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Abstract 

The level set method was introduced by Osher & Sethian (1988) as a general technique to 

capture moving interfaces. It has been used to study crystal growth, to simulate water and fire for 

computer graphics applications, to study two-phase flows and in many other fields. The well-

known problem of the level set method is the following: if the flow velocity is not constant, the 

level set scalar may become strongly distorted. Thus, the numerical integration may suffer from 

loss of accuracy. In level set methods, this problem is remedied by the reinitialization procedure, 

i.e. by reconstruction of the level set function in a way to satisfy the eikonal equation. We 

propose an alternative approach. We modify directly the level set equation by embedding a 

source term. The exact expression of this term is such that the eikonal equation is automatically 

satisfied. Furthermore on the interface, this term is equal to zero. In the meantime, the advantage 

of our approach is this: the exact expression of the source term allows for the possibility of 

derivation of its local approximate forms, of first-and-higher order accuracy.  Compared to the 

extension velocity method, this may open the simplifications in realization of level set methods. 

Compared to the standard approach with the reinitialization procedure, this may give the 

economies in the number of level set re-initializations, and also, due to reduced number of re-

initializations, one may expect an improvement in resolution of zero-set level. Hence, the 

objective of the present dissertation is to describe and to assess this approach in different test 

cases. 

 

Keywords: two-phase flow, level set method, re-initialization, signed-distance function, WENO 

scheme. 
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Chapter 1 

Introduction 

 

1.1 Flows with interface 

In many phenomena two bulk materials with different physical properties (between two 

different phases, for example) can coexist without molecular mixing. The surface which 

separates the immiscible phases is often referred to as phase boundary, or interface or front. For 

example, when the liquid is in contact with the gas, it forms an interface layer. The thickness of 

this layer is of order of typical radius of the intermolecular cohesion (
7~10 
cm for simple 

molecules). In this layer, molecules interact not only with molecules in the liquid but also with 

neighboring molecules in the gas, which leads to difference in averaged free energy of molecules 

depending on proximity to the interface layer. For the molecules inside the liquid bulk, forces 

from all directions may cancel each other out, and the molecules may remain at near equilibrium. 

The molecules that are at the surface are pulled into the liquid bulk. Therefore the surface layer is 

under intensive agitation; the molecules at the surface are continuously replaced through their 

motion into the bulk. The statistical result of such molecular agitation is the surface tension, 

providing specific physical properties of the interface layer, in difference with the interior of the 

liquid bulk. Starting from the pioneer studies of Gibbs, the interface layer between liquid and gas 

is usually considered as a zero mass elastic infinitely thin membrane. Its surface area is 

introduced as independent parameter in thermodynamics of heterogeneous systems. The 

thermodynamic force related to the interface is referred to as the surface tension. Over two 

centuries, since classical studies of Young, Laplace, and Gauss, such an interface was under 

extensive investigation. Its behavior is complex, depends on its configuration imposed by the 

flow: it may resist to stretching of the liquid flow, or may contract, thereby changing this flow. 

As illustration Fig. 1.1 shows photographs of the liquid jet breakup for three different 

frequencies of excitation. 
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Figure 1.1: Photographs of a decaying jet for three different frequencies of excitation (from 

Rutland & Jameson, 1971). 

Another example, where the discontinuity in physical properties is mimicked by evolution of 

a fluid-interface, is the premixed flame. According to the Arrhenius law, the chemical reaction is 

strongly sensible to the temperature (by changing the temperature from 1000°K to 2000°K, the 

reaction rate is 10
5
 times increased). Then by heating the fresh combustible fuel-oxidizer mixture 

in the vicinity of the flame front, the zone of chemical reactions tends to propagate into and to 

consume the unburned mixture. If the chemical reactions occur at large activation energy (in 

hydrocarbons it is about 40 Kcal/mol compared to averaged molecular kinetic energy 3 

Kcal/mol), the zone of chemical reaction is infinitely thin, and the premixed flame front may be 

considered as an interface separating the burned and unburned gases. The flow properties in the 

both mixtures impose a complex configuration of such interface: an example of the premixed 

flame patterns in Bunsen burner is shown in Fig. 1.2  

Another typical example is the motion of a phase boundary between ice and water. This 

example is illustrated in Fig. 1.3 as ice formation in the polar seas, and the phenomenon is 

known as the Stefan problem. It is seen that the interface can shrink as the ice melts, or grow as 

the ice freezes; the speed of the interface propagation is depending on the temperature jump 

between ice and water.  

