1 A few definitions 22
I.1.1  Signals and images . . . . . . . . . ... oL 22
I.1.2  Sparsity and compressibility . . . ... ... ... .. 0oL 23

1.2  Compressed sensing theoretical results 25
1.2.1  Recovering sparse data from incomplete measurements . . . . . . . . . 25
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1.2.2  Restricted isometry property . . . . . . . .. ... . ... 26
1.2.3  Partial unitary transforms . . . . . ... ... ... ... ... ..., 27
1.2.4  Sparse representations and dictionaries . . . . ... ... ... ... .. 28
1.2.5  Block sparsity and total variation . . . .. ... .. ... ... ..... 30
1.3  Application of compressed sensing for imaging devices 31
1.3.1  Magnetic resonance imaging . . . . . . ... ... oL oL 31
1.3.2  Digital holography . . . . . . .. . ... . o 32
1.3.3  Single-pixel camera . . . . . ... ... ... o 34
1.3.4  Schlieren deflectometry . . . . . . . ... ... L 35

I.1 A few definitions

I.1.1 Signals and images

In this manuscript, signals are modeled as elements of a function set F pQ N Eq where Q
and E characterize the different types of signals. In particular:

+ 2D images are modeled as elements of F pQ N Rqwith Q A R? (continuous modeling)
or QA Z2? (discrete modeling, more common in this manuscript);

+ 3D images are modeled as elements of F pQ N Rqwith QA R% or QA Z3;

» video sequences of 2D images (also denoted as 2D+T signals) are modeled in the
same way, except that one of the dimensions of the domain Q is particularized as
the time dimension;

 multi-channel images are modeled as elements of F pQ N RCq where ¢ P N° is the
number of channels.

We use bold blue font to denote signals and functions that return signals (example: “let
x PF pQN Rgbe an image”, or “let f be a denoising operator”), and bold red font for
linear operators between signal spaces.

When Q is a finite set — in particular when Q is a bounded subset of Z¢ — the sets
FMQN Eqand EI®l are isomorphic: an isomorphic mapping between these two sets is
then characterized by a bijection ¢ : [0,|Q]” 10N Q, i.e. an ordered list of all the
elements of Q. As the actual chosen bijection ¢ does not matter in general for ideas and
demonstrations developed in this manuscript, we use cither x P F pQ N Eqor equally
x PE®l to characterize a signal of the corresponding type. Individual components of this
signal X are denoted:

e either as X with k P[0,|Q] " 10 when X is seen as an element of E %I,

 or as X ruswith u PQ when x is seen as an element of F fQ N Eq
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Obviously, Xk and X rusrefer to the same element when u “ ¢ pkg

Finally, for signals X that are defined on a bounded domain Q A Z9, it is convenient
in some situations to consider extensions of X over the whole grid Z9. In particular, for
Q“ (0,ny” 17 [0,ny” 1 """ [0,ng” 10A Z9, the extension of X using periodic
boundary conditions is defined as follows:

XruUq,...,Uqgs" Xrupg modny,..., Uy mod ngs forallu“ puy,...,uqqPz¢ (I-1)

where the same notation is kept for both X and its extended version.

1.1.2 Sparsity and compressibility

Definition I-1 (Sparsity) A wector x P CN s said to be S-sparse (with0d S d N)
if it has at most S non-zero coeffi cients. The minimal value S for which X is S-sparse
is denoted as }x}o, and is called the lg-norm® of X. Finally, X is said to be sparse if

IX}o! N.

To be more concrete, }X}, denotes the number of non-zero coeffi cients of X, and X is
said to be sparse if most of its coeffi cients are zero. By extension, we will say that a vector
x PCN is sparse in a dictionary W PCN" L if there exists a sparse vector s PCL such that
X
Y. An example of this situation is illustrated in Fig. [-1. In general, the matrix ¥ will
be assumed to be full-rank; then, ¥ PCN" b will be denoted as a sparsity basis if L “ N,
and as a sparsity redundant dictionary if L 3 N. The case L @ N (under-determined

Ws: in this case, S is said to be a sparse representation of X in the sparsity dictionary

dictionary) is less common, as such type of dictionary does not allow to represent all the
signals of CN .

It should be noted that, except in the trivial situations corresponding to S “ 0 or
S “ N, the subset of the S-sparse signals of CN is not a vector subspace, but rather a
union of Cﬁ subspaces, each of them of dimension S. As a consequence, this space is not
closed for the addition: the sum of two S-sparse vectors might not be S-sparse.

Another important concept in relation with sparsity is the notion of compressibility, also
denoted as weak sparsity by some authors. Informally, a compressible vector X PCN can
be thought as a vector that can be approximated by a well-chosen sparse vector X. More
precisely, we will say that x PCN is compressible if there exists a sparse vector X PCN such
that the order of magnitude of the approximation error px = X qis significantly smaller than
the one of X, where these orders of magnitude are measured with an appropriate metric.
An example of a compressible 1D signal is presented in Fig [-2.

In order to formalize the concept of compressibility in a more rigorous way, [Candes06b]
proposes the following definition:

!Here, the denomination “norm” is abusive, in that the functional }'}o does not verify all the properties
usually required for a norm in a vector space: in particular, }'}, is not positive-homogeneous. However,
the term “lg-norm” is very common, and we will use it for convenience in the rest of the manuscript.
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Figure I-1: Example of a piecewise constant signal x (left chart), i.e. a signal whose
discrete derivative D X (defined here as pD xqrus“ xrus” xru” 1s right chart) is sparse.
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Figure [-2: Example of a signal y whose discrete derivative D y is compressible: as most of
the coeffi cients of D y are close to zero, sparse approximations of this signal can be obtained
by actually setting these coeffi cients to zero, keeping only those having a significant order
of magnitude. An example of such sparse approximation is the signal D X presented in
Fig. I-1.

Definition I-2 (Compressibility, weak sparsity) A wvector x P CN s said to be com-
pressible if, for some value r g 1, its components obey the following decreasing power law,
i.e. there exists a constant C; (depending only on r) such that:

Kpq & Crpk> 19" for allk PIO,N 7~ 1) (1-2)
where the sequence Xpg Xpigr« -+ XpN~ 1q  Tepresents the components.of X serted in de-
creasing order with respect to their magnitudes: Xpoq € Xpq € € XN~ 1q-

This formal definition I-2 does meet the intuitive one given above. Indeed, if x P CN
is a vector for which (I-2) holds, for any S with 1d S d N we can construct a S-sparse
vector XS P CN by setting to zero all the components of X except the S largest ones.
Then, the l;-norm of the approximation error >x )N(S”1 can be bounded as follows:
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> , "‘S; Cr .. 1
1771 51

(I-3)

which shows that XS is a good approximation for X , provided that C, is not too large. This
latter requirement on C; is somehow legitimized by the fact that, in a vector space of finite
dimension, the definition I-2 does hold for any vector X, as it is always possible to find
a finite constant C; large enough to be compatible with (I-2): the formal definition -2
actually captures the intuitive notion of compressibility only if C; is not allowed to take
extremely large values. More generally, it can be shown that X S is the S-sparse vector that
minimizes the approximation error >x )~<S)p for any of the lp-norm with 1d' p& ~ 8: in

that, XS is referred as the best S-sparse approximation of X.

1.2 Compressed sensing theoretical results

1.2.1 Recovering sparse data from incomplete measurements

The idea that signals with an underlying sparse structure can be effi ciently measured and
processed emerged about ten years ago. Among the works that initiated what would
become the theory of compressed sensing, we mention [DonohoO1], which studied the
problem of recovering the underlying structure of a signal obtained as a superposition
of a few Dirac atoms together with a few sine wave atoms. The authors showed that
the decomposition of such a 1D signal in terms of a sum of Dirac and sinusoid atoms
is unique, assuming that the number Sy of Dirac atoms and the number Sg of sinysoid
atoms are far smaller than the size N of the signal (more specifically: Sq~ Ss & —b).
They extended their work to what they called mutually incoherent bases, and derived
some similar conditions about the uniqueness of the decomposition of a signal in terms
of sparse linear combination of atoms taken from a pair of such mutually incoherent
orthonormal bases. The authors described this property of mutual incoherence between
two bases as the fact that “no nonzero signal can have a sparse representation in both
bases simultaneously”, and showed that this property holds for many pairs of bases (Dirac
and sinusoids, wavelets and sinusoids, wavelets and ridgelets, etc.).

These results were then extended in parallel by [Donoho03] and [Gribonval03], who
studied the problem of seeking sparse solutions X PCN to the system of linear equations

y

Such type of solution X could be obtained as a minimizer of the following optimization

®x, where y P CM is a vector of observations and ® P CM™ N 4 given dictionary.

problem:
argmin}x}, subject toy * ®x (Po)
xPCN
In general, solving (Pg) requires to seek the smallest subset of columns of ® — among all
the 2N possible subsets — such that there exists a linear combination of these columns equal
to y: the complexity of this problem grows exponentially with N, making it intractable
even for small values of this parameter. Therefore, pursuing a convex relaxation approach
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already proposed in previous works on sparsity, the authors suggested to replace the lg-
norm by the l3-norm, turning (Pg) into a convex optimization problem (P1), that can be
handled in a more practical manner:

argmin}x}; subject toy * ®x (P1)
x PCN

These works demonstrated an important result about the strategy for seeking sparse
solutions to linear equations, which can he presented as follows: given a vector y P cM
and a dictionary ® “ @, @ 777 @n P CM™ N where the vectors @y represent the

columns of ®, if there exists a vector x P CN such that y “ ®x, and if the following

holds: ~

1 1 . ROMIONY
X a — 1 Where M maX7
Plod s 1 Mg Pa R Yo, Toil,

then X is the unique solution to both (Pg) and (P1). In other words, this result means that

(1-4)

if y is indeed the result of a linear combination of a suffi ciently small number of columns
of @, then:

 first, solving (Pg) does permit to identify this linear combination;

» second, the strategy consisting in solving (P1) instead of (Pg) is relevant, as the
solutions of these two problems are equal.

1.2.2 Restricted isometry property

In the mid-2000, Candes, Romberg and Tao extend the ideas previously developed by
[Donoho03] and [Gribonval03] in a serie of papers [Candeés05b, CandesO6a, CandesO6c¢,
Candes06b]. However, compared to previous works, Candés, Romberg and Tao estab-
lish some theoretical results about the reconstruction of sparse signals in a framework
relying on hypotheses that are more consistent with situations encountered in practical
image sensing applications. More specifically, the new framework relaxes the following
hypotheses:

1. the observation vector may be inaccurate to some extent (for instance, it can be
degraded by some noise sources),

2. the signals to be reconstructed do not need to be strictly sparse, but rather com-
pressible.

To obtain their results, these authors introduce in [Candes05b] the restricted isometry
constant associated to a linear operator.

Definition I-3 (Restricted isometry property) Given a linear operator ® PCM™ N gnd

an integer S PN, the S-restricted isometry constant associated to @ is the smallest scalar
Os PR such that:

pl” Bsaix}ad }dx}ad pl° Ssgix}s  forallx PCN  with }x},dS  (I-5)
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A constant 8s close to 0 means that the operator @ behaves approximately like an
isometry for S-sparse inputs, i.e. it almost preserves the norms of these vectors. More
generally, the smaller the constants &g associated to @, the larger the class of signals that
can be recovered by solving either (Pg) or (P1).

This latter property is stated in more formal ways in several papers; for instance, we
recall here a result taken from [Candes08]: given a signal of interest x PCN (not necessarily
sparse), a measurement operator ® P CM N and an observation vector y “ ®x ~ b
degraded by an unknown additive noise b such that }b}, d [] an estimator X of X is
defined as the solution of a convex optimization problem, as follows?:

X “ argmin}x}; subject to }®x "~ y}, d [ (I-6)
x PCN
?_
Then, if s d@ 27 1for some S, the following inequality holds, that establishes an upper

bound on the error committed when estimating x by X:
> >
~ - " N ; ~S
RO x},d AT %’x x> (I-7)
where A and B are two positive constants depending only on &g, and X° is the best S-
sparse approximation of X, i.e. the vector obtained by setting to zero all the components
of X except the S largest ones (same definition than in Sec. 1.1.2).

It can be noted that, in the inequality (I-7), the two terms involved in the upper bound
are related to the imperfect characteristics of the “real-world” signals, already mentioned
above:

1. the noise that affects the observation vector y (term A "[),
>

2. the non-sparseness of the signal to recover (term "% ' )~<S)1).

>

>
In particular, this second term involving >x =~ %S

>, is likely to be very small if X is com-
pressible, as explained in Sec. 1.1.2.

1.2.3 Partial unitary transforms

One class of measurement operators @ that is encountered in several CS imaging appli-
cations (see 1.3) is the class of partial unitary transforms (also denoted as randomly sub-
sampled unitary transforms). Such measurement operator ® P CM "N is constructed by
selecting M rows from a unitary matrix U PCN" N Formally, this means that ® “ Y U,
where £ Pt0, 1™ N is a selection matrix, with exactly one non-zero entry per line and
at most one non-zero entry per column (the columns corresponding to the selected rows
of U). This property entails that ®® “ Id, and ® ® * U p= ZqU, where = %

2Tn this formulation, the scalar parameter Uis supposed to be known. Prior knowledge on the probability
distribution of the noise component b is often required in practice to set this parameter (see Sec. 11.1.1 for
more details).
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is a diagonal matrix. Common examples in imaging applications include partial Fourier
transforms and partial Hadamard transforms (see Sec. 1.3). It is also worth mentioning
that the associated unitary transforms encountered in practical applications often come
with fast algorithms for computing their product against a vector x PCN .

For such measurement operators @, [Candes07] shows the following result: given a
signal X P CN such that }x}, d S and partial unitary transform ® P CM™ N built by
selecting in a uniform random manner M rows from U PCN" N (unitary) such that the
following inequality holds:

M & C upIE S N logpNg with WAJQ* max]ugl (I-8)

where C is a (small) numerical constant and ppJ qis defined as the largest magnitude
among the entries uy | of the matrix U. Then, if y “ ®x, the program (P1) recovers the
original signal X from the measurement vector y with an overwhelming probability3.

Here, the coefficient 1 pJ qis somehow a measure of the ability of U to be a “good”
sensing basis for sparse signals: in the most favorable cases (when U is chosen such that
HpUg“ N '), the result by [Candes07] predicts that the minimal number of measure-
ments required to reconstruct a S-sparse signal of size N is about SlogpN g which is
relatively small®; on the contrary, in the worst cases (when ppJq* 1), the necessary
number of measurements rockets. It can be noted that, if U “ ®W where ® and W are
two orthonormal matrices, and if @g, @1,...,ONn" 1 and Yo, Y1,..., YN 1 denote respec-
tively the rows of @ and the columns of W, then:

HpJug* max ROMIRY (I-9)

which matches the definition of the mutual coherence measure between the bases @ and
W introduced in [Donoho01] (see 1.2.1).

1.2.4 Sparse representations and dictionaries

In practical situations, dealing with images that are sparse in their canonical representation
basis is quite unusual. A more relevant hypothesis consists in assuming that vectorized
images x P CN have sparse representations s P Ct in some appropriate dictionaries ¥ P
CN" L ie x“ Ws (see Sec. 1.1.2). How the dictionary W is actually chosen depends on
the application, and more specifically on the underlying image formation model and on the
properties of the studied images: several options have been proposed, such as wavelet basis
or undecimated wavelet frames for piecewise regular images [Starck04], curvelet frames
for piecewise regular images with regular discontinuities [Candeés04], ad hoc dictionaries

®Please note that this formulation differs from the one given in [Candes07], as a different normalization
is used for U in this document.

4With less that S measurements, the original signal could never be recovered, even if an oracle could
predict the position of its non-zero coeffi cients.
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constructed using automatic learning approaches [Duarte-Carvajalino09, Gleichmanll1],
ctc.

To extend the reconstruction through convex optimization framework to deal with
sparsity dictionaries, two different approaches may be considered, as proposed by [Elad07]:

» The first one consists in changing the optimization variable in the reconstruction
problem (I-6), replacing X with its representation S to make sparse. This approach,
denoted by [Elad07] as synthesis, leads to the following reconstruction problem:

§ “ argmin}s}; subject to }®Ws” ™ y}, d [ (Psynthesis)
sPCL

The estimate X of the signal of interest is then recovered as X “ WS8.

* The second approach, known as analysis, keeps X as the optimization variable of the
reconstruction problem, but modifies the optimized objective function. The estimate
X of the signal of interest is then obtained as:

> . >
X argmin>W'™x> subject to }®x "y}, d [} (Panalysis)

x PCN
where the operator W™ P CY" N — denoted as the analysis operator® — transforms
X into a representation vector S such that x * Ws and s is sparse for the signal to

recover.

Obviously, both the analysis and the synthesis approaches are equivalent in the case where
L “ N,ie. when W isindeed a basis. In this situation, the analysis operator W™V is equal
to the actual inverse of W, i.e. WV« W' 1,

However, the situation is more complicated when using redundant dictionaries W, i.e.
when L g N. [Elad07] proposes a comparison of the analysis and synthesis reconstruction
for general inverse problems, and shows that in this case the behavior of these two recon-
struction methods may significantly diverge. However, the authors do not advocate for
one formulation compared to the other, although they point out that the analysis problem
is likely to be easier to solve than the synthesis problem when W is a highly redundant
dictionary (i.e. L " N), since in this case X (i.e. the optimization variable of (Panalysis))
belongs to a vector space whose dimension is much smaller than the one of the vector space
to which s belongs (i.e. the optimization variable of (Pgsynthesis)). An illustration of the
differences between analysis and synthesis approaches in the context of image restoration
problems is proposed in [Chaari09].

An extension of the restricted isometry property framework to signals that are sparse in
a redundant dictionary W was proposed in [Candes10]. More precisely, this work focuses
on the case where W is a tight frame®, which covers several types of dictionaries used

SUnless otherwise specified, the notation W' does not refer to the inverse of ¥ (¥ may not even be
invertibley. |

S we ywy T oy g PCM "L js a tight frame if there exists a real constant a a 0 such that
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in practical applications: curvelet frames, redundant wavelets, or any concatenation of
orthonormal bases. In this situation, the authors show that a signal x P CN having a
sparse or compressible representation in such dictionary W can be recovered from a vector
of linear measurements y “ @®x ~ b (same notations than in Sec. 1.2.2) by solving the
analysis problem (Panalysis) with Winv « W' yp to a modified version of the restricted
isometry property (see definition I-3), they demonstrate that the error }X = x}, between
the solution X of this problem and the true sought signal can be bound as in (I-7).

1.2.5 Block sparsity and total variation

For image reconstruction tasks, several works such as [CandeésO6a, Kim09, Marim1la]
propose to replace the I1-norm used in the objective function of (Panalysis) by the total
variation (TV) of the image X :

X “ arg Tnin}X}TV subject to }®x " y}, d [ (Ptv)
xPC
where }x};y is defined as follows, for a 2D image x P F pQ N Cq defined on a domain
QA 7% y b
X}y ¢ IPD nxaru,vs*" [pD vxqru, vs® (I-10)
pu,vaPQ
where Dy and D, represent the horizontal and vertical discrete derivative operators:
the most common implementations assume that pD pxqru,vs“ xru~ 1,vs" Xxru,vsand
similarly for Dy, but other finite difference schemes can be considered.

The effect of the TV driven reconstruction problem (Pty) is to enforce sparsity on the
gradient of the sought image X, which corresponds to assuming that X obeys a piecewise
constant model (also denoted as the cartoon model). As a consequence, the reconstructed
image X exhibits in general sharp edges and well-contrasted objects.

More generally, the gradient sparsity enforced by TV minimization in (Pty) can be
seen as a special case of block sparsity (also named as group sparsity or structured sparsity
by certain authors). This notion was introduced by [Yuan06] and then developed by
several authors (see for instance [Stojnic09, Eldar09b, Bachl2]) in order to refine the
sparsity models used in CS as well as in other signal processing problems. Indeed, if the
l1-norm used in the objective function of the inverse problems (Panalysis) and (Psynthesis)
does enforce sparsity, it does not account for the fact the set of non-zero coeffi cients of
sparse representations S corresponding to typical signals of interest X often exhibit some
particular structures.

To make up for these limitations, the above mentioned works introduce a notion of
mixed |1 p-norm over the space C- of considered sparse representations: more precisely,
given a partition pwy,...,ws(of the integer interval [0,L =~ 11— i.e. a family of subsets

s | ——
YW “ ald, or equivalently if t g |xt|Jk|Sy|2 “a }s}g for all s P Ct. The tight frame is denoted as
normalized if a “ 1.
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t
uwy PLO,L " 1Jsuch that S. LWy [0,L7 1and wy X wyr H for any pair pg, g'gwith
g %0g* — and a vector S PCh, the mixed |1 o-norm of s is defined as:

d

1] W y 2
}shio ISk (I-11)
g1 KPuy

It can be shown that substituting the I1-norm with this mixed I1 >-norm in either (Panalysis)
or (Psynthesis) leads to block-sparse signals, i.e. signals whose non-zero coeffi cients of the
representation vector S are grouped over a small number of sets wy that compose the
partition used in the definition (I-11): the number of non-zero coeffi cients within these
few “active blocks” can however be quite large. The design of the partition pwy,...,wWsq
depends on the expected relations between the coeffi cients Sk of the sparse representation.

It is worth mentioning that several alternative definitions of mixed norms similar to

(I-11) exist: one could for instance relax the requirement uyX uwy: “ H to allow overlapping
blocks, or substitute the “I part” in (I-11) by any lp-norm to shape the distribution of the
non-zero coeffi cients inside the blocks. See [Bach12] and references therein for more details
on these extensions, and for instance [Gramfort09] for an example of a practical application
— signal reconstruction from magneto- and electro-encephalography measurements — that

makes use of mixed norms.

1.3 Application of compressed sensing for imaging devices

1.3.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is probably one of the first imaging modalities that
have benefited from CS theoretical results. One reason for that is that, as noted by
[Lustig08], “MRI obeys two key requirements for successful application of CS”:

1. typical medical images have compressible representations in appropriate domains,
either wavelet or gradient (see for instance [Lustig07, Huangl2]);

2. the transducers of MRI scanners (i.e. the antennas) measure a physical signal that
is by essence a Fourier transform of the actual image of interest.

While the first of these two properties is not particularly related to MRI (compressible
representations can be found for almost every class of natural images), the second one is
indeed very specific. More precisely, the signal y ptg collected by the coils at time point t
of a MRI acquisition has the following form:
i ’ A cE
ypQq“ xprgexp 2w Kpgr  dr (1-12)

where x prgis a 3D signal proportional to the spatially varying physical quantity that is
to be imaged (typically the proton density in the tissue of a patient). Then, the measured
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data y ptqappears as a sample of the 3D spatial Fourier transform of the signal of interest
corresponding to the spatial frequency k'ptg The set of all spatial frequencies k'ptqvisited
during the acquisition forms a sampling trajectory in the Fourier domain (i.e. the k-space
in MRI terminology) of the signal of interest, and this trajectory is necessarily continuous
(see [Wright97, Lustig08] for more details). The sampling trajectory is an adjustable
parameter of the acquisition device.

The trajectory in the K-space has to be designed to satisfy a trade-off between two
contradictory objectives: on the one hand, it has to be as short as possible, as the length
of the trajectory conditions the total scanning time; on the other hand, the number of
collected Fourier samples has to be large enough to allow the recovery of the signal of
interest with minimal artifacts and sufficient spatial resolution. Traditional strategies
for designing the sampling trajectories propose to follow straight lines distributed over
a Cartesian grid in the K-space: while the reconstruction process corresponding to this
strategy is particularly straightforward (it consists in a simple discrete inverse Fourier
transform), it results in particularly long sampling paths, and thereby long scanning times.
Increasing the step between two sampled lines in the k-space could reduce the acquisition
time, but this strategy introduces aliasing artifacts or reduces the spatial resolution of the
reconstructed image.

However, these sampling strategies do not take advantage of the underlying sparsity
properties of the sampled signal, and this is where compressed sensing comes into play:
it has been shown that exploiting these properties in an analysis reconstruction scheme
(Panalysis) allows to significantly reduce the number of collected Fourier samples without
degrading the quality of the reconstructed MRI image (see [Lustig07, Lustig08] and ref-
erences therein): a 5 to 10-fold acceleration is reported in [Lustig07] in the case of some
real in vivo applications, without significant loss of information.

1.3.2 Digital holography

Using CS techniques for digital holographic imaging applications was proposed by sev-
eral authors: see for instance [Brady09, Marim10, Marim11b, Rivensonll] and references
therein. These applications have in common to perform the sampling operation in the
Fresnel domain of the signal of interest. The Fresnel transform characterizes the free prop-
agation of an electromagnetic wave in an isotropic homogeneous non-dispersive medium,
such as the air (see [Goodman96]). As an example of this type of application, a more
detailed description of the set-up proposed in [Marim11b] is provided in what follows.

In this work, the authors introduce an off-axis compressed holographic optical set-up
using a Mach-Zehnder interferometer (see Fig. I-3). In this set-up, a coherent radiation
emitted by a laser is split into two beams, that follow different paths: the first one, the
object beam, is used to illuminate a transparent planar object of interest, which transmits
a diffracted light field E; the second beam E| o (the reference beam) bypasses the object
of interest, and is made to interfere with the transmitted light field E at the recording
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Figure I-3: Off-axis holography optical set-up proposed by [Marim1l1lb] (the picture is
reproduced from this publication).

plane. The interference pattern is then collected by a CCD or CMOS array detector. The
measured image corresponding to the intensity | of the interfered light fields encodes the
following signal:

N 2 “ 2 N 2 N = N T=
|E" Erol™” |Gaedmalidn Fokan Fokan (I-13)
Zero-order Real image Twin image

In an off-axis scheme, the object beam E and the reference beam E| o reach the detector
plane with different incidence angles, which makes the three components of the measured
image | — namely the zero-order, the real image and the twin image — appear as separated
in terms of spectral content: an appropriate band-pass filter applied to | permits to extract
the real image component y “ E "E| . Finally, it can be shown that the transmission
map X of the imaged object — which is the actual signal of interest — and the measured real
image component y extracted from | are related through an optical Fresnel transform:

i .
yré,ns“  Xru,vsexp ;\% o & v’ nd dudv (I-14)

where A is the wavelength of the radiation emitted by the laser, pu, vqand £, nqare the
spatial coordinates respectively in the object plane and in detector plane, and d is a length
parameter characteristic of the set-up (see [Gross07, Cuche99] for more details about the
off-axis holographic set-up).