In nature, in science and in technology, we find another numerous examples of flows with 

interface. This motivates to predict interfacial flows. One of the well-known approaches to such 

flows is level set method. Its further development is the main object in our work. 
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Figure 1.2: OH-PLIF images of turbulent premixed flames (Bunsen burner) with syngas/air 

mixture at different compositions (from Ichikawa et al., 2011). 

 

 

Figure 1.3: Ponds on the Arctic Ocean (NASA) 

http://www.sciencedirect.com/science/article/pii/S154074891000163X
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1.2 Navier - Stokes equations for two fluids 

Consider the flow of two immiscible incompressible Newtonian fluids in domain   which 

is split by fluid interface   into two distinct parts 1  and 2  ; subscripts 1 is ascribed to the 

first fluid, and subscripts 2 is ascribed to the second one. The interface   is assumed to have no 

mass, it is elastic and infinitely thin, and the continuity condition is imposed across this interface 

(the phase change is not considered here). In each of the subdomains, the density and viscosity 

are assumed to be piecewise taken constant here for each fluid, respectively 1 1( , )   and 

2 2( , ),   but discontinuous at the interface. The conservation equations for mass and momentum 

valid in each subdomain 1,2 1,2 ( )t   are 

 

1
1 1 1 1 1 1 1

2
2 2 2 2 2 2 2

D
0,   2 ,     ,

D

D
0,   2 ,    ,

D

u
u p D g x

t

u
u p D g x

t

  

  

       

       

 (1.1) 

where u  is the velocity, p  is the pressure and g  is the acceleration due to gravity, 

D/ Dt t u     is the material derivative, D  is the rate of deformation tensor, characterized by 

components , ( ) / 2.i j i j j iD u u    The classical surface stress boundary condition between 

these two moving fluids is given in book of Landau & Lifshitz (1978) by use of the Laplace 

equation: 

 2 2 1 1 2 1 2 1(2 2 ) ( )     and    ,     ,D D n p p n n u u x           (1.2) 

where n  is the outwards unit normal to the interface,   is the coefficient of surface tension 

(here assumed to be constant), and n   is the local curvature of the interface. 

Following definition of the stress tensor 

 2 ,pI D     (1.3) 

where I  is the identity tensor, another form of motion equations (1.1) is 

 1
1 1 1 1

D
,

D

u
g x

t
       (1.4) 

 2
2 2 2 2

D
,

D

u
g x

t
       (1.5) 

with boundary conditions (1.2), as  
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 2 1( ) , .n n x        (1.6) 

Integrating (1.4) over 1  and (1.5) over 2  and using the divergence theorem, we obtain 

 
1 1 1

1
1 1 1

D
,

D

u
dx n dS gdx

t
  

  
     (1.7) 

and 

 
2 2 2

2
2 2 2

D
.

D

u
dx n dS gdx

t
  

  
     (1.8) 

We make the following definition 

 
1 1

2 2

if ,

if .

x

x







 


 (1.9) 

Adding (1.7) and (1.8), and using definition of  , we find 

 
1 2 1 2

1 2
1 2 2 1 1 2

D D
( ) .

D D

u u
dx dx n dS n dS gdx gdx

t t
      

     
            (1.10) 

Next we again use the divergence theorem to write 

 .n dS dx 
 

    (1.11) 

Combining (1.9) - (1.11), we obtain 

 
1 2 1 2

1 2
1 2 1 2

D D
.

D D

u u
dx dx dx n dS gdx gdx

t t
     

     
            (1.12) 

Now we make two more definitions 

 
1 1

2 2

if ,

if .

u x
u

u x


 


 (1.13) 

and 

 
1 1

2 2

if ,

if .

x

x







 


 (1.14) 

Using that 1 2u u  at the interface then u  is a continuous function. Using this fact and definitions 
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of u  and  , we can write 

 
1 2

1 2
1 2

D D D
.

D D D

u u u
dx dx dx

t t t
  

  
     (1.15) 

Combining (1.12) and (1.15) we obtain 

 
D

.
D

u
dx dx n dS gdx

t
   

   
        (1.16) 

This equation with appropriate boundary conditions for velocity and pressure constitute the 

physical model describing the motion of flows with interface. The problem is in the new extra-

variable which is the interface. Thus this model requires its supplementary extension to find this 

new variable.  

1.3 Main approaches in numerical identification of the interface 

This Section describes approaches to simulation of interface dynamics.  Since the interface 

is moving with the fluid, the time evolution of the interface is governed by the kinematic 

equation: 

 ( , ).
f

f

dx
u x t

dt
  (1.17) 

Once the interface is identified, the density and viscosity stepwise fields, the interaction between 

phases can be determined. Another way is to identify the interface with the fixed magnitude of a 

scalar, say 0G  . Then using definition of the area element associated with the iso-surface of 

this scalar 0G  ,  dS G G dx  , equation (1.16) takes the following form: 

 
D

( ) ( ) ( ) ( ) .
D

u
G G G G G g

t
           (1.18) 

Once the scalar field G  is known, and the topology of its zero magnitude is determined, it also 

allows formulating of interaction between phases. In general in computational methods for 

interfacial flows, (1.17) or (1.18) define the way of simulation. The approaches can be 

categorized into three groups: (a) interface tracking methods; (b) interface fitting methods; and 

(c) interface capturing methods. Schematic representations of these methods are given in Fig.1.4. 

 



CHAPTER 1. INTRODUCTION  7 

 

 (a) (b) (c) 

Figure 1.4. Representation of the interface by: (a) interface tracking method, (b) interface fitting 

method, and (c) interface capturing method. 

The interface tracking method was pioneered by Harlow & Welch (1965) in their celebrated 

marker-and-cell (MAC) method for flows with free surface. In this approach, on the fixed mesh, 

a collection of marker particles is placed on the interface, and the motion of those particles is 

determined by Eulerian velocity field in (1.17). Originally, the MAC method was designed for 

one-phase flows with free boundary, but later on, it was generalized for two-phase flows (Daly, 

1967) with particles seeded in the whole computational domain. In difference, Daly & Pracht 

(1968) used particles on the interface only. This procedure was strongly advanced by Unverdi & 

Tryggvason (1992); Glimm et al. (1998); Tryggvason et al. (2001) for the case of 3D flows with 

interface. A main difficulty of interface tracking methods is that the interface may merge or 

disintegrate. This requires to identify topology changes and to re-parameterize the interface. This 

is a very difficult task. 

In the second group of approaches, referred often to as interface fitting methods, the 

interface is also controlled by (1.17), but dynamically at each time, the mesh boundary is setup to 

be attached to the interface and to follow the interface (Hirt et al., 1974). Thereby the mesh is 

deformed, by coarsening and refining, in order to be adapted to the interface in both extrados and 

intrados domains, but in such a way that its resolution quality remains computationally efficient 

for capturing the interface. Here also the main problem remains: coalescence of interface or its 

pinch-off requires application of complex algorithms (Quan et al., 2009). 