When the imaged object presents some appropriate sparsity properties, [Marim11b]
proposes to reduce the number of collected samples over the CCD/CMOS array detector:
using a U.S. Air Force target as the object, the authors demonstrate that well-resolved
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DMD+ALP Board

Photodiode circult

Figure I-4: Single-pixel camera set-up proposed by [Takhar06, Duarte08] (the picture is
reproduced from the latter). The image of the object of interest is focused by the lens 1
on the digital micro-mirror device (DMD), which reflects it to the photodiode sensor.

transmission maps can be recovered using only 9% to 19% of all available pixels on the
sensor. Up to a technical adaptation of the detector design that would avoid to acquire the
remaining 81% to 91% pixel values, such compressed sensing scheme could theoretically
speed up the acquisition operation, leading to faster CCD/CMOS sensors.

1.3.3 Single-pixel camera

In [Takhar06, Duarte08], an innovative image acquisition set-up — denoted as the single-
pizel camera or one-pizel camera — is introduced as a proof of concept for a camera based
on a single photodiode and implementing CS imaging. The motivation for such type of
acquisition device is to design cameras that could operate in wavelength domains for which
building arrays of sensors is technically unfeasible or highly expensive.

The principle of the single-pixel acquisition set-up is conceptually quite simple (see
Fig. I-4): the observed object of interest is focused through a lens on a digital micro-mirror
device (DMD), which reflects its image to the photodiode sensor back through another lens.
The key ingredient here is the digital micro-mirror device: this instrument consists in an
array of tiny mirrors; the orientation of each of these mirrors can be individually switched
between two states. Thus, each facet of the DMD receives a small spatial fraction of the
object of interest image (i.e. a pixel), and either reflects it or not toward the photodiode.
Then, a full acquisition sequence consists into measuring the signal intensity collected by
the photodiode for several configurations of the facets. Formally, the vector of collected
samples Y PRM is related to the signal of interest x PRN by the equation:
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where each coeffi cient @k characterizes the state of the I'" facet during the acquisition
of the k" sample: @ “ 1if it is oriented to reflect the image of the object toward the
photodiode, and @ | “ O otherwise.

In this set-up, the acquisition time is directly related to the number M of samples
that are necessary to retrieve the signal of interest X, as samples have to be acquired
sequentially. In a naive approach, M would be set equal to the number N of pixels of the
acquired image, so that ® could be chosen as an invertible matrix (typically @ “ 1d in
a one by one pixel scan strategy). However, up to some appropriate sparsity assumption
on the imaged object, the CS theory demonstrates that the number M of measurements
can be significantly reduced while still allowing accurate reconstruction of the image X.
Using a random acquisition matrix @ and a reconstruction scheme enforcing sparsity of
the Haar wavelet coeffi cients of X, [Takhar06] shows reconstructed images corresponding
to ratios % varying from 40% to 66%.

1.3.4 Schlieren deflectometry

Schlieren deflectometry is an imaging modality that aims at visualizing and measuring
the deflection undergone by a light beam when it crosses a section of a thin transparent
object. This type of measures can then be used to characterize some properties of the
studied object, such as the curvature of its surface, or the distribution of its refractive

index.

In [Sudhakarl3], the authors propose to use results from the CS theory to improve
the performance of a Schlieren deflectometer device. The principle of the corresponding
optical set-up is described in Fig. I-5: on one side, the object is illuminated by a light
source that undergoes a spatial modulation, the modulation pattern being controlled by a
spatial light modulator (SLM); on the other side of the transparent object, the deflected
light crosses a telecentric system and is collected by a standard CMOS/CCD array sensor.
The goal of the telecentric system is to filter light emerging from the transparent object
so that only light beams parallel to the optical axis of the system can actually reach the
CMOS/CCD sensor: thus, each pixel p of the sensor collects the light that emerges at
one particular point Ap of the surface of the transparent object. Then, the light intensity
measured by the sensor pixel p appears as an inner product between the modulation image
formed by the SLM device and a map X, P RN that characterizes the deflecting properties
of the surface of the object at point Ap: this map X, is the signal of interest to recover.
Similarly to the single-pixel camera, a full acquisition sequence consists in probing the light
intensity on the sensor for several modulation patterns. Then, the relation between the
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Figure I-5: Schlieren deflectometer set-up proposed by [Sudhakarl3]. A thin transparent
object is illuminated by a structured pattern controlled by a SLM device. The light
received at a point Ap on the object surface is deflected toward the right. The telecentric
system (made of two lenses and a pinhole) filters out the light beams that are not parallel
to the optical axis. Finally, the digital sensor measures the output signal; thanks to the
pinhole, each pixel p of the sensor collects only the light that emerges from the object at
point Ap.

signal of interest xp P RN and the vector of collected measures yp P RM is the following:
yp* ®xp with & PRV N (1-16)

where the k" row of the matrix @ characterizes the modulation pattern formed by the
SLM during the acquisition of the k'" sample. The non-negativity of the entries of ®
accounts for the physical constraints imposed by the SLM device.

As noted in [Sudhakarl13], each pixel p of the CMOS/CCD sensor used in this set-up
behaves like a single-pixel camera for the deflecting map X that characterizes the surface
of the object at point Ap, all the maps Xp being acquired in parallel. Then, as in the
case of the single-pixel camera, the contribution of the CS theory to this deflectometer
set-up is to allow the reduction of the number M of modulations patterns that are neces-
sary to accurately estimate the deflecting maps Xp, by taking advantage of their sparsity
properties. In [Sudhakarl3], the authors present some deflecting maps acquired with a
matrix ® whose rows are made of vectors of the Hadamard basis, and reconstructed by
enforcing a sparsity constraint on their Daubechies 9{7 wavelet coeffi cients. Additionally,
as proposed by [Puy12], the authors introduce a random modulation by ~ 1 of the columns
of @, to increase the incoherence between the sensing and the sparsity bases. The authors
present some results obtained with compression ratios - “ 2.5% and % “ 10%: these
reconstructed deflecting maps capture the main features of an ideal map acquired with
% “ 100%, although some significant differences can be noticed. These reconstruction
errors are justified in [Sudhakarl3] by the fact that the measurements collected by the

Schlieren deflectometer set-up are quite noisy.
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Chapter 11

Practical resolution of CS
reconstruction problems through
convex optimization

The compressed sensing theory basically states that large signals x PCN can be recovered
from a relatively small number M of linear measurements y “ ®x P CM, under some
appropriate hypothesis. In practice, this property is used to design sensing devices with
improved characteristics in terms of acquisition speed or sensor simplicity (see Sec. 1.3).
However, the price to pay for these improved properties that benefit the sensing devices is
that the raw collected samples must undergo a heavy post-acquisition numerical processing
so that the actual signal of interest can be recovered. Being able to perform this post-
acquisition processing effi ciently is therefore a crucial issue to make CS acquisition devices
usable in practical situations.

In this chapter, we present the general reconstruction approaches used to post-process
CS acquired data. As these reconstruction procedures are often formulated as convex op-
timality equations, we also review some of the algorithmic solutions that exist to solve the
underlying optimization programs. Finally, we present a comparison of these algorithmic
solutions, based on empirical evaluations of their performance in image reconstruction
problems involving real microscopy images arising from biological applications.
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II.1 CS reconstruction formulations

I1.1.1 Convex optimization formulations: classical form, BPDN and
LASSO

In chapter I, we introduced the notion of CS reconstruction problem, namely the problem
of reconstructing a signal x PCN that is sparse in some sense from a vector of linear mea-
surements y “ ®x PCM . [Candeés06b, Candes10] and related papers propose to formulate
the CS reconstruction as an optimality search problem, and provide some theoretical re-
construction guaranties and error bounds for this formulation using the RIP framework
(see Sec. 1.2.2).

More precisely, the works presented in Sec. 1.2 propose to address the CS reconstruc-
tion through one of the optimization problems (I-6), (Panalysis), (Psynthesis), or (PTv),
depending on the actual sparsity properties of the signal to reconstruct. The general form
of these optimization problems is the following?:

argminf pxq subject to }®x ~ y}, d [ (CCSR)
xPCN

where the objective function f X Qqis a convex sparsity-promoting function, with typically
f pxq*“ }x}, in the case of a synthesis reconstruction (Pgynthesis) or for signals that are
sparse in the canonical basis of CN. In this formulation, the scalar parameter [1& 0
controls the trade-off between the fidelity to the measurements and the desired level of
sparsity. Its value is related to the noise level that affects the measurement vector y: more
specifically, [Candes06b] defines this parameter such that [? is an upper bound of the noise
power that corrupts y. In the case where y is corrupted by a whitezdditive,Gaussian
noise of standard deviation 0, a common heuristic is to select (1 o M~ 2 2M (see
[Becker11]).

The (CCSR) problem belongs to the class of constrained convex problems, meaning
that the optimized variable X is forced into a subset of the whole subspace CN, denoted
as the feasible domain, implicitly defined by the constraint }®x ~ y}, d [in the case

! As this problem does not seem to have a consensual denomination, we will refer to it as the Classical
CS Reconstruction problem, or (CCSR).
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of (CCSR). As it is generally assumed that implementing an algorithmic solver for con-
strained optimization problems is more diffi cult than for unconstrained ones, some authors
(see for instance [Lustig07, Marcia08, Provost09]) favor the following unconstrained for-
mulation — denoted as Basis Pursuit De-Noising in most of the publications — for practical
applications:

argmin }0x  y}2 M g (BPDN)

<PCN 2
where f px qis the same sparsity-promoting function than for (CCSR), and where the scalar
parameter A & O plays the same role as [lin (CCSR).

It is worth mentioning that both problems (CCSR) and (BPDN) are equivalent in the
following sense (a proof of this equivalence is given in [Weiss08], Theorem 2.7):

1. For a fixed parameter (/& 0, let X “SR be a solution of (CCSR). Then, there exists
a value A & 0 of the parameter A for which X <SR is also a solution of (BPDN).

2. Reciprocally, for a fixed parameter A & 0, if XBPPN denotes a solution of (BPDN),
then there exists [ & 0 for which X BPPN is also a solution of (CCSR).

However, in general, these A and (Y depend on the other entities involved in the (CCSR)
and (BPDN) problems, in particular the measurement matrix @ and the observation vector
y. In other words, for a given value of [|(resp. A), there is no general method to determine
a value A (resp. [9) that would make the solutions of both (CCSR) and (BPDN) be
identical for any set of acquired samples y.

For this reason, while [Candeés06b] and following papers provide some theoretical guar-
anties on the reconstruction error between an estimator & <“SR obtained by solving (CCSR)
and the “true” signal to recover, as far as we know such kind of result does not exist for the
reconstruction formulation (BPDN). Therefore, we generally prefer to use the constrained

formulation (CCSR) whenever possible.

Finally, let us mention a third convex problem that is related to (CCSR) and (BPDN),
and known as Least Absolute Shrinkage and Selection Operator:

arg rrhllin}tbx "y}, subject to f pxqd 1 (LASSO)
xPC

The (LASSO) formulation introduces a scalar parameter T whose role is similar to the one
of the parameters [Jand A defined above, i.e. T controls the trade-off between the sparsity
level of the solution and its fidelity to the measurements y; (LASSO) is also equivalent
to both (CCSR) and (BPDN) in the same sense than mentioned above. This formulation
can be preferred to (CCSR) and (BPDN) when some information about the sparsity level
of the sought signal is available prior to the reconstruction: for instance, if f pxq* }x};
and if in the case of a particular problem an upper bound of the l;-norm of the signal to
reconstruct can be determined, then using the reconstruction formulation (LASSO) with T
set to this upper bound can be considered. However, as for (BPDN), there is no theoretical
guaranties about the reconstruction error achieved using (LASSO).
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function OMP(y, @)
pb 0,N\gD H,xoD 0,rgb Yy
repeat
pbp 1
kp B argmaxypon- 1-|hk| where h © Or P Z Identification step
No B Ny 1Y tkpu
Xp B argmin, }y © ®x}, subject to Supp < gA Np Z Update step
rpDy” Oxp
until stop condition
return Xp
end function

Figure II-1: OMP algorithm to recover a signal x PCN from a vector y * ®x PCM. The
vector X to recover is supposed to be sparse in its canonical basis, i.e. }x}5! N.

11.1.2 Alternative approach: orthogonal matching pursuit

Although convex optimization is the original approach proposed for the CS reconstruction
problem, other algorithmic formulations have been proposed to tackle it, based on the
orthogonal matching pursuit (OMP) algorithm (see [Pati93, Tropp07]) or derived methods
(see for instance [Needell09, Dai09]).

A description of the OMP algorithm is provided in Fig. II-1. The principle of this
reconstruction procedure is to iteratively identify the support of the signal to reconstruct.
At each iteration p of its main loop, the algorithm maintains:

1. aset Ap A [0,N ~ 1] which is an estimate of the support of the signal to recover;
2. an estimate Xp of the signal to recover, constructed such that its support lies in Ap;

3. aresidual rp* y~ ®xp.

The key point of the algorithm consists in selecting the new Ky element to add to
the support estimate Ap so that the corresponding basis vector ey, best correlates to
the current measurement residual; in other words, the new kp element is selected as
argmax, x®ex|ry 1y: this selection is denoted as the identification step. The signal
estimate Xp is then updated to minimize the energy of the corresponding residual rp,
while satisfying the support constraint Supp p(qu Np. The algorithm terminates when a

certain stopping condition holds, which consists generally in requesting }xp}, “ S where
S is a targeted sparsity level, or }r p}, d [ where Llis a parameter controlling the tolerable

residual energy.

One of the main interests of the OMP is that a full implementation of the method
can be achieved very simply: as noted by [DavenportlOb], translating the pseudo-code
in Fig. II-1 into a Matlab® program requires approximately the same number of code
lines. Compared to the programs required to solve the optimization problems arising in
the convex relaxation approaches (see Sec. I1.2), the OMP implementation is indeed much
more straightforward. Moreover, if ® is a partial unitary transform (see Sec. 1.2.3) with an
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associated fast computation algorithm, it appears that the execution of one OMP iteration
can be achieved very effi ciently: for instance, in the case of a partial Fourier transform,
the OMP iteration has an algorithmic complexity of O pN logN g Finally, theoretical
reconstruction guaranties have been obtained for the OMP algorithm: see for instance
[Davenport10b] and references therein.

However, the overall algorithmic complexity to recover a S-sparse signal using the OMP
algorithm is S times the complexity of one iteration: in the case of imaging applications,
the additional S factor may be quite large, making the OMP algorithm rather ineffi cient.
Moreover, similarly to the synthesis formulation (Psynthesis) used in convex relaxation, the
OMP algorithm has to operate in the sparsity domain of the signal of interest if the latter is
not sparse in its canonical basis: this potentially entails a performance issue if the signal
to recover is sparse in a highly redundant dictionary. OMP reconstruction is also less
flexible than convex optimization, since integrating a sparsity constraint such as the 2D
total variation (I-10) — for which no synthesis formulation is available — is not feasible (as
far as we known, there is no thing such as a “total-variation driven OMP reconstruction
algorithm”). For these reasons, we mostly focus on CS reconstruction through convex
optimization in this manuscript.

I1.2 Convex optimization algorithms

We focus now on the CS reconstruction formulations based on convex optimization (mostly
(CCSR)), and propose a short review of the algorithmic solutions that have been designed
to solve such convex optimization problems. We will assume in this section that the
studied signals are real-valued, as convex optimization solvers are generally presented in
this context?.

I1.2.1 SOCP methods

Solving (CCSR) is indeed a challenging task, at least for two reasons:

* the sparsity-promoting objective function f pxqinvolves one or several non-smooth
terms (for instance }'}y, }'}4y (1-10), }'}y 5 (I-11));

* the space CN (or RN) in which the sought signal is defined is very large in the case
of imaging applications (typically N & 10°).

The first issue can be tackled by recasting (CCSR) into an appropriate form. For instance,
for f pxq* }x};y where the 2D total variation semi-norm }}, is defined as in (I-10),
(CCSR) can be recast into the following convex form, denoted as a second-order cone

2In the presented methods, complex-valued signals can often be handled as real-valued signals with
twice more components, i.e. by encoding separately the real and the imaginary parts of their components.
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program (see [Boyd04])3:

y X xo d nZ and ny & O for all k
argmin  ny subject to D Cﬁ 2FDV cﬁ K “ (I1-1)
XPRN JOx T y}sd 2
nPR

Compared to (CCSR) with f pxq*“ }x};y, both the objective function and the feasible
domain of (IT-1) are smooth. However, the price to pay for this regularization is that the
optimized variable is now the tuple px, nqg which belongs to a space whose dimension is
2N, i.e. twice bigger than for the original problem (CCSR): the second issue mentioned
above becomes therefore even more challenging!

This approach consisting in recasting (CCSR) into a second-order cone program has
been implemented in a CS-dedicated Matlab® toolbox called |;-magic [CandesObal, re-
leased at the same time as the early theoretical CS papers and by the same authors (see
Sec. 1.2.2). The associated method proposed in [Candeés05a] to solve the second-order cone
program (II-1) can be summarized as follows:

1. First, the constrained problem (II-1) is transformed into a sequence of unconstrained
problems using a log-barrier method, i.e. by injecting each inequality constraint as
a logarithmic penalty into the objective function:

y y
argminh,pX g with X * x,ngq and hy,pXqg* Nk~ 1 logp g p,nq
X PR2N K Op

(11-2)

where each of the functions g represents one of the inequality constraint that defines
the feasible domain of (II-1) (g px,nqd 0if px, nqis a feasible point), and Py
is an increasing sequence of positive scalars. If X denotes the solution of (II- 2)
correspondlng to the log-barrier parameter dp, it can be shown that limpg g X p " X
where X s the solution to (II-1).

2. Then, for each value a,, of the log-barrier parameter, (II-2) is solved using Newton’s
method: a sequence of estimates pX p.a%pN is constructed sequentially such that, for
all g, X pgq 1 is the point that minimizes the second-order Taylor approximation of
the function hp at point X pq:

) : . 1@< ., D

It can be shown that limgg g X pq " X p-

~ -

3. Problem (I1-3) has an algebraic solution: X pg 1 = V2hppX pqd vy hp PX p.q0
however, as the dimension of the problem gets very large in the case of imaging

3Other types of objective functions f pxqmay lead to different formulations, but for common choices of
f pxqsuch as }x},, I X}1, }X}y 5, the resulting problem is also a second-order cone program, or even a
linear program in some special situations (for instance: f pxq* }x};, 0“ 0 and X real-valued). Here, we
choose to describe the principle of the method in the case f xq“ }x};, instead of in the general case, for
the sake of simplicity.
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applications, direct evaluation of the inverse of the Hessian matrix V 2hp pX p qQis not
feasible. Therefore, [Candes05a] proposes to use a conjugate-gradient method (see
[Hestenes52]) to evaluate iteratively the solution X pq 1 to the quadratic problem
(I1-3).

The method proposed by [Candes05a] to solve (ITI-1) thus consists in an iterative procedure
involving three levels of nested loops: the performance obtained with this scheme is rather
poor, especially when used for 2D image reconstruction. Therefore, specialized algorithms
were subsequently developed starting in the late-2000s to handle the CS reconstruction
problem in a more effi cient way.

I1.2.2 NESTA

One of these specialized solutions is the NESTA algorithm, introduced in [Becker11]. This
algorithm is based on the general framework developed in [Nesterov07] for the minimiza-
tion of composite objective functions. It addresses the constrained problem (CCSR) with
either f pxq* }x}yy, or f xq* }‘-IJ° X}, without specific requirements on the sparsity
matrix W, and consists in an accelerated gradient descent with back-projection on the
feasible set.

More precisely, the NESTA algorithm proceeds in two steps:

1. First, the non-smooth objective function f px qis approximated by a smooth function.
This step takes advantage of the fact that the targeted functions f X qcan be written

4

as™:

f xg“ maxxz|W xy (I1-4)
zPQ

where W P RN N and Q is a convex subset of R-. This type of function f pxq
belongs to a larger class of functions, introduced by [Nesterov04] and denoted as
maz functions by [Weiss08]; as a max function, [Nesterov04] shows that f pxqcan
be approximated by a function f pxqdefined as follows:

13 - u -
fupa® maoeWxy” 51z zol (I1-5)

where 1 g O is a scalar parameter, and zo P Q. In [Nesterov04], it is shown that
the error |f pxq” f,pxd can be bounded uniformly by a constant proportional to
H: the smaller this parameter, the better the approximation; moreover, f, pxqis
Lipschitz-differentiable with a Lipschitz constant L “ ﬁ~W ~2 and its gradient
has an explicit expression (see [Nesterov04] or [Weiss08] for more details).

2. The second step consists in solving (CCSR) where f pxqis replaced with f, pxg To
proceed, [Beckerl1] proposes to use an improved version of the well-known gradient
descent method with back-projection on the feasible set at each step of the de-
scent (see [Levitin66]): this improved version was introduced in [Nesterov07], which

“For instance, for f pxgq* W’ X}, W W' and D“ u such that julg & 1( (Is unit ball).
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demonstrates that modifying the descent direction to account not only for the di-
rection of the local gradient but also for the gradient directions encountered in the
previous steps speeds up the convergence of the algorithm. A generic description
of this improved gradient descent method with back-projection is given in [Weiss08]
(Algorithm 4.3).

A potentially expensive step of the NESTA algorithm is the evaluation of the projection
operator 1 on the feasible set — which has to be performed twice per descent step — defined
as follows:

MNpqg“ arg rrglin}z "~ X}, subject to }®z " y}, d [ (I1-6)
zZPR
However, [Beckerll] shows that, in the case where the sensing operator @ is such that
pd O “ O D (ie. O D is a linear projector), the problem (II-6) has an algebraic
solution that can be evaluated effi ciently®:

, A . . . 1 , .

MNpxqg“ Id ﬁtb ® ADyq with A® max O, D}CDX y}, 1 (II-7)
In particular, the expression (II-7) does not involve any matrix inversion. Moreover,
the condition pd’ CDq2 “ @® @ does hold for the matrices ® whose row vectors form
an orthogonal family, which includes in particular the partial unitary transforms (see
Sec. 1.2.3).

11.2.3 RecPF

In [Yangl0], the RecPF specialized algorithm was introduced to solve the (BPDN)-formu-
lated CS reconstructions problem, in the case where the two following additional hypothe-
ses hold:

1. f xgmust be either }x};y/, 1 X}, with W a tight frame, or a linear combination
of both,

2. the sampling matrix ® must be a partial Fourier transform®.

This second requirement makes the RecPF algorithm only applicable for imaging modal-
ities where the sensing operations occurs in the Fourier domain of the signal of interest
(for instance, MRI, see Sec. 1.3.1). However, this extreme specialization allows the use of
several tricks and optimizations, which result in a very fast resolution method.

For the sake of simplicity, we focus here on the case where f pxq“ }x};y,. Then, the
principle of the RecPF algorithm is to solve the following problem:

SPlease note that the notations used in (II-7) are slightly different than those used in [Beckerll]. In
particular, the Lagrange multiplier A in (II-7) corresponds to ﬁ times the Lagrange multiplier A defined
in [Becker11]. Our definition of A allows an extra-simplification in the expression of the projection operator
n.

5The authors mention that their RecPF algorithm can be adapted to also handle the case where ® is a
partial cosine transform. Their Matlab® implementation of the RecPF algorithm however only supports
partial Fourier transforms.
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b . -
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where A is the scalar parameter introduced in (BPDN), D, and D, are the derivation
operators introduced in (I-10), and B g 0 is a new scalar parameter, whose ideal value
is as large as possible’: indeed, one can observe that (BPDN) with f pxq* X}y and
(IT-8) become equivalent when B N * 8 . The method proposed by [Yang10] to solve the
unconstrained problem (IT-8) consists then in performing alternated minimizations of the
objective function with respect to the pdy, dyq variables for a fixed X on the one hand,
and with respect to x for fixed pdp,dyqon the other hand:

e The minimization with respect to pdp, dyQis straightforward, as the objective func-
tion of (II-8) is separable in each of the pair of variables pdnq ,pdvq g this step
has therefore a complexity of O pN qoperations.

* The minimization with respect to X consists in finding the minimum of a quadratic
function, which is equivalent to inverting the following system:

® o BD,Dy’ BD,Dy, x“ ® 'y  BD,dy " BD.,dy (11-9)
Solving this system requires to invert the N* N matrix ® & BD h Dy BD V D, ,
which is potentially a very expensive operation; however, it appears that this matrix
is diagonal in the Fourier basis as:

— both Dy, and D are convolution operators,
— @ is required to be a partial Fourier transform (see in Sec. 1.2.3 the decompo-
sition available for ® @ in this case).

The inversion of (IT-9) becomes therefore trivial, and the complexity of this operation
is dominated by the cost of the Fourier transforms involved in the change of basis,

i,e. OpN logN g

I1.2.4 SPGL1

The SPGL1 algorithm introduced in [Van Den Berg08] proposes an original approach to
solve the (CCSR) problem, in the case where f pxq“ }x};. As no other particular hypoth-
esis is required on @, the SPGL1 algorithm can handle either signals that are sparse in
their canonical basis, or signals that can be recovered by following a synthesis approach
(Psynthesis); however, it cannot be adapted to cover the TV minimization case (Pty). The
key idea of the SPGL1 algorithm is to solve several instances of the (LASSO) problem for
different values of the parameter T introduced by this f())rmulation, un)til the corresponding
solution XKEASSO of (LASSO) is such that the equality >®KLASSO y’>,“ [holds: indeed,

"The principle of the RecPF algorithm is actually very similar to the one of the Alternating Direction
Method of Multipliers (ADMM) algorithm. See for instance [Combettes11] (Algorithm 6.4) and references
therein for more details about this type of methods.
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it can be easily demonstrated that, if f pxqis positive-homogeneous, then any solution X
of (CCSR) saturates the underlying constraint }®x = y}, d U(i.e. }OX " y}, * [), except
in the trivial case where the zero vector O is solution.

More preci§ely, if xprq dgnotes the optimal value of the objective function in (LASSO)
(ie. xXprq* >PKLASSO” y’,), the approach proposed by [Van Den Berg08] consists in
finding a root T¢ of the equation X prq“ [ the authors show that the underlying X -4SS0 is
then the solution of (CCSR). They first demonstrate several properties of the function X, in
particular that it is differentiable and that its derivative has an explicit expression involving
the solution XASSO of (LASSO): thanks to these properties, the authors propose to use
the Newton’s root finding method (see for instance [Press07]) to estimate the actual value
T¢ that solves x prq“ [l To proceed, several instances of the (LASSO) problem have to be
solved: the method proposed by the authors for this task consists in gradient descent with
back-projection on the feasible set at each step of the descent (see [Levitin66, Weiss08]).
A key issue that conditions the effi ciency of this approach is the choice of the method used
to evaluate those projections on the feasible set, or in other words the method used to

evaluate the following operator I1:

Mpg* argmin}z” x}, subject to }z},; d 71 (I1-10)
ZPRN
However, as noted by [Van Den Berg08], it turns out that (II-10) has an explicit solution,
which is evaluated by applying the soft-thresholding to the input X, with a threshold value
that can be computed in O pN logN g basic operations.

1I.3 Compared performance

We have compared the performance of the NESTA, RecPF and SPGL1 algorithms in
reconstructing various biological images from simulated Fourier CS measurements. This
work was presented in the conference papers [Le Montagnerlla] and [Le Montagnerl1b].

11.3.1 Methodology

We tested the three reconstruction algorithms on a set of seven biological images with
various characteristics in terms of biological content, noise level, and size. For each image,
we generated a vector of Fourier measurements, by selecting 15% of their Fourier coeffi -
cients. This selection of Fourier coeff cients was performed randomly, following a so-called
Gaussian sampling strategy (see Sec. I11.1.2).

Two regularization energies were used for each tested image: minimization of the TV
semi-norm, and minimization of the l1;-norm of the Daubechies-4 wavelet coefhi cients. For
the TV-based reconstructions, we tested the NESTA and RecPF algorithms, while for the
l1-based reconstructions, we tested NESTA and SPGL1. The stop conditions were set
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Full-size

Zoom

Original NESTA RecPF NESTA SPGL1

T V-based reconstructions l1-based reconstructions

Figure I1-2: Example of reconstruction results obtained for the Lymphocytes T test im-
age, in the conditions described in Sec. I1.3.1. For a given regularization energy, the
reconstructed images present no visual differences whatever the algorithm actually used.

in the same manner for all the three algorithms, using a criteria based on the relative
variation between two consecutive iterates.

In each configuration, we evaluated:

* the final value of the objective function (}x},, or W X}1)s
* the number of iterations required for convergence,

e the execution time.

The notion of iteration is obviously algorithm dependent: it is one gradient descent step
for NESTA, one pair of minimizations with respect to pdy, dyqand with respect to X for
RecPF, and one gradient descent step occurring in one (LASSO) sub-problem in the case
of SPGL1. For each of these three algorithms, one iteration has a O pN log N qcomplexity,
although their actual cost in terms of computation time may be different. The number of
iterations however gives an idea of the practical convergence speed of the algorithms, that
is independent of the computational power of the computer used for the simulations.

All the simulations were performed using Matlab®, with implementations of the al-
gorithms provided by their respective authors. A particular procedure was adopted to
handle RecPF, as this algorithm solves (BPDN) instead of (CCSR): for each simulation,
we adjusted tbe A parameter so that the solution )“()'?PDN returned by RecPF is such that
POXFPPN T y> [ 2%, where Uis the parameter involved in the data term constraint
in (CCSR); the reported reconstruction times do not take into account this parameter
adjustment procedure. This point illustrates however one of the drawback of RecPF — and
more generally of all (BPDN)-based CS reconstruction methods, which is that adjusting
the parameter A involved in (BPDN) is not straightforward, contrary to the parameter [J
involved in (CCSR) (see Sec. II.1.1).
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I1.3.2 Simulation results and reconstruction time

An example of reconstruction results obtained for one of the test images is presented in
Fig. I1-2, while more comprehensive quantitative results are presented in Fig. I1-3.

A first remark that can be drawn about the results presented in Fig. II-3 is that the
tested algorithms reach similar levels for the respective objective functions being mini-
mized. As the underlying problems are convex, this is actually an expected result: there
is no such thing as local minima that could trap the algorithms here. A visual inspection
of the reconstructed images do confirm that, for a given regularization energy, they do not
present significant differences whatever the algorithm actually used.

On the contrary, it can be noticed that large differences exist between the algorithms in
terms of computation time. Although the exact ratios between these computation times
depend on the processed images, it can be observed that:

» first, RecPF is faster than NESTA by a factor 15 to 20 for the two smallest tested
images (about 400"~ 400 pixels), and this factor tends to increase for larger images;

e then, NESTA is faster than SPGL1 by a factor of at least 2, while this factor can be
significantly larger with some large images, for which SPGL1 seems to converge very
slowly (the number of iterations necessary to converge is also unexpectedly high).

This latest observation is concordant with some results presented in [Beckerl1], where the
authors notice that SPGL1 can be very fast in certain circumstances (even faster than
NESTA), but this execution time could vary significantly depending on the input signal,
even for signals with identical size; on the contrary, the execution time of the NESTA
algorithm is quite stable for a given input signal size.

The advantage of RecPF over NESTA can be explained by the deeper degree of spe-
cialization of the former, which is limited to partial Fourier transform sensing matrices
®. It is also worth mentioning that the Matlab® implementations of these two algorithms
use different mechanisms:

* RecPF makes use of the MEX function features provided by Matlab®, i.e. part of
the code is written in C language and compiled, which potentially speeds up its
execution,

* on the contrary, NESTA is written in pure Matlab® code.

Drawing final conclusions between the comparative execution time of these two algorithms
would require to use similar implementation languages.

I1.4 Conclusion

In this chapter, we detailed the post-processing operations that have to be carried on to
recover a signal of interest for raw data acquired using a CS-based strategy. We reviewed
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TV-based reconstructions l1-based reconstructions
NESTA RecPF NESTA SPGL1
Obj. fun.: Obj. fun.: Obj. fun.: Obj. fun.:
2230 2254 3977 3985
4257 425 #iter.: #iter.: Hiter.: Hiter.:
pixels 136 26 73 283
Time: Time: Time: Time:
14 sec. 1 sec. 10 sec. 47 sec.
Obj. fun.: Obj. fun.: Obj. fun.: Obj. fun.:
1115 1169 3154 3157
453" 453 #iter.: #iter.: Hiter.: #iter.:
pixels 171 17 69 80
Time: Time: Time: Time:
23 sec. 1 sec. 12 sec. 24 sec.
Obj. fun.: Obj. fun.: Obj. fun.: Obj. fun.:
13.6" 10° 13.7° 10° 354" 10° 354" 10°
716" 716 #iter.: #iter.: Hiter.: Hiter.:
pixels 86 15 63 276
Time: Time: Time: Time:
23 sec. 1 sec. 21 sec. 132 sec.
Obj. fun.: Obj. fun.: Obj. fun.: Obj. fun.:
1384 1486 6475 6400
960" 960 #iter.: #iter.: #iter.: Hiter.:
pixels 206 23 63 90
Time: Time: Time: Time:
78 sec. 2 sec. 38 sec. 119 sec.
Obj. fun.: Obj. fun.: Obj. fun.: Obj. fun.:
815 981 13.1" 10° 13.0" 10°
992" 992 Fiter.: F#iter.: F#iter.: F#iter.:
pixels 198 14 63 577
Time: Time: Time: Time:
91 sec. 2 sec. 46 sec. 987 sec.
Obj. fun.: Obj. fun.: Obj. fun.: Obj. fun.:
3315 3504 102~ 10° 101" 10°
1024”1024 #iter.: #iter.: #iter.: #iter.:
pixels 159 26 66 3103
Time: Time: Time: Time:
75 sec. 3 sec. 47 sec. 5823 sec.
Obj. fun.: Obj. fun.: Obj. fun.: Obj. fun.:
4962 5177 15.6~ 10° 15.7" 10°
1024”1024 #iter.: #iter.: Hiter.: Hiter.:
pixels 179 20 68 1693
Time: Time: Time: Time:
82 sec. 2 sec. 47 sec. 3176 sec.

Figure I1-3: Quantitative results obtained with the presented algorithms for seven test
images reconstructed in the conditions described in Sec. I11.3.1. In each case, the table
shows the final value reached on the objective function (“Obj. fun.”), the number of
iterations required for convergence (“#iter.”), and the execution time (“Time”).
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Chapter Il — Reconstruction through convex optimization

and assessed some of the algorithmic solutions that exist to perform these post-processing
operations: we illustrated on a set of experiments that these solutions present large dif-
ferences in terms of performance. In the perspective of our work on CS, the NESTA
algorithm shows an interesting trade-off between flexibility and execution speed. Besides,
the understanding of the internal machinery involved in this algorithm enables to modify
and adapt it to meet some specific requirements: the integration of 3D total variation (see
Chap. IV) is an example of such a modification that we have made on the algorithm.
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Chapter III

Effect of the sampling parameters
in the Fourier space

When undergoing reconstruction through a compressed sensing scheme, images are affected
by various artifacts that degrade them in different ways and lead to detail loss. The RIP
framework provides an upper bound of the global |, reconstruction error (I-7), but this
result does not account for the nature of the artifacts introduced in the reconstructed
image X due to the lack of samples. When the sampling is performed in the Fourier space
of the image of interest, two sampling parameters may influence these artifacts: first, the
number of Fourier samples that are acquired (or equivalently the sampling rate); second,
the sampling strategy, i.e. the position in the Fourier space where — for a given budget of
measurements — the samples are chosen to be acquired.

In this chapter, we discuss how these two parameters affect the CS reconstructed im-
ages. We first review the different existing sampling strategies, before focusing more
thoroughly on two of them (the uniform and the Gaussian sampling strategies). Using
simulations involving some test images, we analyze how variations of the number of ac-
quired samples affect the reconstruction in these two cases. We conclude by extending our
results to real microscopy images.

IT1.1 Sampling strategies in the Fourier space 52
III.1.1 Imtroduction . . . . . . . . . . . . . . . 52
II1.1.2 Existing Fourier sampling strategies . . . . . . . .. ... .. ... ... 52
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I11.2.1.5 Putting things together . . . . . . . . .. ... ... ... .... 61

II1.2.2 Random Gaussian sampling . . . . . . . . . . .. .. ... ... ..... 63
II1.2.3 Realistic images . . . . . . . . . o 0 v i it 65
IT1.3 Conclusion 67

II1.1 Sampling strategies in the Fourier space

I11.1.1 Introduction

CS theoretical results predict that sparse signals can be recovered from partial Fourier
data, assuming that a suffi cient number of measurements is available with respect to the
sparsity level and the size of the signal to recover. Results presented in [Candes07] (see
Sec. 1.2.3) propose a quantitative upper bound on this necessary number of measurements,
in the case where samples are acquired at uniform random positions in the Fourier space.

However, for CS image acquisition, a simple experiment shows that uniform Fourier
sampling is sub-optimal. In Fig. ITI-1, we present the reconstruction results obtained for
the well-known Shepp-Logan phantom image based on two different sampling strategies
of the Fourier space: starting from a noisy version Xg of Shepp-Logan degraded with
an additive Gaussian noise (left image in Fig. II1I-1), we generated two measurement
vectors yy “ @PyXg and yg “ Pgxg, with @y and Py two partial Fourier transforms
corresponding respectively to a uniform and a Gaussian sampling mask. From these
measurement vectors, two reconstructed images X, and X4 were obtained by solving the
TV reconstruction scheme (Pty). Although the number of samples was identical in both
masks, the reconstructed images X, and Xy are completely different: while the Gaussian
sampling leads to a reconstruction X g that is almost identical to the original Shepp-Logan,
Xy exhibits significant artifacts, with all but the largest structures lost.

This experiment illustrates the fact that all Fourier samples seem not to carry the
same amount of information: in particular, having a higher sampling density in the low-
frequency area of the Fourier domain improves dramatically the quality of the reconstruc-
tion.

111.1.2 Existing Fourier sampling strategies

Several sampling strategies have been proposed to perform acquisitions in the Fourier
space, either based on empirical observations as in Sec. II1.1.1, or recently as the result of
more theoretical works (see below). As Fourier sampling finds an application with mag-
netic resonance imaging (see Sec. 1.3.1), it appears that the proposed sampling strategies
are generally designed to meet the requirements associated to this imaging modality, espe-
cially the need to have continuous sampling paths (see [Chauffert13a]). Among the works
that address this issue, we can mention the following papers:
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I11.1. Sampling strategies in the Fourier space

Uniform sampling

Source image X

Gaussian sampling

Sampling mask Reconstructed image X

Figure III-1: Two reconstructions of the same noisy version of the Shepp-Logan phantom
image, using two different sampling strategies in the Fourier domain. The reconstructions
were performed using the TV minimization scheme (Pty). In both cases, the number of
Fourier samples used is the same (15% of the number of pixels of the input image), but
their location is different: the sampling masks show (in white) the positions in the Fourier
space that were sampled.

* In [CandesO6al, the authors use a star-shaped sampling pattern when demonstrating
the practical recovery capabilities of CS schemes applied to images (see Fig. I11-2,

example pdg).

* [Lustig07] suggests that the sampling density should be scaled “according to a power
of the distance from the origin”. In [Chauffert13b], this formulation is interpreted as
the fact that the probability Trpwqto sample the Fourier coeffi cient corresponding to
the spatial frequency W is given by:

“ o oqe b C

mpwg“ po” 1 .. (I11-1)
where a g 0is a parameter controlling the spread of the sampling probability distri-
bution (the larger a, the more the distribution is concentrated close to the center of
the Fourier space), Wnax is the maximum amplitude value for the spatial frequencies
W, and pp g 0 is tuned according to the targeted overall sampling rate. [Lustig07]
suggests to select a between 1 and 6 based on empirical observations. We will re-
fer to this family of sampling strategies as the polynomial sampling strategies (see

Fig. I11-2, examples pogand ff ).
e In a context of 3D MRI, [Kim09] proposes a non-uniform sampling pattern hav-
ing a small fully sampled area close to the k-space center, while the remaining
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Chapter Il — Sampling parameters in the Fourier space

high-frequency region is sampled in a uniform random manner (see Fig. I1I-2, ex-
ample peg).

» [Wangl0] presents a comparative study of several sampling strategies, including the
star-shaped sampling pattern and various spiral-shaped sampling patterns. Based
on a theoretical study on the energy repartition in the Fourier domain of 2D images
that are sparse in the wavelet domain (which however is not shown to be directly
related to the effi ciency of CS sampling and reconstruction schemes), the authors
also introduce a non-uniform random strategy with an exponential decay of the local
sampling density with respect to the distance from the origin. In this latter sampling
strategy, the probability TTpwq of sampling the Fourier coeff cient W is given by:

A~ ~

. w, ©
TpWa“ exp }p}2 (I111-2)
where @ g O controls the spread of the sampling distribution and p g 0 is tuned
according to the targeted overall sampling rate. [WanglO] advocates for a “ 3.5
based on empirical observations. While we haven’t performed a thorough optimiza-

tion of this parameter, we observed that setting a 2 — which corresponds to a
more spread distribution than a “ 3.5 — also leads to interesting results. We will
refer to this family of strategies as the exponential sampling strategies, and as the

Gaussian sampling strategy in the particular case a “ 2 (see Fig. III-2, examples pcq

and pgq).

* In [Puyll], relying on some theoretical results from [Rauhut10], the authors suggest
that the search for an optimal sampling strategy should be driven by the minimiza-
tion of a modified version of mutual coherence coeffi cient (I-9) between the sampling
and the sparsity bases. More precisely, if Tk denotes the probability of sampling the
kth Fourier coeffi cient, they propose to construct the optimal map of sampling prob-
abilities 1 as:

$
& 0a md 1 forallk
3

. X
™ “ argmin maxI <p Lw'YI subject to % (I11-3)
m k.l Trk 0 K .I.I.k “ M
where @g, ®1,...,Pn- 1 are the rows of the sampling matrix @ (the Fourier atoms),
Wo,W1,...,WYN" 1 are the columns of the sparsity basis W in which the signal to

recover is assumed to be sparse, and M is the targeted number of samples. The
authors propose a heuristic to solve the non-convex optimization problem (II11-3),
and present some global reconstruction success rates on synthetic signals obtained
with different sampling strategies: as expected, the sampling strategy generated
according to (III-3) shows a significant improvement over the uniform sampling,
but remains slightly less effi cient than the empirically derived strategies advocated
by [Lustig07]. Moreover, [Puyl1] do not present neither examples of the sampling
masks obtained with their method, nor examples of reconstructed images.

* Finally, [Chauffert13b] proposes a two-step sampling strategy: first, a region close
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Exponential (a “ 2)

Uniform Polynomial (a* 2) (i.e. Gaussian)

Star-shaped

Uniform
full-sampling of Polynomial (a “ 5) Exponential (a “ 3.5) Spiral-shaped
low-frequencies

Figure I1I-2: Example of sampling locations in the Fourier space with different sampling
strategies (the sampled locations are represented in white). In each of the eight presented
examples, the number of sampled positions is the same, and corresponds to a overall
sampling rate of 10%.

to the center of the K-space center is fully sampled (similar to what is proposed by
[Kim09]); second, the high-frequencies are sampled according to a certain probability
distribution ™ (sce Fig. I1I-3). This probability distribution ™ is derived from
theoretical results presented in [Rauhutl0] (similarly to the approach followed in
[Puyll], although the results from [RauhutlQ] are not exploited in the same way
in both works) to be optimal to sample in the Fourier domain 2D images that are
sparse in the wavelet domain. With the application of their framework for the MRI
modality in mind, the same authors present in [Chauffert13a] a heuristic to design
a continuous sampling trajectory from a random distribution of sampling locations.

Contrary to their predecessors that mostly rely on empirical observations, the two lat-
est works [Puyl1] and [Chauffert13b] base their searches for an optimal sampling strategy
on theoretical works, mostly [Rauhutl0]. However, the result is not completely satis-
factory: indeed, as noticed by the authors themselves, their optimal sampling strategy
is outperformed by the polynomial sampling strategies from [Lustig07] — especially the
one obtained for a * 5 — when experimented via simulations on real MRI images. One
hypothesis pushed forward by the authors of [Chauffert13b] to explain this suboptimal
performance is that their root hypothesis, i.e. the fact that MRI images are sparse in
a wavelet basis, is too simplistic to characterize for the properties of this type of data,
which disrupts the theoretical derivation of the sampling density map. They suggest in
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Probability distribution T
used to select the
high-frequency coeffi cients

Example of sampling pattern
as proposed by [Chauffert13b]

Fully sampled low-frequency
region

Figure IT1-3: The sampling strategy proposed by [Chauffert13b] can be decomposed into
two steps. First, a region close to the center of the k-space is fully sampled (cf. left im-
age, the white area). Second, additional high-frequency cocffi cients are sampled, selected
randomly according to the probability distribution T (cf. middle image: red points cor-
respond to higher probabilities of selection). An example of the sampling mask obtained
with such strategy is presented on the right image. These images are reproduced from
[Chauffert13b].

particular that the level of sparsity shown by the wavelet coeffi cients of these images may
depend on the considered wavelet sub-band, with the majority of the non-zero coeffi cients
presumingly concentrated in the coarse-scale sub-bands, and that modifying their analysis
to account for this property would lead to better results.

Indeed, this review shows that finding a sampling strategy in the Fourier domain that
would be optimal for all natural images (or for sub-classes of natural images) is still an
open question. The only consensual characteristic among the existing sampling strategies
mentioned above is the need to allocate more samples to the low-frequency area of the
Fourier space.

I1I.2 Numerical evaluation of an optimal sampling rate

I11.2.1 Random uniform sampling
I11.2.1.1 Problematic

An issue related to the determination of an optimal sampling strategy is the evaluation of
the appropriate number of measurements to be performed to sample a given signal. The
theoretical result (I-8) from [Candes07] provides a suffi cient condition on this number M
of measurements, depending on the size N of the signal, its sparsity level S, and quantities
characterizing the measurement process and the sparsity basis or dictionary (see Sec. 1.2.3).
However, this is only a suffi cient condition, and it may happen that a signal is accurately
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reconstructed even if (I-8) does not hold. In addition, this result neither describe nor
quantify the visual quality of an image sampled and reconstructed from a reduced number
of measurements.

We propose here to explore empirically how the number of measurements — or equiva-
lently the sampling rate T, defined as T “ % — affects the performance of the CS recon-
struction, first in the case of the uniform sampling strategy. To proceed, we conducted
the following numerical simulations: from a given known original image X o, we generated
several sets of Fourier measurements, each of these sets corresponding to a given sampling
rate T and acquired according to a uniform sampling strategy. Then, from each of these
sets of measurements, we computed the solution X of the TV reconstruction scheme (Pty),

and measured a reconstruction error as follows:

X7 Xo}s
Xo " Hol},

where W is equal to the mean value of Xg. This reconstruction error measure is indeed

RecErr “ (I11-4)

proportional to the root mean squared error measure.

When building a set of measurements, we always sample the central Fourier coeffi cient
(equal to W), which otherwise could not be recovered by the TV minimization scheme. Our
sampling patterns also obey a central symmetry invariance, to be coherent with the Her-
mitian symmetry property exhibited by the Fourier transform of real-valued images. With
these settings, thanks to the normalization factor }xo = Hol},, we ensure that RecErr prq
tends to 1 when 1 N 0.

II1.2.1.2 Simulations on isotropic shapes

Our first simple experiment consists in reconstructing an elementary image composed of
a single centered circular white object on a black background (this would represent for
example a single cell visualized in fluorescence microscopy). We studied the evolution of
the reconstruction error between the CS reconstructed image X and the original image X o
as a function of the sampling rate T. Since the reconstruction error for a given value of
the sampling rate depends on the actual location of the samples in the Fourier space, each
reconstruction was re-run ten to twenty times with different sampling patterns, and the
median error value is reported.

We present some detailed results obtained for a one-disk image with a radius p
22 pixels on Fig. 1114 (the image size is 256~ 256 pixels). The corresponding curve
RecErr * f prgshows three distinct domains:

o for small values of T, the reconstruction error is constant and high: in this domain,
the number of Fourier samples is too low to achieve a correct CS reconstruction, and
the solution computed from (Pty) is roughly unstructured;
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Figure I1I-4: Evolution of the reconstruction esror of the sgane one-disk image with radius
p“ 22 pixels for a sampling rate T in the range 10 3,10 1 | and five reconstructed images
obtained for different values of T. Each reconstructed image (left thumbnails) is presented
with its associated Fourier sampling mask (right thumbnails). The reconstructed image
obtained for T * 2.2° 10 2 is almost identical to the original image Xg.

 for high values of T, the reconstruction error is also almost constant at a level close to
zero: in this domain, the sampling rate is suffi cient to perform an exact reconstruc-
tion of the original image from the subset of Fourier coeffi cients that are actually
sampled;

* between these two constant domains, there is a narrow area around a transition
sampling rate T¢ where the reconstruction error decreases from the high plateau to
almost zero.

A set of similar experiments reproduced with different values of the disk radius p produce
similar results, except that the transition between the two domains where RecErr “ f prq
is constant does not occur for the same transition sampling rate T¢ (see Fig. II1I-5).

The value T of the sampling rate, as it somehow separates the domain where recon-
struction is possible from the domain where it is not, can be interpreted as an empirical
measure of the sampling threshold that is defined in a theoretical manner in (I-8). The
fact that this threshold is drastically modified depending on the input image — which can
be observed on the curves RecErr “ f prgpresented in Fig. I1I-5 — reflects on the variation
of the underlying sparsity coeffi cient S.
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Figure I1I-5: Evolution of the reconstruction error for four one-disk images with various
radius p, and the associated critical sampling rates T¢ extracted from the curves.
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Figure III-6: Transition sampling rate 7¢ for eight values of p. A linear regression on

these data confirms that, for the single-disk images, T obeys a linear increasing law with
respect to p.
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There are several possible definitions of the actual value T¢ from the curve RecErr “
f prqin Fig. III-4: one could define T¢ such that RecErrpr<q“ Y2 (Y2 being the mean
value between the two constant levels of the curve), or decide that T¢ is the point where
the first derivative of the function takes its maximal absolute value (as the function seems
to have an inflexion point in the transition domain); however, as long as the transition
domain is suffi ciently narrow, all these definitions are likely to be equivalent. For the
sake of simplicity, we define here T¢ such that RecErrpr<q“ Y2 in our simulations (see
Fig. I1I-5); this definition does not depend on the spread of the transition domain.

I11.2.1.3 Optimal sampling rate and sparsity

When performing a CS reconstruction using the optimization problem (Pty), we know
that the underlying a priori hypothesis on the input image is that it has a sparse gradient.
In the case of our simple binary images, the number of non-zero gradient coeffi cients
is approximately equal to the perimeter of the object. Then, together with (I-8), the
transitional sampling rate T¢ should be an increasing linear function of the perimeter of
the object. Therefore, in the case of our one-disk images, T¢ should increase linearly with
the disk radius p.

In order to check this hypothesis, we computed the transition sampling rate T7¢ for eight
values of the disk radius p. Results in Fig. I1I-6 confirm that T¢ obeys a linear increasing
law with respect to p, hence corroborating empirically the theoretical relation (I-8).

I11.2.1.4 Optimal sampling rate and shape factor

We also investigated the dependency of the transitional sampling rate T¢ with respect
to the shape factor of the imaged object. Equation (I-8) suggests that T¢ depends only
on the number S of non-zero gradient coefficients, that is related to the perimeter of
the object but not to its area or its shape factor. Therefore, two objects with the same
perimeter should have the same transitional sampling rate T, even if the first is isotropic
(for example, a disk) while the second has a spatial dimension much larger than the others
(for example, an elongated ellipse).

To validate this hypothesis, we followed a similar approach than for the one-disk test
images, but we replaced the disks with ellipses of constant perimeter and various eccen-
tricities. By varying the ratio y between the half minor axis and the half major axis from
1 (circle) to almost 0 (flat shape), we tested shapes with different spatial and frequency
characteristics; on the other hand, by setting a constant perimeter, we have maintained
a constant TV-based sparsity measure for all the test images. The reconstruction error
curves and the associated T¢ are presented on Fig. III-7.