In the third group of interface capturing methods, the interface is implicitly embedded in a 

scalar field function defined on a fixed Eulerian mesh, such as a Cartesian grid. Among the 

interface capturing methods, the main approaches are represented by the volume of fluid (VOF) 

method (Hirt & Nichols, 1981; Scardovelli & Zaleski, 1999), by the level set method (Osher & 

Sethian, 1988; Sussman et al., 1994) and by the phase field method (Anderson et al., 1998; 

Jacqmin, 1999; Lowengrub & Truskinovsky, 1998). In first two methods, the interface is 
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considered as a sharp front, while in the phase field method, the interface is diffused within 

narrow mixing layer between two fluids. 

The VOF method is a widely used interface-tracking method. In this method, the both fluids 

are governed by a single momentum equation, and the volume fraction of each fluid is tracked 

throughout the domain. The mixed cells have a volume fraction between 0 and 1; and cells 

without interfaces (pure cells) have volume fraction equal to 0 or 1.  The transport equation for 

volume fraction function C  is represented by its continuity: 

 ( ) 0.
C

uC
t


 


 (1.19) 

The VOF method is particularly attractive, since it can be constructed in the form of inherently 

mass conserving approach. However, when the volume fraction is abruptly-varying, the 

significant effort is required for accurate estimation of normal vector to interface and of interface 

curvature. Specific techniques based on least-squares-fit, height functions or reconstructed 

distance functions were developed to reconstruct these parameters from volume fractions (see 

e.g. Pilliod & Puckett, 2004; Cummins et al., 2005; Francois et al., 2006). 

Another interface capturing method is the phase field method. The basic idea here is to 

introduce a conserved order parameter or phase-field, ,  to characterize two different phases. 

This order parameter changes rapidly but smoothly in the thin interfacial region, and it is mostly 

uniform in the bulk phases, with distinct values   and  . The interfacial location is defined by 

the contour level ( ) / 2   . In this method, the interface dynamics is modeled by the 

advective Cahn-Hilliard equation for  . This equation is  

 ( ),u M
t




 


   


 (1.20) 

where ( ) 0M    is a diffusion parameter, called the mobility. The chemical potential, ,  is the 

rate of change of free energy (which consists in contribution bulk and interface) with respect to 

  and is given by 

 2 2 ,
d

d
 


  


    (1.21) 

2 2( ) (1 ) / 4      is the bulk energy,   is the capillary width, indicative for the thickness of 

diffuse interface. The Cahn number /Cn L  relates   to a characteristic macroscopic length 

.L   
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Since the level set method is our main framework in this study, its description thereafter is 

provided separately from approaches above, in the next Section. It is worthwhile to that the 

common advantage of interface capturing methods is their ability to simulate interface with 

complex topological changes, with merging and breakup. Each interface capturing method has its 

own advantages and drawbacks. In practice, these methods are often used in the hybrid form. 

1.4 Level set method 

1.4.1 Background 

The level set method was introduced by Osher & Sethian (1988) as general techniques to 

capture the moving interface in numerous multi-physics problems (picturesque applications may 

be found on the web home page of Ron Fedkiw).  For example, it has been used for Stefan 

problems to study crystal growth (Tan & Zabaras, 2007), to simulate water and fire interaction, 

to simulate the premixed flames by so-called G -equation approach, to perform computer 

graphics, etc. Fig. 1.5-1.7 illustrate examples of recent level set simulations of crystal growth, 

image recognition and two-phase flow, respectively. The profound introduction into level set 

methods and in its various applications is given in books by Sethian (1996); Osher & Fedkiw 

(2003); Giga (2006) and review articles by Osher & Fedkiw (2001) and Smereka & Sethian 

(2003). 

 

 

Figure 1.5: Level set simulation of crystal growth from Tan & Zabaras (2007). 

 

http://physbam.stanford.edu/~fedkiw/
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 (a) Malladi & Sethian (1995) (b) http://www.sci.utah.edu 

Figure 1.6: Level set simulation for medical image segmentation. 

 

 

Figure 1.7: Level set simulation of primary atomization of diesel-type jet from Desjardins 

(2008). 

http://www.sci.utah.edu/
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The underlying idea of the level set method is to embed an interface   in nR  as the zero 

level set of a smooth scalar function : ,nG R R R   i.e. 