Although the four illustrated curves do not perfectly overlap, the,associated transg/
tional sample rates are distributed in a narrow domain, approximately 10 2,1.7"~ 10 2
Moreover, this analysis neglects all the effects due to the fact that our test shapes are
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Reconstruction error
N

10 1

Sampling rate T

Figure II1-7: Evolution of the reconstruction error for four ellipses of constant perimeter
P “ 250 pixels but various shape factor y, and position of the associated critical sampling
rates T¢. The corresponding test images X are presented on the right.

not drawn in a continuous domain but on a Cartesian grid instead; in particular, our
hypothesis that the number of non-zero gradient coeffi cients is approximately equal to the
perimeter of the object is no longer valid for small disks or very flat ellipses. This certainly
explains why the four critical sampling rates T¢ are not strictly identical.

I11.2.1.5 Putting things together

Results presented in sections I111.2.1.3 and II1.2.1.4 show that the critical sampling rate
T¢ associated to a binary image composed of one elliptical object is proportional to the
perimeter of the object, but does not depend on its shape factor. This is in agreement with
the relation (I-8) stated by [Candes07], which expresses that the minimal number of mea-
surements needed to reconstructed an image through a CS recovery scheme is proportional,
for a given number of pixels N, to its sparsity coefficient S. When TV regularization is
used to reconstruct binary images, this coeffi cient S is equal to the length of the boundary
between the two binary domains.

Going further, we can study the following question: if the binary image is now composed
of several elliptical objects, can we still observe a linear dependency between the critical
sampling rate and the length of the boundary separating the objects from the background,
which is equal to the sum of the perimeters of all the objects? Then, is it possible to
predict a suitable sampling rate for CS reconstruction from an a priori knowledge of
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Figure I11-8: Points pP,Tq computed on random binary images composed of ellipses
generated with and without enforcing a non-overlapping constraint on them. Examples of
such test images X are presented on the right.

some geometric characteristics of the imaged objects, from which the size of the boundary
between the two domains could be computed? An application example where it would
make sense to formulate such knowledge can be found in the biological imaging field:
if we image a sample containing a fixed number of cells with non-elastic membranes, a
reasonable prediction about the size of the interface between the cells and the medium
can be formulated, as this size would not change much over time.

To answer this question, we carried out the following experiment: we generated some
test images containing a random number of ellipses, each of them having random perime-
ter, eccentricity and orientation. Then, for each of these test images, we computed the
associated critical sampling rate T¢ as well as the total perimeter of the objects P. Results
are reported in Fig. ITI-8.

To be more precise, we carried out two series of experiments:

» First, we prevent ellipses from overlapping and from touching the edges of the image;
this constraint ensures that the length of the boundary between the objects and the
image background is actually equal to the sum P of the perimeters of the ellipses.
The result of a linear regression computed on the points pP, Tqcollected from these
experiments is presented on Fig. ITI-8: even if we can observe that some data pP,17q
deviate from the predicting model, the general trend of this linear model is relevant.
The encountered deviations might be due to the uncertainty in the measure of T¢.
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e Then, we remove the non-overlapping and non-edge-touching constraints; which cor-
responds to simulation conditions closer to real-life applications. The counterpart of
this relaxation is that we no longer ensure that the length of the boundary in the
image is equal to P: actually, P will be greater than the length of the boundary
between the two binary domains of the image. Therefore, as observed on Fig. I11-8,
the linear predicting model computed with the non-overlapping shapes provides an
upper bound on the critical sampling rate for the unconstrained images.

Thus, from a practical point of view, given a prior knowledge on the geometric parameter
P, we can predict which sampling rate is suitable for CS reconstruction, although this
prediction will be pessimistic if the imaged objects overlap.

I11.2.2 Random Gaussian sampling

The notion of optimal sampling rate is obviously related to the sampling strategy used to
define the position of the measurements in the Fourier space. In all previous simulations,
we used a random uniform sampling strategy for the sake of simplicity. However, studying
how variations of the sampling rate affects the reconstructed images in the case of non-
uniform sampling strategies is also worth of interest, and can be carried out similarly.

To proceed, we reproduced the one-disk test image experiments presented in Sec. I11.2.1;
however, instead of allocating measurements in a random uniform manner, we chose to
allocate them according to the Gaussian sampling strategy, which is taken in a first ap-
proximation as a model for the other low-frequency biased sampling strategies presented
in Sec. IT1.1.2. The corresponding curves RecErr “ f prgobtained for four different values
of the disk radius p are presented on Fig. I11-9.

Compared to the results presented on fig. II1-5, the profile of the curves RecErr “ f prq
is dramatically modified with the Gaussian sampling strategy. Indeed, for the single-
disk images with p “ 3 and p* 5, we can identify at least three domains where the
reconstruction error is quite stable, and two transitional domains in between. The two
extremal stable domains (which correspond approximately to T & 10 3 and T g 10 1)
are similar to the stable domains that we observe with random uniform sampling: they
correspond respectively to a complete failure of the CS recovery scheme, and to a perfect
reconstruction of the original image. On the contrary, the intermediate stable domain
observed with the Gaussian random sampling cannot be related to phenomena observed
with uniform random sampling; when working with sampling rates in this range, the
reconstructed images look very similar to the original one, but have blurred edges: for
these reconstructions, the CS recovery procedure works well but induces a low-pass filtering
effect on the reconstructed image. This low-pass filtering effect is linked to the Gaussian
sampling strategy which allows very few measurements in the high frequency areas of the
Fourier space.

Another particularity of the Gaussian sampling strategy is that small objects become
harder to retrieve than large ones (meaning that a higher sampling rate is required to
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Figure II1I-9: Evolution of the reconstruction error for four one-disk images with various
radius p, when sampled with a Gaussian sampling mask. We present also four zoomed
reconstructions of the p “ 5 one-disk test image (left thumbnails), with their associated
sampling masks (right thumbnails). The reconstructed image obtained for T “ 2.37 10 1
is almost identical to the original image.
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Reconstruction error
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Figure I1I-10: Evolution of the reconstruction error for the four test images presented on
the top of the figure, sampled according to a random uniform sampling strategy. These
images are, from left to right, the Shepp-Logan test image pag a blurred version of Shepp-
Logan pbg and two real biological images, Shigella pcqand Lymphocytes T pdg

reconstruct the small-disk images), which is the inverse trend of what is observed with
uniform random sampling. This is well understandable, as the Fourier transform of large
objects is concentrated closer to the center of the Fourier space. The fact that CS recovery
schemes together with Gaussian sampling strategy perform better on input signal that have
a larger sparsity coeffi cient S is however paradoxical.

I111.2.3 Realistic images

So far, our simulations were carried out on simple test images with low complexity com-
pared to what is encountered in real ones. Real images have textures, may contain details
at various scales, and are often subject to degradation during the acquisition process, re-
sulting in blur and noise. Compared to what is observed on simplistic test images such as
those in Figs. I11I-4, III-7 and III-8, all these phenomena induce a dramatic increase of the
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number of non-zero coeffi cients that are necessary to represent the images. Actually, most
of the real images are not even sparse at all, but only compressible, making such notion
of sparsity level meaningless. To understand the influence of the sampling rate in such
situation, we carried out CS reconstruction simulations on four realistic images, following
the same protocol than above (see Sec. I11.2.1), and using uniform Fourier sampling. The
four realistic test images are:

* the well-known Shepp-Logan phantom image, with strictly piecewise constant struc-
tures and sharp edges;

* the Shepp-Logan phantom image degraded with a small Gaussian blur (using a
standard deviation of 1 pixel length for the filter, while the image is 256~ 256
pixels);

» a fluorescence microscopy image of Shigella bacteria;

* a microscopy image of Lymphocytes T cells, presenting a high level of noise.
Results of the simulations on these images are presented on Fig. I11-10.

For both Shepp-Logan images, the error curves look very similar to the one obtained for
the disks and the ellipses in Figs. I11-5 and III-7: they present two stable domains where
the CS reconstruction process respectively fails and succeeds, and a narrow transition
area between these domains where the relative reconstruction error falls from almost 1 to
almost 0 as T increases. However:

e compared to what was observed with disks and ellipses, the transition between the
failure and the success domains occurs at a much higher sampling rate (approxi-
mately 10 1, instead of 10 2); moreover, the spread of this transition domain is
larger;

* even if the two Shepp-Logan images are very similar (the blurring effect applied on
the second image is moderate as it does not lead to any loss of details), both the

position and the spread of the transition domain are dramatically changed due to
the blur.

Therefore, defining a critical sampling rate for these images still makes sense, even if the
accuracy obtained on the corresponding measured values is poorer than for the simple
binary images. Together with the theoretical relation (I-8), this can be explained by the
fact that the Shepp-Logan images still have strict underlying sparse structures (in terms
of gradient), even if the corresponding sparsity level S becomes much larger as soon as a
blurring filter is applied.

On the contrary, in the case of the Shigella and Lymphocytes T images, the recon-
struction error never reaches a stable low level; the reconstruction error associated to the

“

Lymphocytes T image does not even reach 0 (even for T “ 100%, i.e. fully sampled re-
constructions), because of its high level of noise. As these images are not strictly sparse,
increasing the amount of available information (i.e. the number of measurements) always

improves the fidelity of the reconstruction; therefore, defining a critical sampling rate
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based on reconstruction errors for these images is not as relevant as in the case of binary
sparsc images.

I11.3 Conclusion

In this chapter, we tackled the issues related with how sampling can and should be per-
formed in the Fourier space. We first presented the existing sampling strategies, empha-
sizing that none of them has been proved to outperform the others in practice, in spite
of theoretical studies carried on this question. We also investigated the influence of the
sampling rate on the reconstructed images in the case of two particular sampling strate-
gies (uniform and Gaussian sampling), showing that different reconstruction regimes exist
depending on the value of this parameter and on the content of the reconstructed data.
In the case of simple binary images sampled according to a uniform random strategy, we
identified an optimal sampling rate separating the two domains corresponding respectively
to perfect reconstruction and failure; we showed that the value of this optimal sampling
rate could be predicted based on geometric characteristics of the sampled image that
may be inferred prior to the acquisition. We also discussed the effects induced by a low-
frequency favoring sampling strategy (the Gaussian sampling strategy) and the existence
of an associated critical sampling rate in this case, and presented some results obtained
with realistic images.
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Chapter IV
Video sampling

Compared to 2D images, processing 2D+T video signals leads to particular problems
related to the large size of this type of data. However, the counter part of this large size is
that natural video signals are in general highly redundant, which allows them to undergo
important compression ratio without noticeable degradations. Formally, this property
can be exploited to represent the 2D+T video signals in a highly sparse or compressible
manner, making this type of signals good candidates for being acquired as advocated by
the compressed sensing theory.

In this chapter, we investigate how the CS framework can be adapted to video acquisi-
tion problems. We first consider a frame-by-frame linear acquisition model in the Fourier
domain of the signal, and discuss the relevance of several sparsity models that could be
used to drive the reconstruction of the whole video sequence. Then, we switch to a non-
linear acquisition model — beyond the “pure” CS framework — in which only the modulus
of the Fourier transform of the signal would be acquired: by exploiting sparsity properties
similar to the one used in the linear acquisition case, we demonstrate the feasibility of a
phase retrieval reconstruction procedure applied to video signals.
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IV.1 CS applied to video signals

The work on linear acquisition and CS reconstruction of video sequences developed in this
section was presented in the conference paper [Le Montagner12].

IV.1.1 Acquisition model and problem formulation

We focus on the following problem: a signal of interest X PCNT composed of T successive
2D frames x; PCN (0d td T~ 1) is measured through a linear memoryless operator ®,
resulting in a vector Y PRM of observations!. Formally:

» fi » fi » fi

=" (IV-1)

Using an appropriate CS reconstruction scheme (Panalysis) 0 (Psynthesis), the goal is then
to recover X from Y .

The memoryless notion means that Y is accumulated from T sub-vectors y; P C™
of observations, with each y; depending only on a given frame X; this measurement
model corresponds to a 2D sensing device that would record and stack frame information
sequentially. In such acquisition mode, temporal redundancy between 2D frames enables to

In this chapter, capital letters denote 2D+T (or 2D+T related) signals and entities, while lower-case
letters are reserved to objects with no temporal dimensions.
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decrease the sampling rate compared to what is necessary to reconstruct them individually.
Depending on the actual sensing device, the spare measurements could then be re-allocated
in order to improve the temporal resolution of the system.

In this work, we focus on the case where the blocks @t are partial Fourier transforms,
although the results presented in what follows might be extended to other types of sensing
operators. The motivation for studying this type of Fourier-based acquisition model is
that it can be used as a basis to design optical imaging devices working according to the
following principle:

1. the imaged scene is observed through an optical set-up whose role is to implement
an optical Fourier transform of the corresponding 2D image (see [Goodman96] for
details on how this can be achieved),

2. this optical Fourier transform is focused on a plane array of photo-electric transducers
(such as a CCD or CMOS array) in charge of the actual measurement operation.

From the CS theory, we learn that a small subset of the Fourier coeffi cients is suff cient
to recover the 2D imaged scene. The goal is to design the array of photo-electric sensors
involved in this acquisition scheme in such a way that:

o first, it allows to use only a configurable subset of sensors for a given acquisition,

* second, it takes advantage (for instance in terms of speed or energy effi ciency) of
being operated in such partial acquisition mode instead of having all its sensors
“enabled” when acquiring an image.

The improved sensing capabilities of such type of sensing lead to a CS imaging system
that would theoretically be able to over-perform the usual CCD or CMOS cameras.

The algebraic consequence of the memoryless measurement hypothesis is that the op-
erator @ is block-diagonal. In [Park11], the authors demonstrate that restricted isometry
inequalities (I-5) do hold for such type of operator ® with small constants &s when the
blocks @ are random matrices with entries following a Gaussian distribution. However,
to obtain this result, additional constraints have to be applied on the class of signals for
which (I-5) is required to hold: besides the sparsity constraint, the authors require that
the energy }Xt}g of each frame is proportional to the number of measurements my allo-
cated to the corresponding sensing operator @. Based on some empirical observations,
we believe that such kind of result could also be established for other types of blocks @,
such as partial unitary transforms (see Sec. 1.2.3). From a practical viewpoint, assuming
that the frame energy remains almost constant over time and using the same number of
measurements for each frame leads to satisfactory results (see Sec. IV.1.4).

IV.1.2 Existing sparsity models adapted to video signals

The sparsity model put on the signal of interest X conditions the form of the recon-
struction scheme to use to recover X from Y , especially the sparsity basis W in the case
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of reconstruction by synthesis (Psynthesis)7 or the objective function in the case of recon-
struction by analysis (Panaysis). For 2D natural images, several sparsity models exist
(wavelets, curvelets, total variation), but few results have been established so far for joint
reconstructions of time-correlated 2D images, i.e. 2D+T sequences.

In [Wakin06], the authors propose to assimilate the 2D+T signal X to a 3D signal, and
to reconstruct it by enforcing a sparsity constraint on its 3D wavelet coeffi cients; formally,
this approach leads to a synthesis reconstruction (Pgsynthesis) where a 3D wavelet basis is
used for the matrix W. Although it is a natural generalization of the 2D case, this approach
does not take into account the fact that the objects appearing in a 2D+T sequence might
have very anisotropic spatio-temporal shape, while wavelets are best suited for isotropic
objects.

In [Park09], the authors introduce a multi-scale video reconstruction framework, which
relies on the idea of increasingly refining the spatial scale of the estimated signal: at
each step, the algorithm exploits information obtained from coarser estimates to reduce
the temporal redundancies and to estimate motion. However, although presenting some
promising results, this method requires to adapt the measurement protocol in order to get
some information about the coarse versions of the signal. Such modification is possible
with the single-pixel camera, which is the acquisition device targeted by the work [Park09].
However, it cannot be easily extended to other CS imaging modalities.

In [Marcia08], the authors propose to perform a joint reconstruction of sequences of K -
consecutive frames (where K & 2 is a predefined parameter) in the following way: given a
basis y PCN™ N in which each frame has sparse or nearly sparse representation — typically
a 2D wavelet basis — they define the following N K -square matrices:

» fi » fi
Y 1
—y g —y g
Bk “ — Ck “ = (IV-2)
—y W —y oy W
W W v oy v oy

Then, they propose to use either B or Ck as the dictionary in a |;-synthesis recon-
struction scenario (Psymhesis). The underlying idea is to exploit the temporal redundancy
existing in the video sequence by reconstructing the difference between frames instead
of the frames themselves. More precisely, with the Cg matrix, the l1-synthesis enforces
sparsity on the coeffi cients of the vectors qJ' 1~ pXt~ Xy 19— i.e. the 2D wavelet coeffi -
cients of the difference pxy = Xt 1qbetween each frame Xy and its predecessor if Y is a 2D
wavelet basis. The B k matrix behaves similarly: sparsity is enforced on the coeffi cients of

the vectors @ 1

"Xt Xi,qwhere X¢, represents the first frame of the group of K frames
being reconstructed. These “frame difference-based” approaches lead to interesting results
(especially the Cg -based one), but introduce some reconstruction artifacts that will be

discussed more thoroughly in Sec. IV.1.4.
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Finally, in [Trocan13] (also in the series of conference papers [TrocanlOa, TrocanlOb,
Trocanl0cl), the authors propose a multistage video reconstruction framework that in-
cludes motion estimation and compensation heuristics to improve the quality of the re-
constructed video sequences. The problem tackled in those works is actually more general
than the one we consider here, in that the authors propose to reconstruct in a joint manner
several video signals acquired simultaneously from the same scene with different cameras
(this scenario being denoted as “multiview” acquisition), each camera measuring a vec-
tor of CS data for each frame (potential applications of this problem include in particular
video surveillance and stereoscopy). More precisely, the reconstruction principle presented
in [Trocanl3] consists in the following steps:

1. for each vector of CS measurements acquired by each camera, reconstruct the cor-
responding 2D frame by solving a CS reconstruction problem:;

2. then, refine iteratively the reconstructed frames as follows:

(a) construct for each frame of each camera a prediction based on the estimates
obtained for the adjacent frames at step 1 and motion prediction heuristics,
(b) adjust these predictions to fit the CS measurements.

The second step of this reconstruction procedure may be repeated several times to achieve
a targeted level of reconstruction fidelity.

The motivation for the first step of this procedure, which consists in independent 2D
CS reconstructions, is to provide the motion prediction algorithms involved in step 2 with
estimates (even imperfect) of the video signals to reconstruct, as those algorithms cannot
directly deal with raw CS data. However, as step 1 and step 2 are not directly related,
other reconstruction methods could be used to achieve this initialization: indeed, step 2
— the main contribution of the paper [Trocanl3] — can be considered as a post-processing
method to improve CS reconstructions, rather than as a reconstruction method by itself.
For this reason, we did not include this method in the comparative work presented in the
next section.

IV.1.3 Reconstruction using 3D total variation
IV.1.3.1 Three-dimensional total variation

As suggested by [Marcia08], considering frame-to-frame differences could be an interesting
starting point to exploit temporal redundancies existing in 2D+T signals. However, one
should notice that the significant non-zero coeffi cients are not randomly distributed in a
typical consecutive frame difference. Indeed, if x{ and X 1 are two consecutive frames in
a video sequence, then the coeffi cients of the difference px¢ 1~ X(qwith large magnitudes
— i.e. the displacement and deformation fronts of the objects shown by the video — are
mostly located close to the edges shown in the frames X; and Xt 1 (see Fig. IV-1).

To be more formal, the sparsity model that we propose to use for the reconstruction
of 2D+T video sequences is composed of the following hypotheses:

73



Chapter IV — Video sampling
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Figure IV-1: Example of a microscopy video sequence showing amoeba cells (top row).
The middle row shows the amplitude of the spatial 2D gradient of each frame (white
pixels denoting large gradient amplitudes), while the bottom row shows the amplitude
of the difference between two consecutive frames (white pixels denoting large differences).
One can notice that the locations where large inter-frame difference is observed correspond
to locations where the amplitude of the spatial 2D gradient is also significant.
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1. The spatial 2D gradient of each frame X is sparse (see Sec. 1.2.5). We refer to this
property as intra-frame sparsity.

2. The difference X 1~ X(q between two consecutive frames is sparse. We refer to
this property as inter-frame sparsity.

3. The significant non-zero coeffi cients of the spatial 2D gradient of a given frame X;
— that correspond to the edges of the objects and structures shown in X; — and the
significant non-zero coeffi cients in pX¢ 1~ Xtq— that correspond to the displacement
and deformation fronts — are mostly located at the same positions.

To account for these properties, we introduce the three-dimensional total variation func-
tional (TV-3D), defined as follows:

yzy b

t* 0 pu,vgPQ

X }v-ap IPD hx¢qru, ve® | yxiqru,ve® " e 17 x¢qru, vg?

(TV-3D)
where D, and D represent the horizontal and vertical discrete derivative operators op-
erating on rasterized 2D images (as in (I-10)), and Q A Z? is the spatial domain on which
the frames Xt are defined. Thanks to this functional, we define an estimator X of the
signal of interest X from the measurement vector Y as a solution of the following analysis
reconstruction problem:

X “ argmin}X }ry.3p subject to YOX © Y}, d O (IV-3)
X PCNT
where @ is the measurement operator defined in (IV-1), and the parameter (/& 0 accounts
for the inaccuracy of the measurement vector Y induced by various phenomenons involved
in the measurement process, such as noise and quantization.

The reason why minimizing }X };\/.3p enforces the first two sparsity properties men-
tioned above (i.e. intra- and inter-frame sparsity) stems from the following inequalities,
that can be easily derived from the definition of the 3D total variation (TV-3D):

y y L, oy B o
max idbry o Xe1” Xidy d X }pygp d Xilry Xe1" Xihy

t t t t
(IV-4)
where }'}, is the 2D total variation as defined in (I-10). Indeed, minimizing }X }; 3p
]feads to small values of both the cumulated 2D TV of all the frames ‘er the sequence
¢ Xt}7y and the cumulated l1-norm of all the frame to frame differences  }X¢ 17 X}y,
and reciprocally. Moreover, from the concavity property of the square root function, it
can be shown that:

5 - B )

y Y ; g
ity Xe1” Xihy d 2" X 3y (IV-5)
t t

and that this inequality is tight if and only if, for all t P[0, T~ 2 Jand all pu,vqP Q, the
following holds:
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b

IPD hx¢qru, ve2 " |pD v Xqru, ve? ¢ e 17 X¢qru, vy (IV-6)

v

r r
In other words, for given values of | }Xt}yy and  }X¢ 1 X¢}; — which can be thought
as measures of respectively the intra-frame and inter-frame sparsity — the 3D total vari-
ation is minimal when, af each spatial point pu,vq and time point t, the amplitude of

the local spatial gradient |pD pX(Qru, VS{2 * D vXtQqru, VS{2 is equal to amplitude of the
local frame-to-frame difference |t 1~ XQru,vq: this explains the relation between the
minimization of }X }+,, 35 and the third sparsity property enforced on 2D+T video se-
quences mentioned above. This relation can also be explained by interpreting }X }+y/.3p
as a particular mixed |1 2-norm (see Sec. 1.2.5) operating on a linear transform of X that
would stack its discrete derivatives in the horizontal, vertical and temporal directions.

IV.1.3.2 Mean background correction

There are some situations where the difference Xt 1~ Xtgbetween two consecutive frames
is not sparse at all, even if X 1 and Xt are well-correlated. For microscopy applications,
this includes the case when the global illumination of the observed scene changes over
time. To make TV-3D regularization robust to this phenomenon, we reformulate the
reconstruction scheme (IV-3) as follows:

X PCNT

where A is a sequence whose frames a; (0d td T~ 1) are defined by a; “ M1, with py
representing the mean intensity value of the t'" frame in the original signal of interest.

The sequence A, or equivalently the mean value ¢ of each frame, has to be estimated
prior to the resolution of (IV—7) from the vector of observations Y . As p; “ Ni XL[xty, if
each measurement operator @ contains a row proportional to 1, the values ; can directly
be read from the vector of observations Y ; this is for example the case when the @
are partial Fourier transforms for which the sampling pattern is designed such that the
central Fourier coeffi cient (the one corresponding to the constant basis vector) is always
sampled. If @; does not contain a row proportional to 1, |; can still be estimated using the
framework developed in [Davenport10al; according to the results presented in that paper,
Ht, being a linear function of the signal of interest, can be estimated as fi; “ Ni XQi1|yy.
This property can be understood as a consequence of the restricted isometry property
(see Sec. 1.2.2): assuming that @¢ has small RIP constants, this operator behaves like an
isometry, meaning in particular that it preserves inner products between vectors:

~ . 1 ! 1 .

Mt WX(ptllyty N XPr1|peXty « NX1|Xty Mt (IV-8)
Actually, the property (IV-8) requires additional conditions on @t to hold, that are pre-
cisely defined and thoroughly justified in [Davenport10a] (Theorem 4).
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Finally, as a practical remark, it can be noticed that the optimization scheme (IV-7)
is actually equivalent to the TV-3D driven scheme (IV-3) up to the variable change
X1 X~ A. Then, (IV-7) can be solved in practice with the usual dedicated CS
solvers, assuming that they can handle the 3D total variation (either natively or after
being adapted). In practice, we use the NESTA algorithm [Beckerll] to solve (IV-3)
and (IV-7): the modification required to make this algorithm handle TV-3D are quite
straightforward as 2D TV is natively supported.

IV.1.4 Comparative numerical simulations
IV.1.4.1 Methodology

We compared the proposed TV-3D-based regularization methods with other existing re-
construction formulations, including:

* |1-synthesis using a 3D wavelet transform (see [Wakin06]), using either the Haar
wavelet (as suggested by the authors) or the Dauchechies-4 orthogonal wavelet
(DB4);

* li-synthesis using the Bk and Cg dictionaries (see [Marcia08]), with a block size
of K “ 4 or K * 20 frames, and a Dauchechies-4 wavelet transform as the 2D
dictionary y.

To assess the improvement offered by 3D reconstruction methods thanks to temporal
redundancies, we also provide the results obtained with frame-by-frame reconstruction,
using either TV or Dauchechies-4 wavelet regularization.

For this evaluation, we used three video test sequences:

*  Amoeba, sized 256~ 256" 80 (height © width ™ number of frames), which is a mi-
croscopy sequence of moving and deforming amoeba cells;

» Foreman, sized 288" 352" 80, which is a widely-used test sequence in the signal pro-
cessing community, representing a talking person over a non-stabilized background;

* Disks 1, sized 256~ 256" 80, which is a synthetic sequence representing moving
disks with random gray levels, sizes (diameters between 5 and 25 pixels) and speeds
(the distance travelled by one disk is about 1 to 3 pixels between two consecutive
frames). The boundaries of these disks is also blurred by Gaussian kernels with
various radius, in order to simulate different conditions of focus. We designed this
synthetic sequence so that it breaks the underlying model corresponding to 3D total
variation regularization; more precisely, the gray level of the background oscillates
quickly between two values, simulating rapid variations of the global illumination.

For each of these test sequences, we generated a vector Y of observations by concatenat-
ing partial Fourier measurements of each frame. The selection of the Fourier coeffi cients
was performed according to a random uniform strategy, with different realizations of this
random strategy for each frame. The sampling patterns were also constrained to obey a
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Chapter IV — Video sampling

Reconstruction method PSNR (dB)
Amoeba Foreman Disks
Frame-by-frame, TV regularization 42.5 16.2 26.6
Frame-by-frame, wavelets (DB4) regularization 38.3 12.7 15.5
3D total variation 46.8 27.6 22.0
3D total variation with background correction 46.8 26.8 38.9
3D wavelets (Haar) [Wakin(6] 45.2 20.8 18.6
3D wavelets (DB4) [Wakin06] 45.3 21.1 15.4
B4 + 2D wavelets (DB4) [Marcia08] 30.7 17.4 17.2
C4 + 2D wavelets (DB4) [Marcia08] 43.8 17.8 18.1
B 20 + 2D wavelets (DB4) [Marcia08] 43.0 20.7 17.9
C20 + 2D wavelets (DB4) [Marcia08| 45.8 23.6 18.2

Figure IV-2: Reconstruction error (expressed as a PSNR) between the original sequences
Amoeba, Foreman and Disks 1 and the corresponding reconstructed sequences obtained us-
ing various regularization methods. The proposed regularization methods are highlighted
with bold font.

central symmetry invariance, to be coherent with the Hermitian symmetry property ex-
hibited by the Fourier transform of real-valued frames. We used an arbitrary set sampling
rate of 10% for both Amoeba and Disks 1, and 20% for Foreman to handle the higher level

of complexity exhibited by this sequence.

Then, we reconstructed each of the test sequences from the corresponding measurement
vector Y with all the considered reconstruction methods. We assessed the reconstruction
fidelity of the algorithms for each test sequence by measuring the peak signal-to-noise
ratio (PSNR) between the input and the reconstructions (see Fig. IV-2); visual qualitative
evaluation of the artifacts was also performed (see Figs. IV-3, IV—4, and IV-5).

IV.1.4.2 Data fidelity and reconstruction artifacts

In terms of PSNR, the proposed TV-3D-based methods obtain the best reconstruction
results, although the improvement over the other best performing methods (C 29 [Marcia08]
or 3D wavelets [Wakin06] regularizations) is not dramatic in most cases (1 dB for Amoeba,
about 4 dB for Foreman). However, this measurement does not reflect the gain in terms
of visual perception brought by the two TV-3D-based methods.

Indeed, compared to the wavelet-based regularization methods, TV-3D tends to pro-
duce sequences with very sharp edges, without the oscillatory patterns typically present
close to the edges in 3D wavelet reconstructed sequences. TV-3D reconstructions also do
not have the following problems typically encountered with B ¢ and C g -based estimators:

» B dictionaries tend to produce estimators where all the K frames belonging to a
given group are similar (the gray level of a given pixel is almost piecewise constant
over time), resulting in a jerky effect when switching from one group to the next.

» Ck reconstructed sequences display precognition and trailing artifacts, meaning that
the reconstructed frame corresponding to time t contains patterns belonging to the
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IV.1. CS applied to video signals

Original sequence 3D wavelets (DB4) B 20 + 2D wavelets
Frame-by-frame TV 3D total variation C20 + 2D wavelets

Figure IV-3: Reconstruction results obtained for the test sequence Amoeba (frame t “ 50)
with various regularization methods.

Frame-by-frame TV 3D total variation . Co0 + 2D wavelets

Figure IV-4: Reconstruction results obtained for the test sequence Foreman (framet “ 23)
with various regularization methods.
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tY 14 t* 21 tY 24 te 27

Original sequence

3D total variation

3D total variation +
background correction

Figure IV-5: Reconstruction results obtained for the test sequence Disks I with the two
proposed methods. The result obtained using the TV-3D with background correction
regularization (bottom row) is visually identical to the original sequence (top row).

framest™ 1,t" 1,t° 2,t° 2, etc. This is particularly noticeable close to the moving
or deforming objects.

Finally, for most of the sequences, the simple 3D total variation estimator is very sim-
ilar to its TV-3D with background correction counterpart, both in terms of PSNR and
visual quality. The only exception is the Disks 1 sequence, which was designed on pur-
pose to challenge the TV-3D reconstruction: since the difference between two consecutive
frames is non-zero at almost every pixel, the corresponding hypothesis on which the TV-3D
estimator — as well as many other estimators, especially those using the B ¢ and Cg dic-
tionaries — relies on does not hold. Using the TV-3D regularization term with background
correction tackles this issue, leading to a result almost identical to the original in the case
of the Disks 1 sequence (see Fig. IV-5).

IV.1.4.3 Sampling rate gain over frame-by-frame reconstruction

To quantify the sampling rate gain provided by the TV-3D-based reconstruction methods
over simple frame-by-frame reconstructions, we reproduced the simulations performed on
our test sequences with several values of the sampling rate, following the same methodology
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50

—e— Frame-by-frame TV

—2— 3D total variation

48 A

46 -

PSNR (dB)

44 frmmmm e N R 2

42 -

40
10 2

Sampling rate

Figure IV-6: Trade-off curves between sampling rate and reconstruction error for the
Amoeba sequence, depending on the reconstruction method. To achieve reconstruction
with a given error bound, the TV-3D regularization method needs three to four times less
measurements than its 2D frame-by-frame counterpart.

than described in Sec. IV.1.4.1. We then evaluated the evolution of the reconstruction error
(measured as a PSNR) as a function of the sampling rate: results obtained for the Amoeba
sequence are presented in Fig. IV—-6.

We observed that the sampling rate corresponding to a given level of fidelity of the re-
constructed sequence with respect to the original data is generally 3 to 4 times smaller with
the TV-3D-based reconstruction than with the frame-by-frame TV reconstruction, that do
not exploit the temporal redundancies of the sequences; this ratio tends to decrease when
the PSNR increases. One should also mention that this result does not depend on whether
TV-3D reconstruction with background correction or TV-3D alone is considered, except in
the case of the Disks 1 sequence, for which TV-3D reconstruction alone completely fails.

IV.2 Non-linear acquisition and phase retrieval

The work developed in this section — about non-linear acquisition in the Fourier domain
and reconstruction of video sequences using a phase retrieval methodology — was published
in the conference papers [Le Montagner13b] and [Le Montagner13c].

IV.2.1 Non-linear versus linear optical Fourier measurements

In Sec. IV.1, we studied a problem of video recovery, aiming at reconstructing a 2D+T
sequence from samples of the 2D Fourier transform of each of its frames. The motivation
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for studying this problem is to conceive optical CS cameras based on an optical Fourier
transform and a specific photo-clectric sensor array device (see Sec. IV.1.1).

However, although measuring the complex Fourier transform of a scene can be imple-
mented optically (see [Goodman96]), it remains challenging as photo-electric transducers
such as a CCD or CMOS array return output signals that correspond to a measure of
the energy of the incident photons, which is independent of the phase of the correspond-
ing electro-magnetic wave. Measuring this phase relies on more complex optical set-ups
(holography set-ups for instance, see [Marim1l1lb] and Sec. 1.3.2) which are not always
compatible with the experimental arrangement. On the contrary, measuring the sole mag-
nitude of the complex Fourier transform relaxes the constraints put on the optical part of
our optical CS camera scheme.

Formally, the acquisition model corresponding to sole magnitude measurement para-
digm is the following:
I |(tht| for all t (IV—9)

where x; PRN is the t'" frame of the acquired sequence, yy PR™ is the vector of measures
acquired at time point t, @ is a partial Fourier transform, and || stands for the pointwise
modulus. Contrary to the “phase-aware” acquisition model (IV-1), that states that the
measured data are related to the signal of interest through a linear relation and therefore
falls into the general framework of compressed sensing, the new acquisition model (IV-9)
is non-linear, calling for a completely different reconstruction strategy, denoted as phase
retrieval.

IV.2.2 Translation invariance issue and problem formulation

Rejecting the phase information of the Fourier transform during the measurement process
(IV-9) makes two images equal up to a translation with periodic boundary conditions
indistinguishable, due to the properties of the Fourier transform. Therefore, a necessary
condition to make the recovery of an image X based on measures Yy acquired as (IV-9)
possible is to inject some prior knowledge about the location of the structures and objects
shown in the image.

In a context of video acquisition and reconstruction, such prior knowledge can be
provided by the frames adjacent to the frame being reconstruct. In what follows, we
propose a reconstruction scheme that operates recursively on consecutive frames: starting
from an initial key-frame X ¢ assumed to be available, we reconstruct the following frame
X1 using its partial Fourier modulus data y; and the key-frame Xg; the reconstruction
process is then iterated to the next frame, to reconstruct X, using y, and X1, etc. The
global video reconstruction problem is then recast into a sequence of frame reconstruction
problems, defined as:

Vi “ |@tXt| (up to noise and measurement inaccurac
Find xt such that | I ( ) (Iv-10)
Xt is compatible with X 1
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IV.2. Non-linear acquisition and phase retrieval

where the compatibility condition between X; and its predecessor X 1 will be formalized
in Sec. 1V.2.3.3.

It is worth noting that this step-by-step reconstruction procedure differs from the re-
construction scheme used in the context of linear measurements (see Sec. IV.1), in which
all the frames of the video sequence are reconstructed in a joint manner. It also requires
to have a key-frame Xq to initialize the recursive procedure: such key-frame has to be
acquired in a different manner than the other frames of the sequence, which impacts the
design of an imaging set-up that would implement such acquisition strategy. However,
the acquisition of such additional data is somehow unavoidable, as one has to break the
translation invariance mentioned above.

IV.2.3 Phase retrieval reconstruction

In this section, we introduce the phase retrieval reconstruction algorithm used to solve
(IV-10). For the sake of simplicity, we assume here that the frame index t is fixed, and we
drop the corresponding subscripts: X (previously X) will denote the frame being recon-
struct, a (previously X 1) its predecessor (assumed to be known when X is reconstructed),
and similarly for y (previously y;) and @ (previously @¢).

IV.2.3.1 General framework

The problem of recovering a signal from the modulus of its Fourier transform, known
as the phase retrieval problem, has been studied for a long time: this reconstruction
technique is used for instance for X-ray microscopy applications in crystallography (see
[Fienup82, Miao99]). To recover a signal X PRN from a measurement vector y defined as
in (IV-9), [Fienup82] propose an iterative algorithm based on alternated projections over
two subsets of RN :

* The data set Dy, that contains all the candidates X that correspond to the measured
samples, up to a certain tolerance [lthat depends on the noise that affects these
measurements:

L
Dy -* x PRN such that }y = |ox|}, d j( (IV-11)

* The regularization set R that corresponds to all the signals that meet certain prior
conditions which are known to be true for the actual solution. For crystallography
applications, R typically consists in all the 2D images that are supported on a given
subset of pixels.

Then, an estimator X of the solution is obtained as a limit of alternated projections over
the two sets Dy and R:

N -

x* Mg" Mo, “Mg” " Mo, Minid (1IV-12)
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where ” is the composition operator, Xinjt is an initial guess of the solution, and I D, and
Mg stand respectively for the projection operators over Dy -and R:

Mp, XQg*“ argmin}z " x}, subject to z PDy (IV-13)
4

and similarly for Mg. It is shown in [Fienup82] that the sequence of estimators produced
by the iterations (IV-12) converges toward the intersection of Dy rand R.

Other works have refined the algorithm (IV-12), mostly to improve the convergence rate
(see for instance [Bauschke03, Luke05, Marchesini07] and references therein). However,
to the best of our knowledge, most of the existing phase retrieval algorithms rely on the
construction of a sequence of estimators that converges toward the intersection of two sets,
one characterizing the valid signals with respect to the measurements, and the other one
the prior information available on the solution. We however mention three works that are
exceptions with respect to this general approach:

* In [Candesll], the authors propose to transform the non-linear modulus constraint

y |@x| into a linear one, by lifting up the unknown variable from RN to a
higher dimension space. More precisely, if the rows of the matrix ¢ are denoted
as (p:),cpol, e ,(p;\,' 1, the set of non-linear equations tyx “ [XQk|Xy|U. o - 1 that

expresses the compatibility of the signal x with the vector of measurements y is
recast into the following equivalent formulation:

y2*“ Trppe@exx q  for all k (IV-14)

where Trpqis the matrix trace operator?. The authors in [Candesll] propose to
change the unknown variable, switching from the column vector x P RN to the
xx P RN"N: this modification makes the equa-
tions (IV-14) linear, allowing convex formulations of the phase retrieval problem.

symmetric positive matrix X

However, the price to pay for this transformation is that the unknown variable is
now defined in a N2 dimension space: for imaging applications where N might be
quite large (N “ 6.5" 10* in the numerical examples presented in Sec. IV.2.4, which
corresponds to N2 “ 4.3" 10%), the approach proposed by [Candeésll] is mostly
inapplicable due to performance and memory issues.

» In [Waldspurger13], the set of non-linear equations y “ |@x] is turned into a phase
completion problem, in which the authors propose to search for not only the signal of
interest X, but also a “phase vector” u PCN (meaning that each component uy of u

has a unit modulus) such that y © u “ @x. More precisely, the approach proposed

in [Waldspurger13] consists in solving the following problem?:

2This re-writing trick involving the trace operator actually dates back to [Balan09], where it is presented
in a quite intricate manner.

3The analysis proposed is [Waldspurger13] is stated for complex-valued signals x P CN | while in Sec. IV.2
we chose to formulate the phase-retrieval problem for real-valued signals x P R for the sake of clarity.
However, most of the results presented here can be extended to complex-valued signals.
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argmin}ex ~ y " u}5 subject to @ |ug| “ 1 (IV-15)
X ,uPCN
It can be noticed that the X-minimization sub-problem occurring in (IV-15) has an
@ "py " ugwhere @ denotes the Moore-Penrose
pseudo-inverse of @. By substituting this solution into (IV-15), the authors recast
the problem to solve into the following one:

algebraic solution, namely X

argminxu|H uy subject to @ |uy|“ 1 (IV-16)
uPCN

where H PCN" N is a positive Hermitian matrix depending on @. Then, the method
proposed by the authors to solve (IV-16) makes use of a variable change similar to
the one used in [Candés11] (see the above point), replacing u PCN with U “ uu’ P
CN" N to “convexify” the underlying problem. As such, this approach suffers from
the same limitations as the one proposed in [Candeésl1] when dealing with large-
dimension signals as encountered in imaging applications.

In the paper [Shechtmanl3] — that was released simultaneously to our work
[Le Montagner13b] — the authors tackled a problem similar to ours, that is video
reconstruction based on measurements of the Fourier transform modulus of each
frame composing the sequence. In their approach, the difference map between two
consecutive frames is assumed to be sparse, and this is this difference map that
is actually reconstructed. More precisely, the support of this difference map is
iteratively discovered by a procedure that alternatively:

1. for a given support, finds the difference map that best matches the Fourier
modulus measurements,

2. updates the support to improve this matching.

This approach however supposes that the size of the support of the difference map
between two consecutive frames is known: we do not see how to infer this information
in the context of our problem.

In our case, the prior information is quite different from the one available in crystallog-

raphy applications (i.e. support constraints). We propose in the next section to therefore

adapt the alternated projection scheme (IV-12) to our video reconstruction problem by

formulating a suitable set of prior hypotheses and deriving the corresponding regulariza-

tion set R.

IV.2.3.2 Projection operator on the data set

Before moving to the prior hypothesis and the regularization set issue, let us state some

remarks about the data set Dy - and its associated projection operator. One of the key
points that makes the alternated projection scheme (IV-12) effi cient is that, although the
set Dy is not convex in general, its associated projection operator INp, . can be evaluated

explicitly in a very effi cient manner, as demonstrated in what follows.
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First, let us rewrite the expression (IV-13) with the Fourier transforms x** F x and
z1* F z of the involved variables x and z (F PCN" N denoting the Fourier transform
operator):

. > > > N
Mp, mg* F 2' with 2'* argmin>z" xbz subject to >y~ Tz

z1

,d 0 (IV-17)

where = P10, 1™ N is the selection operator associated to the partial Fourier transform
@ (see Sec. 1.2.3). Via a permutation of the rows of z%, this vector can be expressed as a
vertical concatenation of two column vectors zS PC™t and z9 PCMN" ™ with zS* ¥ z%
these two sub-vectors correspond to coeffi cients of z? that are respectively selected and
discarded by % . Using similar notations for x%, it follows that:
Gf o T L

g with 2529 * argsrrlln}zs' xS} 3297 xd>2 subject to Yy = |z%[}, d [

z>,Z

N>

21u

N>

(IV-18)
From the expression of the optimization problem in (IV-18), it clearly results that 2¢ * x9,
as the minimization with respect to the variable z9 is unconstrained. We then rewrite
the remaining complex-valued vectors in a polar form: zS “ r “expp “6qand* xS “

p"expp "¢ q leading to:

, —
N -

A N y
25“ PUexp i"0 with F,8 “ argmin® 2> p2 " 27rcpk Tcospd dkq

I’,G Kk
subject to }y " r}, d Uand ri € Ofor all k
(IV-19)

From the positivity of the modulus values ri and py, it results that 6« ¢, meaning that
2% and x° must have the same phase. The remaining optimization with respect to the
variable r is a quadratic constraint problem. Using the Karush-Kuhn-Tucker conditions
(see for instance [Boyd04]), it can be shown that:

~

1 1
f“ ﬁm\ )\yq Wlth )\“ max 0, D}p, y}z, 1 (IV*QO)

All together, the expressions (IV-17) to (IV-20) lead to a closed-form expression for the
projection operator INp, . The algorithmic complexity of the evaluation of this expression
is O pN logN g this cost being dominated by the computation of Fourier transforms.

IV.2.3.3 Hybrid total variation

The sparsity hypothesis assumed on the video sequences to reconstruct is the same here
than in the case of the linear measurement context studied in Sec. IV.1: indeed, these

“The notation z° “ r “expp "0 expresses a pointwise relation, i.e. z5 “ r¢ “expp “6q for all
components K.
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hypotheses are supposed to describe intrinsic properties of the sampled sequences, which
implies that they do not depend on the measurement process. We therefore assume that
the three sparsity properties introduced in Sec. IV.1.3.1 still hold for the current phase
retrieval problem.

To enforce these properties in the current context, we introduce the following functional,

denoted as hybrid total variation:

b

wru,vs®  pDpxqru,vs ' pDyxgru,ve ' px agru,vsé  (hTV)
[TRYIs 23]

PXIhrvwa

where x and a are two 2D images defined on the spatial discrete domain Q PZ? D}, and
D are the discrete derivative operators defined as in (TV-3D), and w is a weight map
defined on the domain Q such that 0 a wru,vsa ~ 8 for all the points pu,vqP Q. In a

“

first approach, w can be though as a uniform map (w “ 1), although the computations
associated to the hybrid total variation will be conducted for generic weight maps w. The

role of this parameter and the way it is set will be specified in Sec. 1V.2.4.3.

The functional (hTV) is related to the 3D total variation (TV-3D), in that if X repre-
sents a 2D+T video sequence composed of T frames x; (0d td T~ 1), then the following

relation holds: -

X} ryaap Xttty e (Iv-21)
t“ 0
The hybrid total variation of a frame X (with the parameter a set to X¢* 1) can therefore
be thought as the contribution of this frame to the 3D total variation of the whole 2D+T
sequence. As a consequence, the hybrid total variation inherits the properties of the
3D total variation in terms of sparsity enforcement: minimizing this functional do select
frames with the sparsity characteristics stated in Sec. IV.1.3.1.

Finally, we define the regularization set R involved in the alternated projection scheme
(IV-12) as a level set of the hybrid total variation (hTV):

! )
Rw,ar“ X PRN such that }X}ypy wad T (IV-22)

The newly introduced parameter T @ O becomes an input prior to the reconstruction
problem or can be set adaptively during the reconstruction process, as proposed below.

IV.2.3.4 Projection operator on the regularization set

Using Ry a1 as a regularization set for the reconstruction requires to be able to evaluate
effi ciently the projection operator lNg,, , ., which implies to solve several instances of the
following problem:

MRy ., Xq* argmin}z ~ x}, subject to }z},ry wa & T (IV-23)
ZPRN o
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To solve this convex optimization problem, we use an algorithm derived from the total
variation projection method presented in [Fadilill]. The idea behind this method is to
recast the constrained problem (IV-23) into an equivalent unconstrained problem, and to
solve the latter using a gradient descent method with Nesterov acceleration. We detail
this approach in the following paragraphs:

1. we start by introducing some of the notations and lemmas needed to describe the
method,

2. then we derive unconstrained formulation equivalent to (IV-23),

3. we detail how the proximal operator associated to the weighted Ig -norm defined in
the first step — which is used in the algorithm solving the unconstrained formulation
— is evaluated,

4. finally, we present the algorithm used to solve this unconstrained formulation.

Preliminary notations and lemmas First, let us introduce a few notations. In what
follows, Fg (d P N-) denotes the vector space whose objects are obtained as the concate-
nation of d elements of RN. For instance, for d * 3 such concatenation is represented
as p(,xl,xzq P F3 for any X, xLx2 P RN, Conversely, if f P Fq, then fppq P RN
(with p P [0,d” 10) denotes the pt" vector that composed the object f : for instance,
p>(,X1,X20plq “ x1 By extension, f m.qq P F2 is defined as f ppq,f g for any f PFgq. We
also provide the vector space Fg with an inner product and a lo-norm, defined canonically
as:

g1 D
xf |gy “ @? g 9pog forallf ,gPFy (IV-24)
p* 0

a__
and }f },“ X [fyforallf PFq.
By focusing more specifically on the vector space F3, we introduce the notions of

weighted |1 and |g -norms on this space®. For any w PRN with 0& wi & ° 8 and f PFs3,
we define: . b - . . . .

LY . 21 2. 2
Hw Wk foa Frma e,
X be < o« o . . (IV-25)
. . 2. 2. 2
}f}8,w mEXWk fFDqk fplqk fPZQk

where we remind that f K refers to the k" component of the pt" vector that composed
the object f PF3. One can easily check that the norm properties do hold for both }},
and }}g ¢ in particular, the requirement that the components of the weight map w are
non-zero ensures that these functionals are definite. Also, please note that, although F3 is
isomorphic to R3N | }'} 1w and }}g |, are different from the usual I; and lg -norms defined
on RN even in the case of the uniform weight map (i.e. w “* 1). One can also notice
that the hybrid total variation (hTV) can be expressed as a weighted |1-norm:

5These definitions could easily be extended to other Fy spaces and Ip-norms, but we do not need such
extensions for our proof.
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XIrvwa 3 @,Dnx,Dyxdy,, (IV-26)

Finally, we introduce the linear operator V : RN N F», defined as Vx “ pD hx,Dyx0
The adjoint of p V qis denoted as Div, and its expression is Divf “ = D ;]f wqg D :,f plq
for any f PFy.

Thanks to these definitions, we can state the following properties (a justification of
them is provided below):

Lemma IV-1 For allf ,g PF3:
Xflgyd }}iy "30ks 2 (IV-27)

where % PRN denotes the vector whose components are equal to ﬁ pointwise. Moreover,
for allf PFg, there exists g PF3 (with g %00) that makes this inequality tight. Conversely,
for all g PF3, there also exists a non-zero f PF3 such that (IV-27) is tight.

Lemma IV-2 (Dual norm of }'}, ) For allg PF3 and A & 0:

A}gg 1 sup X |gy subject to } };,, d A (TV-28)
W fPF3 '

Lemma IV-3 (Legendre-Fenchel conjugate of }}4 L ) Forallf PFj:
- #
. 0 if M}, dr

. ! (IV-29)
8 otherwise

sup xflgy” T}glg 1
gPF3 w

The right-hand side of this equality is dejaned as the indicator function of the 11w -ball of
radius T, and is denoted as 1 }f },, d' 7

Lemmas IV-2 and IV-3 are direct consequences of Lemma IV—-1, whose proof is pre-
sented below. For more details about dual norms and Fenchel-Legendre conjugates, see
for instance [Boyd04] and [Fadili10].

Proof of Lemma IV-1. For any f ,g P F3, we have, thanks to Cauchy-Schwartz inequali-

ties:
X gy “ prqk" gmqk\ fplqk" gplqk\ frﬁqk" ngqk
k b - . . . . . b . .. ..
d y N N 1. PR 2. 2
Wi g K plg 2 —— 9mg 9p1q K 9p2q k
k
dikg 1

This leads to the result xf [gyd }f };, "}g}g 1. Then, for any non-zero f PFg3, it can be
verified that this inequality is tight with g defined as follows:
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$ »‘f M »‘f YA » fi
0
' pOg-i ~ gk
»> T i b Wi —fu ﬁl if — f %o—_O?Iq
\ngquk & pquCf‘ pplqcf\ p(DZqu quuk fplq-'k 0
= o kﬁf SN P24 P2 k (IV-30)
9r2q —_O?Iq otherwise
% 9

Conversely, for any non-zero g P F3, the tight case is achieved with f defined as follows:

$ » ¥ i
L ~Ypog- kﬁ‘
»° i b -9 ifk“ ko
N PG ¢ & Wk’ mpoq(f mplq(f mquCi gplq-k
my NS Jf P k (IV-31)
f _
R K — O?Iq otherwise
LY

b o« < < < .
where Ko is such that ko “ argmax W—lk 9p0q E " Opig E T Opg E One can also check
that the objects g defined in (IV-30) and f defined in (IV-31) are such that }g}g 1 “ 1

and } };, “ 1respectively. ]

Derivation of the unconstrained formulation Thanks to the expression (IV-26),
the value of the projection operator Ry a1 (IV-23) can be expressed as the optimum z°
of the following optimization problem, that involves an indicator function:

! )
P N ,
inf =}z x}% 1}z a,Dnz,Dyzg,, dT (IV-32)
ZPRN 2 :
Using Lemma V-3, (IV-32) can be reformulated as follows:
. 1. . . . D, :_ D,
inf sup =}z° x}3 @poqz a @f)plquz TH g o (IV-33)
zZPRN f pPFg 2 ' "W

Then, thanks to the convexity (respectively concavity) of the optimized function in (IV-33)
with respect to z (respectively f ), the order of the infimum and supremum operators can
be switched (see for instance [Weiss08], Theorem 2.4 about this property). This leads to
the following equivalent formulation, where the terms that do not depend on z have been
isolated:

sup T} } ’ @ :aD‘ inf 1}z "X} @ " Divf :zD (IV-34)
sl 8.1 POg JPRN 2 2 POg PL2g
In (IV-34), the z minimization sub-problem is, for a fixed f | a qt;adratic problem, Wh(gse
solution has a closed form: the minimum value is %}X}2 . %’X " fog Divf p1,2q>§,

reached for z X g Divf g Finally, by substituting this minimal value in

(IV-34), we obtain that the optimum of the initial constrained problem can be calculated
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as follows:
MRy . X 29" X7 f g7 Divlg o
D > > 1V-35
where f " argmint}f}g 1° @f)poqa : %>x’ foqg Divf plzqg ( )
f PF3 w

As announced, contrary to the initial formulation (IV-23), the optimization problem in
(IV-35) is unconstrained; however, the price to pay for this simplification is that the
optimized variable belongs to the vector space F3, whose dimension is three times larger
than the dimension of the initial space RN .