  :  ( , ) 0 .  x G x t     (1.22) 

The function G  is defined everywhere in the domain  : it is positive in the region occupied by 

the fluid 1 and negative in the region occupied by the fluid 2. The evolution of G  is given by the 

following transport equation: 

 0.
G

u G
t


  


 (1.23) 

This equation, with a given initial distribution of interface 0( , 0) ( ),G x t G x   is often referred 

to as the level set equation.  

Away from the interface the level set scalar is assumed to be a signed distance function to 

the interface; i.e., ( , )G x t d   in 1  and ( , )G x t d   in 2  where d  is the shortest distance 

from the point x  to the interface at given time .t  Fig. 1.8 illustrates the level set function in two 

dimensions. 

 

           

 

Figure 1.8: Representation of the interface   in 2D by signed distance level set function. 
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The unit normal on the interface can easily be expressed in terms of ( , )G x t : 

 .
| |

G
n

G


 


 (1.24) 

The mean curvature of the interface is defined as the divergence of the normal 

 .
| |

G
n

G



  


 (1.25) 

The volume (area in 2D case) enclosed by the zero level set isosurface can be integrated as 

follows: 

 ( ) ,V H G dx


   (1.26) 

where H  is the Heaviside function. 

Typically, approximation of jump conditions in physical properties by step change across 

the interface leads to poor computational results. Therefore, the properties near the interface are 

defined using the smoothed Heaviside kernel function, ,H  given by: 

 

0 if ,

1 1
( ) 1 sin if ,

2

1 if .

G

G G
H G G

G








  



 


   
      

  
 

 (1.27) 

In the same way, the Dirac delta function in (1.18) is smeared-out according to: 

 

0 if ,

( ) 1
1 cos if .

2

G

G G
G





 


 

 


    
    

  

 (1.28) 

Here 1.5 x    is the smoothing parameter, x  is the grid size. 

For what follows, let us write equations in dimensionless form. We define reference 

variables ,L U  for the length and velocity, respectively. The relevant dimensionless variables in 

the Navier-Stokes equations can be defined as 
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2

1 1

,    ,    ,     

,    ,    ,

i i
i i

u x tU
u x t

U L L

p
p

U

 
 

  

  

  

  

  

 (1.29) 

where the superscript * denote dimensionless variables. In the non-dimensional variables, the 

continuity equation remains invariant, i.e. 

 0.u   (1.30) 

Substitution of variables (1.29) into (1.18) leads to:  

 
2

D 1 1 1
   ( ) (2 ( ) ) ( ) ( ) ( ) ,

D
g

u
G p G D G G G G e

t Re We Fr
            (1.31) 

where ge  is a unit vector aligned with the gravity force. For simplicity, the superscript  dropped 

here. The momentum equation (1.31) contains on the right hand side three dimensionless 

parameters known as: 

the Reynolds number, 

 1

1

,
UL

Re



  (1.32) 

the Weber number, 

 
2

1 ,
LU

We



  (1.33) 

and the Froude number, 

 .
U

Fr
gL

  (1.34) 

The Reynolds number expresses the ratio of inertia to viscous forces, the Weber number is the 

ratio of inertia forces to surface tension and the Froude number is the ratio of inertia to gravity 

forces. 

The fluid properties are thus defined (in dimensionless form) by 

 ( ) (1 ) ( )    and    ( ) (1 ) ( ),G H G G H G             (1.35) 

where 2 1/    is the density ratio and 2 1/    is the viscosity ratio. 
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1.4.2 Problems and recent developments 

While exhibiting some advantages over alternative numerical approaches to capture the 

interface, level set methods have several difficulties. 

(i) Mass conservation 

The drawback of Level set methods is that they are not volume (or mass) conserving for 

divergence free velocity fields. Consequently, the volume enclosed by zero iso-surface of the 

level set scalar is not conserved. In order to improve the mass conservation property of the level 

set method, several hybrid approaches have been proposed. Enright et al. (2002) proposed a 

particle level set method (PLS), where Lagrangian markers are employed to correct the front 

location predicted by Eulerian transport. Sussman & Puckett (2000) proposed to couple the level 

set method with the VOF approach (CLSVOF), hence realizing benefits from both approaches, 

the mass conservation property of VOF and the smooth interface description of the level set 

method. While both these hybrids schemes have been successful in applications, another problem 

is that their cost is typically much greater than the cost of a simple level set method. The reason 

is as follows: in PLS approach, many particles per cell are required to get accurate solution; in 

the CLSVOF method, there are restrictions on the time step in the VOF scalar transport. 

Moreover, due to complexity of hybrid schemes, their realization becomes complicated, and 

requires many additional efforts compared to original approaches. Another way to cope with the 

mass conservation problem in level set methods concerns the mesh refinement around the 

interface (Gomez et al., 2005; Herrmann, 2008), with target on decrease of numerical errors. In 

order to reduce the mass conservation errors, Olsson & Kreiss (2005) proposed a simple 

modification of the level set method, known as conservative level set (CLS) method. In the 

meantime, they retained the simplicity of the original method. These Authors replaced the usual 

signed distance function of the classical level set approach by the hyperbolic tangent profile 

which is transported and re-initialized using conservative equations. They showed that the mass 

conservation error is possible to reduce by an order of magnitude in comparison with the results 

based on the signed distance function. In Olsson et al. (2007); Desjardins et al. (2008) CLS 

method was further developed and assessed. However, realization of hybrid schemes becomes 

complicated, and requires many additional efforts compared to original approaches. 

 

(ii) Re-initialization 

The well-known problem addressed to (1.23) is this: if the flow velocity is not constant, the 

level set function G  may become strongly distorted: which means that its gradient may become 

very large or very small around the interface. For illustration of this, it is easy to show that if G  

is the level set function governed by (1.23), then the squared norm of the level set gradient 

changes with time by the following equation: 
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2D

2 ,
D

ij

i j

G G
G S

t x x

 
  

 
 (1.36) 

where i
ij

j

u
S

x





 are the components of the velocity gradient tensor. Here we used the summation 

convention on the repeated suffix. 

For example, if we take the velocity field in the form of ( )ij ijS S t  , where ij  is the 

Kronecker symbol, then the solution of (1.36) is the following: 

 0
( )

( , ) .

t

S d

G x t e
    (1.37) 

We see that the gradient grows exponentially with time (for negative ( )S t ) or decays 

exponentially for positive ( ).S t  In such cases the numerical integration of (1.23) may suffer from 

loss of accuracy. In level set methods, this problem is remedied by the re-initialization procedure 

(Chopp, 1993), i.e. by reconstruction of the level set function in a way to satisfy the eikonal 

equation: 

 ( , ) 1.G x t   (1.38) 

The solution of the eikonal equation (Arnold, 1983) is given by a signed distance function with 

respect to the zero level set. However, strictly from the mathematical viewpoint, equations (1.23) 

and (1.38) are incompatible (e.g. Gomes & Faugeras, 2000): equation (1.23) is evolutional 

equation whereas equation (1.38) is not. It is clearly seen by comparing (1.36) with equation 

(1.38). As a consequence, even if the initial G -function is defined as a signed distance function, 

the solution of (1.23) does not retain this property in the general case. Therefore, in repairing the 

level set function by equation (1.38), the common practice is to use (1.38) in its evolving form 

through an iterative process (e.g. Sussman et al., 1994): 

  ( ) 1 0,
G

S G G
t




   


 (1.39) 

with initial condition 

 ( , 0) ( , ).G x t G x t     (1.40) 

Here G  is a scalar that represents the corrected distance field, t  is the pseudo-time, ( )S G  is a 

smoothed sign function which is given by 
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2 2

( ) ,
G

S G
G 




 (1.41) 

where   is a small parameter to avoid singularity
1
. 