Proximal operator associated to the weighted lg-norm Before presenting the
method used to solve (IV-35), we need to prove a lemma about the weighted lg -norm
defined on F3. More precisely, we need to prove that the function f N }f }8 1 is simple.
As defined in [Nesterov07, Weiss08], this property means that, for any A & 0, the proximal
operator® associated to the function f N A }f s 1 has a closed form and can be evaluated
effi ciently; this proximal operator is defined as follows for any f PFg:

13 H ~ 1 ’
Proxyyy. , @ q“ argminA}lglg 1 519 f}% (IV-36)
8. gPF 3 w2

To prove this assertion, let us reformulate the expression (IV-36). Using Lemma 1V-2,
this minimization problem can be recast as:

. N

inf sup xh 5 f IvV-37

Jofsup ohlgy” 5397 Tl (IV-37)
I}y W dA

Using arguments similar to the one stated above, we can switch the infimum and supremum
operators in (IV-37), leading to the following equivalent expression:

. N DY
sup inf xh 5 f IV-38
sup it xhlgy” S19” T (IV-38)
I} wdA

In this expression, the solution to the g minimization sub-problem has a closed form: the
minimal value is %}f 15 %}h Cf }%, reached for g “ f ~ h. By substituting this solution
to (IV-38), we obtain the following expression’ for the proximal operator (IV-36):

6See for instance [Moreau65, Combettesl1] and references therein for a formal introduction to proximal
operators and associated results.

"The expression (IV-40) of the proximal operator (IV-36) can also be obtained as a consequence of
the Moreau decomposition property. This result expresses that, if ¢ and Y are two real-valued convex
functions defined on a Hilbert space H, if additionally wpyq“ sup,py XX|yy~ ¢ pxqfor ally PH (meaning
that g is the Legendre-Fenchel conjugate of ¢, and vice versa), then the following identity holds:

X “ Proxe ;xq  Proxy mq for all x PH (IV-39)

Accurate details (such as the exact hypotheses required on ¢ and ) on this decomposition property can
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Proxyyy, , ofg” g“f’  he

1
where h** argmin}h ™ f}, subject to }h}, , d A
hPF3 '

(IV-40)

The minimization problem appearing in (IV—40) consists in finding the projection of a
vector f on a lj y-ball (which is a convex set): for the usual l;-norm, it is a well-known
result that this projection is obtained by applying a soft-thresholding transformation to
f (see for instance [Van Den Berg08]). For our weighted l;-norm, the result is similar,
although the soft-thresholding transformation needs to be adapted to account for the
weight vector w. In our case, the expression obtained for h¢ is the following®:

, —

» fi

he »‘f “ i

G Ve g . N
—he “max 0,1 b W ,_fmkﬁ for all k
—_ 7 pla— ! e f 2. f 2. f 2~ plaeg

héﬁqk pOg plq p2q g prQk

(IV-41)
where v &€ 0 is a constant independent of k, whose value is to be determined according to
the following rules:

« if}f};,, d A, thenv*™ O
* otherwise, v must be set such that }h“};  “ A.

The remaining issue consisgs\in determining the value of v when }f }; , @ A. To pro-

3 13 2 N 2 ~
ceed, let us introduce r W—lk f g ‘ f pig «

of T0,N © 1'7that sorts the coeffi cients ry in ascending order:

f g i for all k, and ¢ a permutation

fomqd Topqd " d Tom 1q (IV-42)

With these notations, we can express the weighted I;-norm of the vector h¢ defined in

(IV-41) as follows:
- . .

hFw Wigq Max 0,renq” v (IV-43)
1“0
Now, let us introduce the scalar sy for all k PLO,N = 1[] that we define to be equal to the
weighted l3-norm of h* if the parameter v were set to be equal to Igyq in the expression
(IV-43). This definition leads to the following expression for S:

be found for instance in [Combettes05], Lemma 2.10. Then, (IV-40) is a direct consequence of (IV-39)
and Lemma IV-3.

8For the sake of clarity, we skip the detailed proof of this result, and just give some clues about it.
The expression (IV-41) can be obtained by observing that, according to the equivalence property stated
in Sec. I1.1.1 (and also in [Weiss08], Theorem 2.7), there exists a constant v such that h¢, as defined in
(IV-40), is also solution of h* * argmin g, %}h “f }g * v}h}, ,; this latter problem is separable, and
has a closed-form solution which is exactly (IV-41). The additional conditions used to determine the value
of v results from a classical property of the projection operator on a set defined as the inverse image of a
real interval by a continuous function.
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Vo, T ,
S Woug  Topa  Temq for all kK PLO,N ~ 1] (IV-44)

“ k1

One can check from (IV-44) that the sequence pBrQ,.
define the index kg as:

N 1 is decreasing. Finally, we

.....

ko “ argmin Kk subject to sx d' A (IV-45)
KPON" 1)

One can notice that Kg is well-defined, as sy- 1 “ 0d A.

Let us recapitulate, in order to make things more concrete. Assuming kg & 1, we can
state the following:

}h(}lyw lf V “ r¢d(0q “ Sko d’ A é Sko, 1 “ }h<}1,W lf V “ r¢d(o’ lq (IV746)
As we want to determine ¥ such that }h%ll,w “ A, we can guess from (IV—46) that v
must be set in the interval Tgp- 1g Fopkoq - This intuition is indeed correct, and a careful
A do hold when the parameter v is defined

“

verification shows that the property }h*},

as follows:
$ ,
; Hhbw A
! r e ifkg“ O
& $p0g I }1w, So I Ko
Ve \ : \ (IV-47)
; B - N .Sk 1 . .
P oo 10" g o Temea g oo ko @l

One can notice that this proof is constructive, in that it can be used as a skeleton to
implement an algorithm to evaluate the proximal operator (IV-36). The algorithmic
complexity of such algorithm is O pN logN ¢ the most expensive step being the sorting of

the sequence Q.. o n- 1 that is necessary to evaluate the threshold parameter v.

.....

Solving the unconstrained formulation The method we propose to evaluate the pro-
jection operator g, ,, consists then in solving the unconstrained minimization problem
(IV-35). In this latter formulation, the function to minimize can be decomposed as a sum

between:

- @ - D
* asmoothterm (f N T p5a

%;X " fog Divf p1,2q§§)7 that is Lipschitz-differen-
tiable with a Lipschitz constant smaller than 1~ ~D iv~2 , which is itself smaller
than 9 (see [Chambolle04, Fadilill] for details about determining an upper bound
to ~Div~?);

 a non-smooth term (f N T} }g 1), that is simple in the sense defined in
[Nesterov07, Weiss08]. !

To minimize this function, we use the iterative accelerated gradient descent method pro-
posed in [Nesterov07, Weiss08] (Algorithm 4.2 in [Weiss08]). The “accelerated” adjective
refers to the fact that, if J, denotes the value of the objective function after the iteration
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p and J¢ the minimum of this objective function, then the method ensures that pJ,~ Jq
is smaller than a term proportional to ng; in the case of a classical gradient descent, this

bound would be only proportional to %, which results in a slower convergence.

Finally, all these results lead to an iterative scheme to evaluate the projection operator
MRy ..: each iteration is performed in O pN logN g operations, and the Nesterov accel-
eration ensures a quadratic convergence rate. This approach is much slower than what is
needed to compute the other projection operator p, ~ involved in the alternated projec-
tion scheme (IV-12). However, we observed that a careful initialization of the gradient
descent provides significant speed up of the convergence (see the pscudo-code of the full
algorithm in Fig. IV-T).

IV.2.3.5 Overall reconstruction algorithm

The proposed reconstruction algorithm is based on alternated projections of the iterated
reconstructions over the data set Dy, and the regularization set Ry ar, involving two
scalar parameters [Jand T. The parameter [Jcontrols the size of the data set Dy ;, and
is set proportional to the noise level that affects the measurements; we assume that this
information is available prior to the reconstruction (in a real acquisition device, the noise
level could be evaluated through a calibration step for instance). However, setting the
parameter T is not straightforward, as it is likely to be highly dependent on the image
content. Therefore, we developed an adaptive heuristic to dynamically adjust this param-
eter during the iterative reconstruction process.

This dynamic adjustment process relies on the following observation: the alternated
projection scheme (IV-12) produces a sequence of estimators that converge to the inter-
section Ry a;r X Dy, but this intersection is empty when T is below a certain threshold
T¢ (if the image a is not constant, the set Ry a1 itself is empty when T “ 0). Therefore,
the algorithm becomes non-convergent if T @ 7°¢.

Based on this remark, we propose a reconstruction algorithm where T is initialized at
an arbitrary high value Tg, and then reduced until the algorithm becomes non-convergent,
as detailed in the pseudo-code in Fig. IV-7. The algorithm returns the result (denoted as
X candidate in Fig. IV-7) obtained with the smallest value of T that leads to convergence. One
should notice that, compared to its mathematical definition (IV-23), the regularization set
projector lNg,, ,, takes here two input arguments (respectively Xiy and fn), and returns
also two outputs (respectively X oyt and f oyt ):

* Xin and Xyt are respectively the vector being projected and the result of the pro-
jection (as defined in (IV-23)),

* fip is used as the initialization of the gradient descent solving the auxiliary problem
(IV-35),
» fout refers to the object returned by this gradient descent (denoted as f  in (IV-35)).
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function FRAME RECONSTRUCTION (X init, Tinit, A tolvar, @)

pb 0
TD Tinit
o, f 0dD MXinit, 09
loop
pbp 1 Z increment the loop counter
Xp 1 D Mp,  Xp g v ) Z projection on the data set
Xp, fpdD MRy, ., Xp 1 fp 1 Z projection on the regularization set
& D IXp” Xp b, {IXp 1}, Z relative variation of x
if & & Atolvar then
X candidate B Xp Z save the current estimate of X
T a’'r Z reduce the bound T (a is chosen such that 08 a & 1)
else if detect non-convergence then
return X candidate Z return the previously saved estimate of X
end if
end loop

end function

Figure IV-7: Pseudo-code of the iterative reconstruction algorithm. The algorithm takes
four arguments as input: Xinj; and Tipjt, which are the initial values for the reconstructed
frame and the hybrid total variation bound, and A {gvar and a, that controls the general
behavior of the algorithm. When the relative variation between successive iterates falls
below A tolvar, the bound T is reduced by a factor a (chosen such that 0 @ a a 1, and
close to 1 in practice), until the algorithm becomes non-convergent. The second input
and output arguments of the operator lNg,, ., are used to initialize the gradient descent
loop that solves the auxiliary problem (IV-35), and to save the solution of this auxiliary
problem.

Mathematically speaking, the value of the input argument f i, is not important: as g, , ,
is defined as a convex optimization problem, its value does not depend on the initialization
of the gradient descent used to evaluate it. However, by suggesting a “good” initialization
point, this gradient descent converges to the optimum in fewer iterations, which dramati-
cally reduces the computation time.

One of the challenging issues raised by the algorithm presented in Fig. IV-7 is to detect
that the sequence of estimators does not converge for a given value of T, since we do not
have any result on the theoretical convergence rate of this sequence of estimators, To solve
this issue, we developed an empirical approach based on the properties of the sequence pd,0
which measures the relative variations between two consecutive iterates. More precisely,
to detect whether the algorithm starts to diverge and therefore should be stopped at a
given iteration p‘, we perform the following test:

1. linear regression over the truncated sequence of values of gog&,qfor p*~ Ap" 1d
pd p‘, where Apis a fixed parameter, returning a slope of evolution s;

2. stop (i.e. decide that the current value of T is too small for the algorithm to converge)
if s is above a certain threshold Spax.
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The proposed non-convergence test evaluates the mean variation of the sequence dog&,q
over a window of Ap samples: if this sequence increases at a rate higher than Smax,
then we assume that the algorithm is diverging. Typical parameter values for this test are
Ap* 100 iterations and Smax “
speed, we typically perform this test every 25 iterations only: as the linear regression is

"~ 10 4 per iteration. Finally, to improve the computation

performed over a sliding window, the value of the resulting slope is not likely to change
much from one iteration to the next, which justifies this approach.

IV.2.4 Numerical simulations
IV.2.4.1 Methodology

In order to validate the video reconstruction method based on partial Fourier modulus
measurements presented in Sec. IV.2.3, we run this reconstruction method on numerically
simulated measurements, generated from synthetic and real test sequences. We use two
test video sequences here:

* Disks 2, sized 256~ 256" 80 (height™ width”™ number of frames), which is a synthetic
sequence representing disk shapes of random intensity levels and sizes (diameters
between 5 and 25 pixels), and moving with random directions and speeds. The
typical distance travelled by the disks between two frames is about 1 to 3 pixels.
This sequence differs from the test sequence Disks I used in Sec. IV.1.4 in that the
intensity of its background is constant over time, and the boundaries of the disks
are not blurred.

»  Amoeba, sized 256" 256" 80, which is a microscopy sequence of moving and stretching
cells having similar sizes and speeds as in Disks 2. This sequence is the one already
used in simulations involving linear Fourier measurements in Sec. IV.1.4.

Simulations were conducted on the Disks 2 sequence using 15% of magnitude Fourier
measurements; on Amoeba, we increased the sampling rate to 25% of Fourier samples to
handle the more complex nature of the signal. In both cases, we assumed that the first
frame of the sequence is a key-frame, i.e. is known prior to the reconstruction: we used
an input to initialize the process, and then we progressively recovered all the following
frames as described in Sec. 1V.2.2.

IV.2.4.2 Qualitative and quantitative results

We first present results obtained with a weight map w set in a uniform manner in the
hybrid total variation (hTV): the corresponding reconstructions obtained for the sequences
Disks 2 and Amoeba are presented on Fig. [V-8 and Fig. IV-9. Figure IV-10 also presents
the evolution of the frame-by-frame reconstruction error (measured as the root mean
squared error RMSE between the original and reconstructed frames) as a function of
frame index t (i.e. the time) in the case of these two sequences.
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t* 3 t“ 15 t* 30 t* 70

Figure IV-8: Reconstruction results obtained for the test sequence Disks 2, using 15% of
Fourier modulus measurements, and one key-frame at t * 0. We used a uniform weight
map (W “ 1) in this example.

Original sequence

Reconstruction

Original sequence

Reconstruction

t* 3 t“ 30 t“ 70

Figure IV-9: Reconstruction results obtained for the test sequence Amoeba, using 25% of
Fourier modulus measurements, and one key-frame at t * 0. We used a uniform weight
map (W “ 1) in this example.
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Figure IV-10: Frame-wise root mean squared error of the reconstructed video sequences
Disks 2 and Amoeba as a function of the frame index t (i.e. the time).

These results show that the distortions introduced by the reconstruction method in-
crease with time, i.e. with the distance to the initial key-frame: while in both sequences
the reconstructed frames for t & 10 are quite similar to the original ones, errors become
significant close to the end of the sequences, but exhibit different characteristics:

» For Amoeba, the RMSE increases progressively and quite regularly with time t, which
is characteristic of error accumulation. Visually, this results in an increasing blurring
effect.

» For Disks 2, the RMSE increases sharply at time t * 22, and then continues to grow
over the next 10 frames, leading to a reconstruction that is completely inconsistent
with the original sequence for t g 30. This behavior is due to the fact that the
algorithm outputs an erroneous reconstructed frame at t “* 22, whose errors are then
propagated. On the contrary, frames corresponding to t @ 22 were almost perfectly
recovered. The reason explaining why the reconstruction fails at this particular point

remains however unclear.

IV.2.4.3 Weight map in the hybrid total variation

Results presented in Sec. IV.2.4.2 were obtained with the weight map parameter w in the
hybrid total variation (hTV) set to a uniform value (w “ 1). However, this parameter
can be refined with some prior hypothesis made on the reconstructed frames, by including
some motion prediction heuristics for instance. More precisely, we tested an approach
consisting in setting this parameter such that wru,vs is small at the spatial positions
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Original sequence w “ 1 (uniform) w as in (IV-48) with k “ 1

w as in (IV-48) with k “ 10 w as in (IV-48) with k “ 100 w as in (IV—48) with k * 1000

Figure IV-11: Frame t “ 70 of the sequence Amoeba reconstructed with different
parametrizations of the spatially varying weight maps w.

pu,vq P Q where we expect to observe edges in the reconstruction (see Sec. 1V.2.3.3 for
details about the notations).

We carried several reconstruction experiments in which the design of the weight map
used to reconstruct the frame X; were based on the gradient of the previous frame X 1
in the sequence. In particular, we considered weight maps defined as follows:

S :
WrU,vs* exp ~ K pDpX 1qru,vs S pDyXy 1qru, Ve (IV-48)

with K 8 0 a parameter to tune. The underlying assumption guiding this choice is that
edges in the reconstructed frame are expected to be located close to the edges of the
previous frame, which corresponds to a very simplistic motion prediction heuristic.

However, results presented in Fig. IV—11 show that — in spite of the simplicity of the
motion prediction underlying hypothesis — a careful choice of the weight map can indeed
reduce the reconstruction artifacts. In particular, in the sequence obtained with K “ 100,
we were able to remove the blurring effect and contain the error accumulation phenomenon
that otherwise dramatically degrades the frames close to the end of the test sequences (i.e.
far from the key-frame). However, automatic calibration of the parameter K remains
challenging: for instance, all our attempts to reconstruct Disks 2 using a non-uniform
weight map resulted in a degradation of the reconstructed sequence, compared to what
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we obtained with w “ 1. Other forms of weight maps w were also tested, such as:

1
wru, vs*© b (IV-49)

N° Paxe 10U, ve " Xy 1qru, ve

with N g 0 a regularization parameter, but led to unsatisfactory results and numerical
instability. Setting w in a robust manner is still an open question.

IV.3 Conclusion

In this chapter, we presented two sparsity-based video microscopy reconstruction meth-
ods, using random projections in the Fourier domain, exploiting either linear (amplitude
and phase) or non-linear (amplitude only) measures. In the former case, the reconstruc-
tion scheme exploits general CS reconstruction results with a 3D total variation based
reconstruction functional, where all the frames of the sequence are reconstructed in a joint
manner. In the latter case, the reconstruction relies on an alternated projection algorithm
inspired by previous phase retrieval techniques, and modified to account for the specific
sparsity properties encountered in video microscopy sequences. This phase retrieval algo-
rithm differs also from the TV-3D-based method in that the frames of the sequence are
reconstructed recursively, starting from an initial key-frame assumed to be known, and
recovering each frame using the result obtained for its predecessor in the sequence.

The results demonstrate that video reconstruction can be performed from partial
Fourier measurements, opening the way for designing “compressed sensing” devices relying
on optical Fourier transforms. However, numerical simulations show significant differences
in terms of performances depending on whether the acquired samples include a Fourier
phase information or not: in particular, the quality of the resulting sequences is much
higher if phase information is available. Moreover, the phase retrieval reconstruction al-
gorithm used in absence of such phase information is more sensitive to error accumulation
during the reconstruction process due to its frame recursion behavior compared to the
CS reconstruction, that recovers all the frames of the sequence in a joint manner. The
phase retrieval algorithm also involves a large number of parameters that may be diffi cult
to tune, and that may significantly impact the convergence rate of the overall method:
obtaining theoretical results about this impact is still an open question, and would be
definitively worth investigating.
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Chapter V

Using CS as a denoising method?

The CS reconstruction operation that recovers the signals of interest from the partial
measurements vectors can be formulated either as a convex optimization problem or as a
greedy heuristic such as orthogonal matching pursuit (see Chap. II). In both cases, this
reconstruction step enforces sparsity priors on the signal to reconstruct, which — as a
side effect — tend to filter out the noisy component present in the measurements, as the
latter violates the sparsity assumptions. In some preliminary work [Marim09], the authors
exploited this characteristic to design an image denoising method based on the fusion
of several CS reconstructed images, which appears to be efficient in denoising low-light
microscopy images, whose noise component can be modeled as a mixture of an additive
Gaussian and a Poisson model. The work presented in this chapter was carried out bearing
in mind the study of denoising methods applicable to such low-light microscopy images,
in particular the extension of the method proposed in [Marim09].

More precisely, the behavior and performance of denoising algorithms are governed by
one or several parameters, whose optimal settings depend on the content of the processed
image and the characteristics of the noise, and are generally designed to minimize the mean
squared error (MSE) between the denoised image returned by the algorithm and a virtual
ground truth. In this chapter, we introduce a new unbiased risk estimator (PG-URE) of
the MSE applicable to a mixed Poisson-Gaussian noise model that unifies the widely used
Gaussian and Poisson noise models in low-light microscopy applications. We propose a
stochastic methodology to evaluate this estimator when little is known about the inter-
nal machinery of the considered denoising algorithm, and we analyze both theoretically
and empirically the characteristics of the proposed PG-URE estimator. Finally, we eval-
uate the PG-URE-driven parametrization for three standard denoising algorithms, with
and without variance stabilizing transforms, and different characteristics of the Poisson-
Gaussian noise mixture. Beyond the application to CS denoising, we emphasize that this
new tool can be used to optimize the parameters involved in any denoising algorithm,
assuming that the mixed Poisson-Gaussian noise model holds for the processed images.

Finally, let us mention that most of the work presented in this chapter was proposed
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as a journal paper [Le Montagner13d], and is currently undergoing peer review.
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V.1 Introduction

V.1.1 Denoising background

Image denoising is one of the most studied problem in image processing. Many algorithms
have been developed to tackle this issue, with various characteristics in terms of denoising
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effi ciency, applicability to different types of images and noise models, and running time.
Among this large collection of available methods, we can single out the following families
of algorithms:

Thresholding in a transformed domain. The general principle of this type of denois-
ing algorithm is to apply a linear transform to the image in order to obtain a sparse
representation of it, to threshold the obtained coeffi cients in a non-linear separable
manner, and finally to revert the initial linear transform. This generic method can
be instantiated with several types of sparsifying linear transforms, including orthog-
onal wavelets [Donoho94, Donoho95a] (which is the original method), translation-
invariant wavelets [Coifman95|, ridgelets [Candes99], curvelets [Candeés04, Zhang08],
etc. One of the key practical interest of this type of methods is that, assuming that
the considered linear transform comes with a fast computation algorithm such as
the fast discrete wavelet transform (which is generally the case), they can be applied
very effi ciently even on large 2D or 3D signals.

Variational based methods. With this type of method, the denoised image is obtained
as a minimizer of a functional, which is designed to enforce certain properties on the
result. One of the most famous representative algorithm of this category is total
variation filtering [Rudin92], which enforces a piecewise constant structure on the
images, and whose formulation is the following:

. 1, .

X argxmln é}x y15 A}X}ry (V-1)
where y is the input image to denoise, X the output denoised image, }'}; is the
2D total variation semi-norm (I-10), and A g 0 is a parameter adjusting the general
behavior of the method: the higher A is, the more noise will be removed, while for
A N 0O, the output image will be constrained to match the input. Total variation
filtering (V—1) is known to be very effi cient in removing noise while preserving sharp
edges in cartoon-like images. More generally, variational-based methods are very
flexible and can easily be tuned to account for different types of image models (see for
instance [Aelterman12, Zhul2]). It can also be noticed that several other denoising

methods such as anisotropic diffusion [Perona90] can be seen as variational methods
(see [Kawohl04]).

Patch-based non-local methods. This new category of denoising methods has been
introduced by [Buades05], with the non-local means (NLM) denoising algorithm.
The idea of this type of method is to exploit the spatial redundancy that exists in
natural images and to compute the denoised value of a given pixel by taking into
account the values of all “similar” pixels in the noisy image, including possibly pixels
located at long distances (i.e. non-local). Formally, the denoised value for a given
pixel Kk is defined as follows:

X “ o WK, lqy (V-2)
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where y is the noisy image, and where the summation index | visits all the pixels. In
(V=2), the weight w X, 1gé Iv_O measures the similarity between the neighborhoods of
pixels K and |, and Z gkq* | wX, |qis a normalization factor. This neighborhood
similarity measure w K, Iqis actually a parameter of the method; in [Buades05], the
authors propose to define it as:

. ykg” TAGS

- (V-3)

wpk,lg“ exp

where 17 K represents a restriction of the whole noisy image y to a small window
(a patch) around the pixel k, and h g 0 is a parameter adjusting the “denoising
intensity” of the method, similarly to A in (V-1). Several variants of NLM involving
patches with different shapes have been proposed (see for example [Deledallell]),
although the most common implementation of NLM uses centered square patches.

Most of the state-of-the-art denoising algorithms [Elad06, Dabov07] consist in refinements
of and crossings between these classical ones: for instance, BM3D [Dabov07] consists in
looking for image patches that present similarities (as in [Buades05]), and then applying a
thresholding operation on group of similar patches (in the manner of [Donoho95a]). One
can refer to [Milanfar13] for a more comprehensive overview of filtering methods applied
to denoising problems.

All these algorithms have in common that their behaviors is controlled by one or sev-
eral parameters, whose optimal values are almost always dependent on the data being
processed. More precisely, if y is the noisy image being observed, f g a denoising algo-

“

rithm depending on a set of parameters 6, and X “ f g pygthe denoised image returned by
the algorithm, it is often desirable to select 8 such that it optimizes a similarity criteria
between X and a ground truth noise-free image X. Several image similarity criteria exist,
with various characteristics in terms of correlation to the human perception system (see
for instance [Zhangl2] for a detailed review of these criteria). In this chapter, we focus on

the mean squared error (MSE), defined as follows:
“ 1 4 2
MSE* -} omya’ X)3 (V-4)

where N is the size (i.e. the number of pixels) of the considered 2D images. This criterion
is certainly not the best one with respect to the human perception system correlation

issue, but its mathematical tractability makes it a valuable tool in image processing (see
[Wang09)]).

V.1.2 Denoising via aggregation of multiple CS reconstructions

Using ideas inspired by the CS theory for denoising tasks, as proposed by [Marim09], is
justified by the two following remarks. First, in terms of frequency analysis, the energy of
a noise-free natural image is mostly concentrated in the low-frequency area of its Fourier
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Y1

—

FT ‘.

— Y2

Figure V-1: Denoising scheme using several CS reconstructions. From a noisy image y,
we generate several CS measurement vectors Yy, by taking the Fourier transform (FT)
of y and rejecting a random subset of the Fourier coefficients. Then, each y, is used
to produce an estimator X; of the original signal through a CS reconstruction scheme
(Ptv) involving TV minimization. Finally, all the X, are combined in a X estimator, with
improved faithfulness properties.

domain, while a white noise has a uniform spectrum intensity: this implies that, in a noisy
natural image, it is the high-frequency part of the image that is the most significantly
affected by the noise, making the information coming from this part of the spectrum more
inaccurate than its low-frequency counterpart. Second, the theory of CS states that a
sparse or compressible signal can be recovered from a non-adaptive subset of linear noisy
measurements.

Based on these two ideas, a CS-based denoising algorithm should follow the following
workflow (see also Fig. V-1):

1. Generate several subsets of correlated measurements by considering the Fourier
transform of the noisy image, and rejecting most of its — inaccurate — high frequency
coeffi cients.

2. For each measurement subset y, (r “ 1,...,R), compute an estimator X, of the
original non-noisy image through CS reconstruction (for instance (Prtv)).

3. Combine all the X; estimators in a proper way to produce an improved estimator X
of the original noise-free image X.

In this global denoising scheme, the y,; can be considered as approximative and partially
correlated observations of the original image y, and the X, as partially correlated coarse
estimators of the noise-free image. These X, are aggregated thanks to a fusion operator g,
designed such that the denoised image X “ gX1,...,XrQpresents improved faithfulness
properties.

The denoising workflow presented in Fig. V-1 involves several parameters: the number
R of intermediate CS reconstructions to fuse, the data fidelity bound Uinvolved in the CS
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reconstruction problem (Pty ), the method used to select the Fourier coeffi cients involved
in the composition of the partial measurement vectors y,, the method used to fuse the
X, ete.

A strategy to optimize these parameters could be to minimize a mean squared error
criteria, as proposed above. However, except in special contexts such as simulations when
the ground truth x is known, the MSE (V—4) is impossible to evaluate directly and cannot
be used as an objective criteria for parameter optimization tasks. The unbiased risk
estimator tools, among which SURE [Stein81, Donoho95b] is a well-known representative,
aim at tackling this issue.

V.1.3 SURE and parameter estimation

Stein’s unbiased risk estimator (SURE) [Stein81] is a well-known result in the statistics
field, that has recently received a growing interest from the image processing community
(see for instance [Donoho95b, Benazza-Benyahia05, Van De Ville09]).

The SURE estimator is built upon the hypothesis that the image y to denoise results
from a ground truth X corrupted by a white additive Gaussian noise b:

N -

y“x b with b, N 0,0%d (V-5)

where the standard deviation parameter O is assumed to be known. From this noise model,
and given a denoising function® f , a similarity criteria SURE is defined as:

o1 , . . 20%

SURE ﬁ}f vaq y}; o WDIVf Py q (V-6)
where Divf pyq“ ' K % py gstands for the divergence of the function f . In [Stein81], the
author showed that, up to some technical points?, MSE and SURE have equal expected
values over all the realizations of the random variable b: EtMSEu “ EtSUREU. This
means that, in practice, SURE is an estimator of the MSE similarity criteria, and can be
taken as a surrogate. The empirical equality SURE « MSE has been confirmed in various
particular situations: see for instance [Ramani08, Van De Ville09].

A significant difference between MSE and SURE is that the latter does not depend on
the ground truth X. As X is generally not available in real-life problems, this property
dramatically increases the interest of SURE over MSE in practical applications. For
instance, if 6y,...,0¢ are K admissible parameter values for a denoising algorithm f g,

1From now on, we will drop the subscript 8 from f ¢ for the sake of readability, when no ambiguity is
possible.
I ZVF01: the foljy)wing result to hold, f must be weakly differentiable, and its partial derivatives must fulfil

E | 'g;—t pyd & ° 8. These technical conditions will always be assumed to be true, as well as all other

requirements on the regularity of f that could be encountered in this work. Please note however that some
realistic denoising functions f may not be even weak-differentiable: for instance, wavelet hard-thresholding
[Donoho94] is not.
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it is possible to select a “best-performing” value B¢« in the sense of the MSE criterion as
the one that minimizes SURE pB«g Such selection is data-adaptive (it depends on y), and
objective (it does not rely on human expert evaluation), opening the way to automated
parameter estimation.

V.1.4 Chapter outline

The work presented in this chapter is built around the resolution of two issues that restrict
in practice the use of SURE for automatic parameter tuning. First, SURE relies on the
hypothesis of additive white Gaussian noise (V-5), which may not account for situations
encountered in bio-imaging applications: for example, in this case, noise intensity may not
be uniform in the whole image as assumed in (V-5), but rather depend on the presence of
biological objects, and more generally on the value on the underlying signal (see [Starck98,
Zhang08]). The extension of SURE to a more realistic mixed Poisson-Gaussian noise model
is thus proposed in Sec. V.2, extending the work in [Luisier11].

The second limitation comes from the divergence term that appears in the expression
of the SURE estimator (V—6). More precisely, the evaluation of the partial derivatives
% pyqis not a trivial task when the denoising algorithm f is not defined by a closed-
form expression: such situations include variational-based algorithms (e.g. total variation
minimization [Rudin92]) and difusion methods (e.g. anisotropic diffusion [Perona90]). To
tackle this issue, a methodology based on the introduction of small stochastic perturbations
to y (similar to the one introduced by [RamaniO8]) is proposed in Sec. V.3.

A numerical validation of the proposed framework is presented in Sec. V.4, along with
several practical examples of parameter estimation.

V.2 Mixed Poisson-Gaussian noise model

V.2.1 Generalized unbiased risk estimators

The original SURE estimator [Stein81] (V-6) was designed around the Gaussian noise
hypothesis (V-5). Other types of unbiased risk estimators have been derived since then
to handle different noise models. It is worth noting that unbiased risk estimators can be
refined to account for several phenomena that affect the image formation, beyond simple
noise: see for instance [Vonesch08, Pesquet09, Eldar09a, Giryesll, Xuel2] and references
therein for applications of SURE-like estimators to deconvolution problems. An exhaustive
review of the existing unbiased risk estimators applied to image restoration problems is
however beyond the scope of the current work, and we focus here on pure denoising
problems involving noise models encountered in microscopy imaging applications.
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V.2.2 Poisson noise and associated PURE estimator

A usual noise model in bioimaging is the Poisson model, which is quite common in low-light
fluorescence microscopy imaging, and more generally in imaging modalities that operate in
low-signal conditions (see for instance [Starck98, Zhang08]). In this model, each observed
pixel value yi is assumed to be the result of a Poisson random process of intensity Xk,
independent of the other pixels y;. Formally:

y . Pmxq (V-7)

A qualitative property of Poisson images is that the noise is signal dependent: its variance
is higher on bright objects than in the dark background. This behavior is fundamentally
different from what is modeled with the additive white Gaussian noise hypothesis (V-5),
for which the noise intensity is uniform and independent of the value of the ground truth
signal.

A Poisson unbiased risk estimator (PURE) of the MSE similarity criteria has been
derived in [Luisier10] for the Poisson noise model (V-7):

1 , , A . E

PURE® & Y wd: lyk" 2 yT' ®pa ~ xllyy (V-8)

where the image-valued function f © pyqis defined as f " 18 ; pvg“ fkpy = exqfor all

pixels k. For smooth functions f , this expression can be simplified using the following
first-order Taylor approximation of f " Spy g

f" Sy« f pya” Bf pq (V-9)

where the image-valued function Bf pyqis defined as pBf ¢ pyq* % py g for all pixels k.
Thanks to this Taylor approximation, (V-8) becomes:

PURE® © Jf ya’ yI3" I8 oy’ lyy (v-10)
Al E
The terms yf" ®p/q in (V-8) and xy|Bf pyay in (V-10) play roles similar to the di-
vergence term in SURE (V-6), in that they probe how small modifications of the observed
image y impact the output of the denoising algorithm f . Their evaluation are subject to
technical diffi culties similar to those mentioned in Sec. V.1.4 for SURE.

V.2.3 Mixed Poisson-Gaussian noise

The Gaussian and Poisson noise models (V-5) and (V-7) do not individually account
for the various phenomena involved with real image acquisition processes in fluorescence
microscopy. Therefore, in the following, we consider a mized Poisson-Gaussian (MPG)
noise model, similar to the ones proposed in [Starck98, Zhang07h, Foi08, Delpretti0s,
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—— Increasing Gaussian behavior
g 10 1.5 g 10 1 g 10 0.5

g“ 0

C“O

Zu 10 2

C “ 10 1

Increasing Poisson behavior ¢+———

Figure V-2: Example of Shepp-Logan images y corrupted with the mixed Poisson-
Gaussian noise model (V-11), for different values of the two parameters 0 and {. For
o“ Oand ¢ “ O (upper left), the image is identical to the the ground truth x (i.e. the
original Shepp-Logan image).
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Jezierskall, Jezierskal3]3:

$ x
& Zn P >
y*“ ¢z b with NS (V-11)
0]
% b, N 0,0d

where z and b are two independent random variables, following respectively a Poisson and
a Gaussian distribution. This noise model introduces two numerical parameters:

* 0 & 0is the standard deviation of b; the higher this parameter, the more the model
(V—11) behaves like a pure Gaussian noise model.

« C & 0is the gain of the acquisition process*; the higher this parameter, the more
Poisson-like is the behavior of the noise in (V-11).

It can be noted that the proposed MPG noise model (V—11) encompasses the classical
Gaussian and Poisson noise models: setting ¢ “ 0 and 0 g 0 corresponds to the Gaussian
noise model (V-5), while ¢ “ land 0 “ 0leads to the Poisson noise model (V-7). Fig. V-2
shows examples of realisations of this noise model on the Shepp-Logan phantom image,
for different values of the parameters ¢ and oO.

In what follows, we will always assume that the values of the noise parameters ¢ and
¢ are known. However, it is worth noting that estimating these parameters from a given
noisy observation y is not trivial. In particular, as noticed in [Jezierskall, Jezierskal2b,
Jezierskal3], the cumulant based approach advised in [Zhang07a] leads to unreliable
estimates of the gain parameter . This is due to the fact that this approach makes use
of high-order empirical moments (order & 3) evaluated on the noisy signal, which leads to
numerical instability. As an alternative, [Jezierskall, Jezierskal3] propose an expectation-
maximization approach to address this parameter estimation issue, which provides more
stable and reliable estimates.

V.2.4 Unbiased risk estimator for the MPG model

Extending the pioneer work in [Luisierll], we derive the Poisson-Gaussian unbiased risk
estimator (PG-URE) of the MSE for the MPG model (V-11):
PG-URE “ 1, ~ 2 AEr'(s E\ 2N r s - - 2

- N ez lykt 2yt Pya C 20°Divit Ppyq” Oxdlyy © o
(V-12)

where the function f " $$pyqis defined component-wise by:

3Please note that this type of model may also include a degradation matrix (see for instance
[Jezierskal2al), to account for instance for the blurring introduced by the point-spread function of the
acquisition system. However, as mentioned in Sec. V.2.1, we focus here on pure denoising problems, for
the sake of simplicity.

“By convention, when ¢ “ 0, the MPG model must be understood asy * X~ b (i.e. purec Gaussian noise

(V-5)). This extension is motivated by the fact that the random variable {z with z , P % converges in

law to X (dcterministic value) when ¢ N 0.
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frés a* fpy " Cexg (V-13)

The derivation of (V—12) and the proof that EtPG-UREu* EtMSEuU are given in ap-
pendix V.A, along with the technical conditions required on f for this result to hold.
As for the Poisson model, if f" SSpyq is replaced by its first-order Taylor expansion
f7 %pyq« f pyg B pyq this leads to the following simplified expression of the PG-URE
estimator:

1 : D @: D -
PG-URE" o }f ma’ y}5® Z@%y‘ 0’1 B pyq ~ 20%C 1B pyq ~ {xllyy ~ o?
(V-14)
where the image-valued functions Bf pygand B*f pyqgare defined as:
Bf C o B
PBf g Ya* — /g Bf |, ovg" —Xpyq  for all pixels k (V-15)
By Bk

It should be noted that this simplified expression (V-14) of PG-URE may significantly
deviate from (V-12) in the case of large values of the gain parameter {, due to the Taylor
approximation f " $pyq« f pyq” {Bf pyg However, the numerical results presented in
Sec. V.4 show that this deviation has no consequence in the range of gain values encoun-
tered in practice.

It can be verified that the expressions (V-12)-(V-14) of the PG-URE estimator are
consistent with SURE (V—-6) and PURE (V-8)-(V-10) for the special values of the param-
eters 0 and ¢ mentioned in Sec. V.2.3. They are also consistent with the unbiased risk
estimator derived in [Luisierll] for a simpler mixed Poisson-Gaussian noise model that
does not integrate a gain parameter (.

Again, evaluation of the terms involving f © %5 Bf or B?f in (V-12)-(V-14) raises some
technical diffi culties: in the next section, we propose a non-deterministic method to handle
them.

V.3 Stochastic evaluation of the Poisson-Gaussian unbiased
risk estimator

V.3.1 Why is a deterministic evaluation of PG-URE impossible?

The expressions (V-12) and (V-14) define unbiased risk estimators of the MSE (V-4)
under a mixed Poisson-Gaussian noise model hypothesis (V—11). These expressions do
not involve non-accessible entities such as the ground truth x, making their numerical
evaluation conceivable in practical settings. However, the terms involving f © %5 Bf or
B?f may not be directly computable, as explained below.

For instance, let us assume that the denoising algorithm f is modeled as a black-box
process, meaning that we do not make any assumption on how f works internally, and
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therefore that the only available “action” with f is to submit an input y and to retrieve
an output f pyg Then, due to its definition, a direct evaluation of f 7 % py qwould require
to run f on N perturbed versions of the input y: py " fexqfor K “ OtoN "~ 1. As
N represents the number of pixels in the input image, such direct evaluation would be
computationally irrealistic even with images of reasonable size. The same argument holds
for the terms Bf and B’f, that could be approximated through finite differences: for
instance, the first order difference % fupy = [exq fxpyq for some small scalar parameter
“would provide a good approximation of the k' component of Bf pyq but computing all
the components of this term through this scheme would require to evaluate f py = [exq
for k“ Oto N~ 1 which is again irrealistic.

The method developed in the following sections bypasses these problems, thanks to the
use of a stochastic scheme to evaluate the Taylor-expanded PG-URE estimator (V—14) in
the context of the black-box denoising process mentioned above. One key advantage of
this method is that the required number of evaluations of f — which is the most critical
factor in terms of computation time — is small and does not depend on N.

V.3.2 Evaluation of the first-order derivative term

We first _focus on.the termn involving the first-order partial derivatives of f in (V-14),
y© 021 Bf Pyq . The idea of the proposed method, which is a direct extension
of the Monte-Carlo SURE approach proposed in [RamaniO8], is to probe the behavior of

namely

f when applied on slightly modified versions of y, which are obtained by adding some
well-chosen random perturbations to y.

Let us introduce a few notations: in what follows, [1g 0 is a scalar parameter whose
value is ideally as small as possible, ® is a random perturbation vector generated according
to a probability distribution to be specified, and xu|Bf pyaqy is the quantity to evaluate.
For our particular problem, u “ {y " 021, but the method developed here to evaluate this
term does not depend on the actual definition of the image u. In [Ramani08], the method
is presented with u “ 1, which corresponds to xu|Bf pyay“ Divf pyg

First, assuming that f is continuously differentiable, we have:

foy ™ 09" f pyag : G@ q [rpq (V-16)
|

where r p.gis some remainder that tends to 0 when [N 0. From this Taylor expansion,
it results that:

B M F .
: ~ ~fptdqg fyqg Y Bf i
| 5" u- —x V-17
lim u - y Uk By q ( )

where each summation index K and | visits every components of the involved vectors.
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Now, let us assume the following properties on the probability distribution of the
random perturbation O:

e the components & of ® are independent,

e each & has an expected value of 0 and a variance equal to 1.

Then, by considering the expected value® over the random variable & on both sides of the
equality (V—-17), we obtain:
" B
Es lim 8" u
‘N0

F * ..
09" f pyq y Bf «

“ U= V-18

- Uy, a (V-18)

N

toy

Finally, up to some technical hypotheses (see [Ramani0O8] for more details) which are also
important to derive the empirical formula (V-20), the expectation and the limit in (V-18)
can be switched, leading to the final expression:
n B
lim E
N =o

*

~

8q” f p/q
U

0~ u:f b

©oxu|Bf pyoy (V-19)

Equation (V—-19) shows that, by taking a parameter [lsufficiently small, the inner
product xu|Bf pyqy can be approximated by the expected value of the random variable
lDXB T ulf oyt 89" f pyay. Moreover, as observed in [RamaniO8], one realization of this
random variable is likely to be suffi cient to reach a reliable estimate of the expected value
in the case of image processing applications (this point will be detailed in Sec. V.3.5).
Therefore, we obtain the following empirical estimation formula for xu |Bf pyay:

¥ D
xu|Bf pyay“ 15%‘ ufpy ™ 89 f pq (V—-20)

V.3.3 Evaluation of the second-order derivative term

A similar method can be proposed t@evaluate e term involving the second-order partial
derivatives of f in (V-14), namely v B*f pyq with v “ 1. Again, the method does not
take advantage of the identity v * 1, motivating the use of a generic notation v.

We use here notations similar to those introduced in Sec. V.3.2. Then, assuming that
f is continuously twice differentiable, a second-order Taylor expansion can be written as:

Bf 2y B2f
=—ma - 98bn

N V-21
2., 2y, ¥ rpg (V-21)

g
f oy (69 f O
B q »a IaByl

and similarly for f py © [8g By summing these two expansions, we obtain:

5In this section, we temporarily assume that y is deterministic. However, to be fully rigorous, what is
considered here is not the expectation, but rather the conditional expectation given y. To avoid confusion,
the latter is denoted with an additional subscript (Es), indicating the remaining source of randomness.
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B : F .
, ~ My Bq 2Ayqg fy B , Y
ID% 5~ v 2 Vi &0 Om

k,I,m

B%f
Byl BYm

a  (V-22)

In addition to the hypotheses made in Sec. V.3.2 for d, we impose here the additional
requirement that the third moment K of the random variables & is non-zero (which implies
in particular that the corresponding probability distribution is non-symmetric). Then, the
independence of the & andihfir zero mean ensure that Egt&®&&nuis always zero except
when kK “ | “ m, while Eg _Q‘:’ “ K %00. Therefore, taking the expected value in (V-22)
and switching it with the limit in the left-hand side leads to the following result:

:f T 0q° 2f Tf 'E@F* @< D
5 v P 0 E;yq 09w B g

IJ% Es (V—23)

Finally, assuming that one realization of the random variable 9 is suffi cient to estimate the

expected valye in (Vfﬁ) (see Sec. V.3.5), we obtain the following empirical estimation
formula for v B?f pyq :

: D : D
@/Bzf g - ;K@%A vip  8q 2f pyq fpy  L8q (V-24)
V.3.4 Empirical PG-URE estimator

Using the results obtained in Sec. V.3.2 and V.3.3, we are now able to re-write the PG-URE
estimator (V—-14) without partial derivatives of f :

PG-URE “ l}f gy}’ ixllyy’ 0% 2 A@ \Cy‘ ozlvgf ,y‘ @_' fpqu
N 2 N N . - . e
, 2027 . . , . ,
Nit}i Of vy~ 1 "~ 2fpyq f y  ®
(PG-URE)

This expression uses four parameters that are not related to the noise model, but that are
introduced for computational purposes:

« &is the random perturbation vector used to evaluate the term involving the first-
order partial derivatives of f in (V-14). To fulfil the assumptions made in Sec. V.3.2,
its components & must be independent and identically distributed (i.i.d.) random
variables with expected value O and variance 1. Several probability distributions
with these properties can be used to generate the &, and we demonstrate that a
binary distribution taking values = 1 and 1 with probability Y2 each is optimal in
the sense that it minimizes the variance of the PG-URE estimator with respect to
the random variable & (see Sec. V.3.5).

e & is the random perturbation vector used to evaluate the seponyl-order deriyative
term. & is a random vector of i.i.d. components such that® E § “ 0, E 6& “1

5The constraint on the second moment of & is not compulsory with respect to the methodology devel-
oped in Sec. V.3.3, but is rather a normalization convention.
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!
and E ﬁ? “ K %00. Again, an optimum with respect to the variance of PG-URE

(see Sec. V.3.5 for details) is reached if the & are generated according to a binary
distribution T, defined as:

- : - : $ . -
Cc __ Cc _ & “}\EKZ\LI.’I{Z
T a( [T 9 “ p T a( “ B “ q Wlth % p 2 2
p q q “ 1 ’ p
(V-25)

where K is the third moment of the distribution 1. The optimal value of K may not
be available in practical settings, and we set it to 1 in our experiments (we motivate
this choice in appendix V.B).

* Qand Jare the amplitudes of the perturbations introduced to probe the partial
derivatives of f . The values of these scalar parameters result from a compromise
between 1) the fact that 9and {Imust be chosen as small as possible to limit the
approximation errors in the initial Taylor expansions (V-16) and (V-21), and 2) the
finite precision of floating point calculators, which causes significant rounding errors
when these parameters are too small. How these values should actually be set is
discussed in Sec. V.4.

Finally, the computational complexity of evaluating the PG-URE estimator through
the empirical formula (PG-URE) is 4G ~ O pN g where G is the computational complexity
of applying the denoising algorithm f .

V.3.5 Variance of the empirical PG-URE estimator with respect to the
random perturbations

In the expression (PG-URE) of the PG-URE estimator, the equality is mathematically
proved in terms of expected value over the probability distribution of the two random
vectors and 8. In practice and similarly to what is proposed in [Ramani08], we evaluate
the right-hand side of this expression with a single realization of each of these random
variables, as we can assume that such evaluation is close to the expected value. Formally,
the underlying assumption is that the standard deviation Vargst PG-UREU™? of the esti-
mator (PG-URE) over the probability distribution of &and & is small with respect to its
expected value.

Thanks to the independence of & and &, the variance of PG-URE can be decomposed
as follows:
# . + # +

1 y .1 y
Varg; tPG-UREU" < Varg a 88 N2z Vs B 1.m S8 8n (V-26)

| conooooooooo e booooooon. | coooooonononnonndfos | Goonnnnnnnoom

Ve Vs

where the notations ay | and by | m stand for:
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2U Hk “ 2 Bka
—k m " 2020 —— X V-27
By, wa b, o} CBYIB),m wq ( )

a, " 20y O

Let us focus on the term Vg in (V-26), which corresponds to the contribution of the

perturbation &to the overall variance of the estimator. In what follows, the p'" moment of

the probability distribution associated to & will be denoted as B, " E @J . By definition,
Vg can be written as:

y ! )y
N2V§“ alamnEg 888.8 A kA | (V-28)
k,I,m,n k,I

Thanks to the independence of t}le &( and the property ; “ 0 introduced in Sec. V.3.2,
the expected value Eg &&&n& is 0 as soon as at least one of the indices k, I, m or n
is different from all the others. Then, the remaining terms and the property , “ 1 lead
to: y PN o

y 2y . . .Y

N2Ve" M, af, akan " ag) axak Ak | (V-29)
k kI kil
k%d

Up to additional simplifications and factorization, (V-29) leads to the following final
expression of the term Vg

rﬁ4 1 y R 1 y .
N2 a Nz PR ay ko (V-30)
K k9%

Vg ©

This expression (V-30) calls for two remarks:

1. As Vg should be made as small as possible to limit the variance of the PG-URE
estimator, the probability distribution used to generate the & should be chosen so
that 8 is as small as possible. Yet, with the requirements 8; “ 0 and 8, “ 1,
it can be shown that M, € 1 (see for instance [Akhiezer65]); the optimal value
9, “ 1 is obtained with a symmetric binary distribution taking values ~ 1 and
1 with probability {2 each. This justifies our proposition to use this probability
distribution in Sec. V.3.4.

2. The second summation group (the one with two summation indices k and ) involves
NpN “ 1qterms (all the pairs k,1 “ 1to N, except those with k “ 1), but most
of the pay | a|,kq2 terms are likely to be 0. Indeed, &y is proportional to % py g
and the value of this partial derivative is likely to be insignificant when the indices k
and | refer to pixels that are distant from each others: in particular, this is certainly
true if f is a local denoising method. Furthermore, if we assume that the number
of input pixels y; that have a significant influence on the k" output pixel fy pyq
is constant, then the number of non-zero pay | a|,kq2 terms is proportional to N,
making Vg proportional to Ni As N is quite large in the case of images, Vg, which
represents the variance of the PG-URE estimator with respect to the perturbation @,
is likely to be very small: this justifies the assumption made in Sec. V.3.2 that only
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Shepp-Logan Disks 8

Figure V-3: Test images used for the simulations (256~ 256 pixels, intensity range nor-
malized to the interval r0, 1s).

one realization of this perturbation is sufficient to estimate the first-order partial
derivatives of f involved in the computation of PG-URE.

The term Vg corresponding to the contribution of the perturbation & in (,\7—36) can also
be expressed as a function of the coeffi cients by | m and the moments m, “ E §f , similarly
to (V-30) (see appendix V.B). The obtained expression leads to conclusions similar to those
drawn for Vig, namely that Vy is proportional to Ni for reasonable denoising functions f |
and that Vy is minimal when d is generated according to the binary probability distribution
(V-25), for a particular value K¢ of the parameter K. Unfortunately, the optimal value k¢
depends on the coeffi cients by | m and consequently on the partial derivatives of f , whose
values are by definition not available. Still, we noticed that the arbitrary setting Kk “ 1
leads to stable results (see Sec. V.4 and appendix V.B).

V.4 Numerical validation and application

V.4.1 Simulation goals and process

The expression (PG-URE) defines an unbiased risk estimator of the MSE under the mixed
Poisson-Gaussian noise hypothesis (V-11). Sections V.3.4 and V.3.5 describe how the
random perturbation &and & involved in this PG-URE estimator are generated. However,
we have not discussed yet on the values that should be attributed to the scalar parameters
Qand I We propose to determine how these values should be set through numerical

simulations; we will also make the most of these simulations to verify the empirical equality
PG-URE “ MSE.

For the numerical simulations, we selected two phantom images (see Fig. V-3):

1. the well-known Shepp-Logan phantom, sized 256~ 256 pixels;
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2. Disks 3, a synthetic test image also sized 256" 256 pixels, representing several disks

with random gray levels, sizes and boundary sharpness, over a non-uniform dark
background.

All these images were normalized so that they are valued between 0 and 1. From each

noise-free image X, we generated four noisy images y following the MPG model (V-11),

with the following noise parameters:

10 15 ¢ 10 2 (this case is denoted as “low noise” in the following results);
10 1, ¢ 10 2 (denoted as “mostly Gaussian”);
10 15 ¢ 10 1 (denoted as “mostly Poisson”);

-
-
-
o 10 1, ¢ 10 ! (denoted as “high noise”).

We selected six classical denoising algorithms, all dependent of a scalar parameter ©:

Wavelet soft-thresholding [Donoho95al:

F§% g W *"TepN “yq (V-31)

where W is a 2D un-decimated wavelet transform (we used the Daubechies-4 or-
thogonal wavelet with 4 levels of decomposition), and Tg is the component-wise
soft-thresholding function, mapping each input wavelet coeffi cient w to signpwvqg”
max po, |w|~ 6q

TV minimization [Rudin92]:

foV g argxmin}x}TV subject to }x  y},d 8 (V-32)

This constrained formulation is equivalent to the original unconstrained one (V—-1)
(see Chap. II), and we chose to use the former for practical reasons.

Non-local means [Buades05]: f YM pyqis defined component-wise as in (V-2). We
used the similarity measure originally proposed in [Buades05], i.e. (V-3), with cen-
tered square patches of size 57 5 pixels.

We derived three “stabilized” versions of these three denoising algorithms, for which
we first applied a variance stabilization transform on the input image, to make the
variance of the noisy pixel yx independent of the ground truth value Xy, and therefore
uniform over the whole image (see [Starck98, Zhang08]). Formally:

t8" ¥ mar s T HE¥ Spyg (V-33)

and similarly for f g’ TV and f g’ NLM " The variance stabilization transform S pyqis

defined as: g

¢

In [Starck98], it is shown that, under the MPG hypothesis (V-11), Sxpyq has a
variance approximately equal to 1 (except for very low values of Xy, which correspond

I . a_— . “ N 3 2~ 2
Skyq“ signpg [t| with t* Qyk éé o (V-34)

to an extremely low-light regime).
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Finally, for each pair of tested noisy image and algorithm, and for several values of the
corresponding parameter 6, we computed the denoised estimate f g pyqand the MSE (as
we are using phantom test images, the ground truth is available), and we evaluated the
estimator (PG-URE) with different values of the amplitude parameters Qand ! All sim-
ulations were performed with Matlab®, using double precision floating point arithmetic.
The influence of Qand lon the PG-URE estimator is studied in the next sections.

V.4.2 Influence of the amplitude parameters 9and [

To study how the parameters Qand {laffect the estimator (PG-URE), we decompose the
latter into three terms, as PG-URE “ To ™ T1p9" T2 piq where:

1 . . ,
To* ﬁ}f va vy %xllyy o?
. -3 - E
2 . < ,
T p9* N O & ¢y o1t vy B fpgq (V-35)
, 202 - , L E
T2pQ” N@i 6f y & " 2fgyq f y~ 1®

In this decomposition, Tg includes the contributions to PG-URE that do not depend on
Qand {] while T, pj and T, pig represent respectively the contributions due to the first
and second order partial derivatives of f . Figs. V-4 and V-5 present two examples of the
evolution of Tp, T1 pY and T, pig with respect to the denoising parameter 6, for different
values of Qand 1!

V.4.2.1 Parameter 9

Both graphs in Figs. V-4 and V-5 show that, although T, p9“ 0.1gand T1p9* 1qhave
singular behaviors (the latter curve does not fit in the displayed range of the graph in
Fig. V-5), T1 p3scems to converge to an asymptotic curve for smaller values of 9 indeed,
for 9d 10 3, we can assume that T1 p3] becomes almost independent of 9 with a value
close to the ideal one that would be obtained for 9N 0.

To confirm this assumption, we measured the term Ty p@jfor Qvarying between 10 7 and
1 with samples geometrically spaced by a factor 10%92 (i.e. 9* 10 7,10 69 10 69 )
and for all the combinations of denoising algorithms, test images and noise parameter
mentioned in Sec. V.4.1, with the denoising parameter 8 set such that the M SE is minimal;
the corresponding minimal value of the MSE is denoted as MSE‘. We then measured the
variability among the T1 p9) values through the indicator A T, defined as:

! StdDev T p9 (V-36)

ATy ——
b MSE PrOnin, Gnaxs

where StdDeVgyrg, . g,.s 11 P measures the empirical standard deviatio%oof T1 pY for
9 varying within a sub-range rSnin, Snaxs of the probed interval 10 7,1 . The values
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MSE, PG-URE, To, T1 p3} T2 pq

>
QS O N O N N O
RSO L $ 55 S
)

B (i.e. denoising algorithm parameter

Figure V-4: Denoising of Disks 8 = “low noise”, using the f es TV algorithm (TV mini-
mization together with variance stabilization transform). MSE and PG-URE values are
plotted as functions of the denoising parameter 0, together with the individual PG-URE
terms Tg, T1 pPand T, piqfor several values of the parameters Qand {1 Only the PG-URE
curve corresponding to 9“ 10 4 and * 10 2 is plotted.
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MSE, PG-URE, To, T1 p3} T2 piq

T T T T T T

SHx e o A R o N L2

)

0 (i.e. denoising algorithm parameter)
Figure V-5: Denoising of Disks 3 = “mostly Poisson” noise, using the f g’ NLM algorithm

(non-local means together with variance stabilization transform). Same representation
and legend as in Fig. V4.
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Shepp-Logan Disks 8
8 >8 | >g5 3 8 >8 | >5 3
2 %8 | %3 2 2 28 | %3 <
= o 5 S35 - = O > 35 <
3 s 8 =a = 3 = 8 = =
- T - T

f Y se 0.06% | 0.07% | 0.07% | 0.06% || 0.07% | 0.09% | 0.11% | 0.11%

fav 0.11% | 0.04% | 0.03% | 0.11% || 0.97% | 0.34% | 0.64% | 0.53%

f LM 0.01% | 0.01% | 0.01% | 0.00% || 0.02% | 0.01% | 0.00% | 0.00%

f SwWse 0.07% | 0.10% | 0.59% | 0.30% || 0.23% | 0.26% | 1.40% | 0.52%

feTV 0.06% | 0.10% | 0.83% | 0.46% || 0.13% | 0.09% | 0.46% | 0.47%

f SNLM 0.05% | 0.01% | 0.66% | 0.17% || 0.02% | 0.02% | 0.59% | 0.46%

Figure V-6: A Tq obtained for @* 10 6,10 5% . 10 392 10 3 (151 samples), given as
percentages. The only value greater than 1% is highlighted in yellow.

. . %
obtained for A Tq with rQnin, Qnaxs® 10 6,10 3 og,lre presented in Fig. V—6. Theses results
show that the variability of Ty p9Jinduced by the choice of 9Qis very small compared to
the MSE (t%g quantity to estimate): indeed, whatever the value chosen for Qin the range

10 6,10 2 the value obtained for T; p9 (and therefore for PG-URE) is constant. We
therefore used in practice 9* 10 4 in what follows.

It is important to note that this value depends on the normalization used for the
intensity of the processed images: here, our images are valued between 0 and 1, but
different normalizations would lead to different values. For instance, in the case of intensity
normalized between 0 and 255, a correct setting is 9“ 255" 10 4. The floating point
precision used for the computations may also have an influence, although this aspect is
less critical for Ty p9ythan for the second order term, as discussed in the next paragraph.

V.4.2.2 Parameter [

We proceeded similarly to determine a satisfactory value for [ we measured the term
Topgfor £ 10 4,10 39 ... 10 902 10 901 1 and for all the combinations of denoising
algorithms, test images and noise parameters, with the denoising parameter 0 set such
that the MSE is minimal. The values obtained for T, piq as functions of [in six of these
configurations are presented in Fig. V-T.

Contrary to what happens with the first order term, we did not observe a clear con-
vergence of T, pi to an asymptotic value when TN 0: the curves T, pi¢ showed chaotic
behaviors, with large and unpredicable oscillations when {1d° 10 3. We interpret these
behaviors as the consequence of rounding errors introduced by floating point operations
involved when computing the term T, pig More precisely, the latter involves a second-
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-------- Shepp-Logan, high noise, f 3’ S° -------- Shepp-Logan, high noise, f gV-"
Disks, low noise, f g7V Disks, mostly Poisson, f §WS°
Disks, mostly Poisson, f §N"M Disks, high noise, f §N-M

15

Figure V-7: Term T pigas a function of [for six of the tested combinations of test image,
noise level and denoising algorithm (with in each case the parameter 8 set such that the
MSE is minimal). Each curve T, piq was normalized by the actual MSE measured for the
corresponding tested combination.

order finite difference f y "~ & ~ 2f pyq" f y~ (® whose order of magnitude might

be significantly smaller than the ones of the individual terms f y~ (& andf pyq then,
due to cancellation events (see [Goldberg91]), the error made when performing this opera-
tion is likely to be significant. A solution to avoid this problem could have been to increase
the parameter {] but in this case the assumption that T, piqis close to its theoretical limit
obtained for {IN 0 becomes erroneous: it appears that the trade-off between the need for
[Ito be small enough for the mathematical analysis derived in Sec. V.3 to be valid, and
the need for [Jto be large enough to avoid numerical rounding errors is much more tight
for tIthan for Q

However, the curves on Fig. V-7 show that there seems to exist a narrow window
around {* 10 2 where both requirements hold, leading to functions T, pigapproximately
constant. To validate this hypothesis, we introduce an indicator A T, as follows:

! StdDev Topq (V-37)

ATy " ——
2 MSE* Prihin,tmaxs

where the empirical standard deviation is computed for [varying in a sub-range of the
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Shepp-Logan Disks 8

8 >5 | »5 | B 8 >5 | »5 | B

c % A @ § c c % B @ § <

2 o S o 5 e 2 o = o ] e

3 =G =q K=y 3 =0 =q =

2 o T 2 U] T
fase 0.2% | 0.6% | 0.1% | 3.2% 0.6% | 13% | 03% | 3.2%
fov 04% | 04% | 0.0% | 0.8% 1.3% | 0.9% | 04% | 3.3%
f LM 0.0% | 0.0% | 0.0% | 0.0% 0.0% | 0.0% | 0.0% | 0.0%
fSwse 0.8% | 0.6% | 42% | 4.6% 0.3% | 15% | 0.9% | 4.5%
feTV 32% | 11% | 12.2% | 125% || 55% | 11.1% | 8.6% | 12.1%
fSNLM 26% | 01% | 21% | 6.1% 0.5% | 01% | 2.3% | 4.4%

Figure V-8: AT, given as percentages obtained for 5° 10 3 d 0d 2~ 10 2 with geometric
increments of 10%9% (61 samples). Yellow cells contain values greater than 1%, while orange
cells contain values greater than 10%.

“

%60

0,
probed interval. The values obtained for A To with rijin, fmaxS* 5~ 10 3,2" 10 2 oare
presented in Fig. V-8. These values show that the variability of T, piq (and therefore the
variability of PG-URE) induced by the choice of [represents less than 1% of the MSE to
be estimated in more than half of the tested combinations. This variability seems to be
mainly determined by the denoising algorithm: indeed, the value of T, piqis very stable
in the case of f g“'M, and on the contrary extremely dependent on {Jin the case of f es ™,
However, as other choices of intervals rijin, fhaxSlead to poorer results for A To, we propose
1* 10 2 as a reasonable compromise value for this parameter. Results presented in the
next section show that this choice leads to an estimator PG-URE that can be successfully

used to adaptively set the value of the parameter 8 for each denoising algorithm.

Similarly to the case of the first order term, the setting for !ldepends on the normaliza-
tion used for the intensity of the processed images, and also on the floating point precision
used for the computations.

V.4.3 Optimization of the denoising parameters 0 driven by PG-URE

Finally, to evaluate the performance of the PG-URE estimator when used to optimize
the parameter 0 of the denoising algorithms, we performed the following simulations: for
each combination of tested image, set of noise parameters, and denoising algorithm f g, we
ran the denoising algorithm for several values of 8, and computed the resulting MSE and
PG-URE values’; we then retained in each case the parameters 6,sz and 855 rg that
minimize respectively the MSE and the PG-URE. The corresponding image X pg-ure “

f o Py g represents the denoising result obtained by tuning the denoising parameter

PG-URE

"We selected 9° 10 * and T° 10 2 to evaluate PG-URE, as advised in Sec. V.4.2.
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Shepp-Logan Disks 3
8 >8 | >5 3 8 >8 | >5 8
c 73 A Z 8 < c 73 A % 3 c
2 o = o el e 2 o = o ] ey
3 s 8 =q K=y 3 s 8 =q =
— T — T

f WSo 0.4% 1.4% 0.9% 0.1% 0.3% 0.1% 3.5% 0.0%

0 31 dB 27 dB 25 dB 24 dB 33 dB 30 dB 27 dB 27 dB
TV 1.6% | 123% | 1.3% | 2.8% || 0.0% | 154% | 0.0% | 0.0%
0 36 dB 32 dB 28 dB 27 dB 38 dB 35 dB 31dB 30 dB
£ NLM 00% | 02% | 03% | 03% | 07% | 02% | 01% | 1.5%
0 35 dB 32 dB 27 dB 26 dB 39 dB 36 dB 29 dB 29 dB

fswso || 12% | 08% | 20% | 0.5% | 01% | 05% | 49% | 22%
0 30 dB 27 dB 23 dB 22 dB 33 dB 30 dB 26 dB 24 dB
¢ STV 00% | 28% | 0.7% | 6.5% | 4.1% | 11.3% | 15.5% | 56.1%
0 35dB 31dB 27 dB 24 dB 37 dB 34 dB 28 dB 27 dB

FSNLM || 04% | 14% | 10.7% | 09% || 05% | 0.5% | 8.4% | 63%
0 36 dB 32 dB 27 dB 25 dB 39 dB 36 dB 29 dB 28 dB

Figure V-9: AEstim (V-38) given as percentages. Yellow cells contain values greater
than than 5%, while orange cells contain values greater that 20%. PSNR values (in dB)
obtained for X\ sg are reported, as a measure of the “best” denoising quality achievable
using an oracle-based parametrization.

such that the PG-URE estimator is minimal — hence without using the ground truth —
while Ky “ f R e corresponds to the denoised image obtained by selecting the best
denoising parameter according to the MSE, following an oracle-based approach (hence not
applicable for real denoising problems). We finally compared the differences between the

two denoised images by measuring the following indicator:

. ;o 2
« }Xpc-URE  XmsE}S

A Estim — >
X7 Xmsels

(V-38)

Here, A Estim relates the |, distance between the two denoised images to the |, distance
between the ground truth X and the “best” denoised image, i.e. the one obtained by
following the oracle based approach. The values measured for A Estim are presented
in Fig. V-9, along with the peak signal-to-noise measure reached with Xysg — defined
as PSNR “ 7~ 10log;o Ni}x ’ )A(MSE}E — which assesses the “best” denoising quality
achievable following the oracle-based parameter estimation approach. Four examples of
pairs of denoised images X pmse and X pg.ure are also presented in Fig. V-10.

Although the best performing denoising parameters 8),g¢ and 655.gg selected by the
MSE and the PG-URE are not always the same, Fig. V-9 shows that the distance between
the corresponding denoised images is, in most cases, very small compared to the distance
between the oracle-denoised image and the ground truth: the indicator A Estim is indeed
smaller than 5% in 39 of the 48 tested configurations, which corresponds to differences
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XM sE

XPG-URE

Low noise Mostly Gaussian Mostly Poisson High noise
f\eNSO f'é'V fg-NLM fg-TV

Figure V-10: Comparison between the denoised images X ysg and X pg.ure obtained for
the original image Disks 3, with four different noise levels and denoising methods. PSNR
values are also reported in the bottom left corner of each image.

between the denoised images that are visually unnoticeable. The visual similarity between
the denoised images X mse and Xpg.ure obtained with these parameters is illustrated on
four examples in Fig. V-10: in each of the three left-most columns — which correspond
to situations with A Estim d' 20% (either white or yellow cells in Fig. V-9) — the images
Xmse and Xpg.ure are indeed very similar. For all these cases, the PG-URE estimator
therefore performed very well as a surrogate for the MSE value, while still being actually
computable in real denoising problems, for which a ground truth is not available.

However, for the Disks 3 image in the “high-noise” configuration and with the f g'TV
algorithm (orange cell in Fig. V-9 and right-most column in Fig. V-10), we can clearly
observe that the denoising task failed and did not return a reliable image. This is due
to an inappropriate selection of the parameter 8 value, itself derived from an erroneous
estimation of the MSE with the empirical PG-URE estimate. Two scenarios can explain
this erroneous estimation: drawing of a “bad” sample of the parameter {1(Fig. V-8 shows
that this configuration is one of the least favorable with respect to the indicator A Ty),
and/or a realization of one of the random variables & or & that makes the PG-URE
estimator significantly deviate from its expected value. These scenarios correspond to the
inherent risk taken with any stochastic Monte-Carlo type of method. One way to reduce
this risk would be to draw several realizations of & or & and average the corresponding
values of Ty p9 and T, pig at the cost however of a higher computation time. Post-
processing could also be proposed to detect failure of the denoising, or multiple runs could
be performed to gauge the range of values obtained for the parameter being optimized,
with detection of outliers.
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V.5 Conclusion

In this chapter, we presented a new unbiased risk estimator (PG-URE) for general image
denoising applications, in a context where the processed images are degraded following a
mixed Poisson-Gaussian noise model. This model unifies the widely used Gaussian and
Poisson noise models and is relevant to describe the degradations observed in bioimaging
applications, in particular low-light fluorescence microscopy. We showed that the PG-URE
estimator can be used as a surrogate for the usual mean squared error measure, although
its evaluation does not require any knowledge about the noise-free version (i.e. the ground
truth) of the image to denoise. We also proposed a practical formula (PG-URE) to eval-
uate this estimator when no specific knowledge on the partial derivatives of the denoising
function f is available, making this framework usable “out of the box” with almost any
available denoising algorithm.

We validated our approach through numerical simulations involving standard denoising
algorithms and phantom test images. Relying on theses simulations, we discussed how to
set the numerical parameters involved in PG-URE. We compared the results obtained
when tuning the parameters 8 of these standard denoising algorithms by minimizing the
PG-URE estimator and the mean squared error, and showed that these two approaches
lead to similar denoised images in most of the tested scenarios. This demonstrates the
interest of the PG-URE estimator for practical applications, as MSE driven optimization
is not applicable for real denoising problems.

Finally, although not carried out yet, we believe that this type of tool can benefit to
the study and the improvement of the CS-based denoising method [Marim09] applied to
low-light fluorescence microscopy images.

V.A Derivation of the PG-URE estimator

This appendix describes how the first definition (V-12) of the PG-URE estimator is ob-
tained, and proves the equality EtPG-UREuU“ EtMSEuU. This result could be derived
quite directly from the work in [Luisier11], but we propose here a more intrinsic proof,
relying on the two basic properties of the Gaussian and Poisson distributions that are
mentioned below. Proofs of these lemmas can be found respectively in [Stein81] and
[Peng75, Tsui82].

Lemma. V-1 (Stein’s lemma) Lety “ X b where x P RN is deterministic and
b,,,: N O,:Sizld . Let @ : RN N RN be a weakly diff erentiable function such that

E V%Q/q“ a 8 forallk. Then:
0 (. ol (
E xblopyay “ o°E Divepyq
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Lemma V-2 Let z PRN such that z , P xq (i.e. the components zy are independent
random variables following Poisson distributions of parameters X ). Let @ : RN N RN
such that Et|ygmdqua ~ 8 for all k. Then:

( A 2 E)

vl 1s

Exlymy “ E zy" *mq

Thanks to these results, we can state the following theorem:

Theorem V-3 Lety “ {z b whereb , N 0,0%ld andz , P % (b and z

independeng}. Let @ : RN SI RN a weakly diff erentiable function such that Et|@x pydqua
"8 andE Py’ Cexd & 8 for allk. Then:
0 TA E ) )
Exlppay “ E yo" “pq ~ 0’Dive" “pyq

Proof. We introduce the family of functions yp : RN N RN, defined by wppmq “
@iz bg Then:

n nB : F**
0 (. "~
Exlopyay “ E (E; fadla
I IAT E))
“E (E, zWp ®mq (cf. Lemma V-2)
lA T E)
“E y’ bo" ®pz’ bg
1A E)y ! IAZ E))

“E yo " %®pyq ~E E be" ©pq
A = T ,

“E y9"®pq ~ E 0°E, Dive" “pq (cf. Lemma V-1)
LAY E

1A , )
“E yo" “pq  o’Dive” ®pq

[]
Finally, from the definition of the MSE (V-4), it can be noticed that:
W b 2. . (
EtMSEu ﬁE Hoyds;  2xx|f ppay™ xx|yy (V-39)

Theorem V-3 applied twice on this expression with @ “ f and ¢ “ |d (the identity
function) leads to the expected expression (V-12) of PG-URE. As previously mentioned,
we assume that the regularity and expectation conditions of Theorem V-3 hold for f .

V.B Optimal perturbation for the second-order derivative
term of the PG-URE estimator

In this appendix, we derive an algebraic expression for the contribution Vy of the pertur-
bation & to the variance (V-26) of the PG-URE estimator. This expression uses only the
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')
coeffi cients by | m defined by (V-27), and the moments mp “ E & of the probability dis-

tribution used to generate the components of 8. We finally derive the optimal conditions
on these moments mp for Vg to be minimal.

V.B.1 Expression of Vj

First, we introduce a few notations:

o " bqkk for all pixel index K,

© i ® bkl Bok T Bk, for all k %ol,

e D" ' k koed Ok, for all I,

* eum "’ Bom Bemi T Bkm T Bkl Bmk " bmk for all 3-tuple g, 1, mqgwith
K %ol, K %om and | %om.

We also recall that mg “ 0, mx“ 1, mg“ K. Then, starting from the definition of Vy, we
have:

# +
y
N2k?Vy “ Varg Be,1,m 88 &m
k,I,m .
y ! ),y ! e
‘ l3,j,kh,m,n|535 §§§<§§n§~. b&,l,mEg §<§§n
i,j,k,I,m,n k,I,m
!
As explained in Sec. V.3.3, Eg &&§8n “ 0 except when k “ | “ m: this is due to the

independence of the components of & and to the property m; “ 0. This leads to the
immediate simplification of the expression above:

y ! ) Y
N 2K2V6 ‘ B j kb mnE;s 55 &8 & - "G (V—40)
|- lotfxeieinn00000000000™ (o000000NN0NNNNNNNNNNN kil

Se
|

The same arguments can be used to simplify the sixfold sum S, as Eg 6§88, “ 0
as soon as one of the six indices is different from the pthers. Then, Sg can be divided
according to the four situations where Eg; 6§ &§8&n&, is non-zero:

Se“ MeTe  MuTaz K%Ta3  To22 (V-41)

e Tg includes the terms involved ,in Sg for which all the six summation indexes are
equal: obviously, we have Tg “ Cﬁ;

* Ty groups together all the terms such that, among the six summation indices, there
is one group of four equal indices on the one hand, and another group of two equal
indices on the other hand (for instance: i “ j “ |1“ n %k “ m);
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* in the same way, T3 3 includes all the terms such that the indices form two groups
of three.

 finally, T2 22 covers the situation where there are three pairs of equal indices.

A careful enumeration of the terms involved in these situations leads to the following

expressionssz
LYo Y Y Yy
Ta2 di; " 2 oDy Ta3 (o] di,1di k
K%d k k%d k%d
y .Y 1y (V-42)
T222"  Dg dii = &m
k k%d K%d%m

By putting all things together, we finally obtain:

. Ms” mg’ k2 Y .omy’ K2° 1Y N 1Y <
NZV " 2 & o gy 5 o Didf
k k%d k
L1y . .1y (V=43)
> pdii ol &2 &im
k%d k%d %m

It can be verified that this expression (V—43) is indeed positive, as for any probability dis-
tribution with moments my the following Hankel matrix Hp is positive (see [Akhiezer65]):

» fi
1 m my 777 omy
—mm
Hp“ —m, (V-44)
_ |
In our case, this implies:
mg” m3 k280 and my k? 180 (V-45)

As in the case of Vg, we can analyze the order of magnitude of the contribution Vj to the

variance of the PG-URE estimator. As explained in Sec. V.3.5, for reasonable denoising

operators f , the second order derivative Bﬁzé;m pyqis likely to be zero, except when the

pixels corresponding to the indexes K, | and m share some spatial proximity. As the b m
are proportional to these second order derivatives, and due to their definition, we deduce
that the number of non-zero coeffi cients dy | and € | m is proportional to N; the order of
magnitude of Vy is therefore proportional to Ni, as claimed in Sec. V.3.5.

T
8In what follows, the notation k%% 15 used to represent a sum of terms index by tuples [k, |, mq
with K %ol, | %om, and m %ok (as if %owere a transitive relation).
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