Analytically, it is stated that in the limit t , the solution of (1.39) tends to the unique 

viscosity solution of (1.38) without perturbation of zero level set. However from numerical 

experience, it has been observed (Russo & Smereka, 2000) that after several iterations in (1.39), 

the zero level set may move towards nearest grid points which will not lie directly on the 

interface. This may incur errors into solution of (1.23). Along with additional modifications to 

(1.39) proposed in Sussman et al. (1998); Sussman & Fatemi (1999); Cheng & Tsai (2008); 

Hartmann et al. (2008, 2010), an alternative approach is to circumvent iterative re-initialization 

(1.39). One way is as follows. The characteristics of the eikonal equation represent straight lines, 

normal to the interface, and the propagation speed of level sets along these lines is given by k ku n  

( here 1,2,3k  ; components in  are the direction cosines of the normal vector to interface, and, 

as hereafter,  the summation convention on the repeated suffix is used). Then introducing 

temporary signed distance function ( , )tempG x t  in respect to the eikonal equation, 1tempG  , i.e. 

with preserved distances between level sets, it is clear that propagation speed ext

k kF u n  of all 

such temporary functions does not change along the characteristics: 

  
0
.ext

k k k k n
F u n u n


   (1.42) 

Here the propagation speed extF  is known as the “extension velocity”, and n  is the distance 

from the interface along the characteristics. Then using definition of the normal derivative 

j

j

n
n x

 


 
, where, in respect to the eikonal equation, 

temp

j

j

G
n

x


 


 , one sees that (1.42) gives 

an equation for reconstruction of tempG  and extF : 

 0.
ext temp ext

j j

F G F

n x x

  
  

  
 (1.43) 

On the interface at a given time, 
0

temp

n
G


 matches exactly the zero level set 

0n
G


 , and extF  

equals the speed of interface in the normal direction. Hence, when the constructed from (1.43) 

extension velocity is used to advance the level set function ( , )G x t  by solving 

                                                 
1
 An example in Appendix A serves to demonstrate the re-initialization procedure in the simple case of 

one-dimensional flow produced by homogeneous strain 
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0extG
F G

t


  


, the zero-level set is mapped in respect to the eikonal equation; thereby 

( , )G x t  is never re-initialized. This time-marching process was developed in Adalsteinsson & 

Sethian (1999) (see also Zhao et al., 1996). However it has been mentioned in Chopp (2009) that 

in complex flows, the cost of determining the extension velocity becomes computationally 

expensive, and in some cases, the time-marching method of Adalsteinsson & Sethian (1999) can 

lead to unexpected behavior.  The further development of the extension velocity method was 

introduced and assessed in Chopp (2009), with numerical scheme of simultaneous integration of 

(1.43) and (1.23). 

1.4.3 Our motivation 

In our work we propose an alternative approach, in which the intermediate step (1.43) is 

circumvented. We modify directly the level set equation by embedding a source term. The exact 

expression of this term is such that the eikonal equation is automatically satisfied. Furthermore 

on the interface, this term is equal to zero. Thereby integrating this new form of the level set 

equation, there is no more necessity in re-initialization of the level set function, as in the 

extension velocity method. In the meantime, the advantage of our approach is this: the exact 

expression of the source term allows for the possibility of derivation of its local approximate 

forms, of first-and-higher order accuracy. Compared to the extension velocity method, this may 

open the simplifications in realization of level set methods. Compared to the standard approach 

with re-initialization procedure, this may give the economies in the number of level set re-

initializations, and also, due to reduced number of re-initializations, one may expect an 

improvement in resolution of zero-set level. Hence, the objective of the present work is to 

describe and to assess this approach in different test cases. 

1.5 Scope and Presentation 

First, in Chapter 2 we present a numerical method for solving incompressible Navier-Stokes 

equations, which we applied in this work, coded and validated. Two-dimensional test problems 

were assessed with analysis of accuracy, and with comparison of obtained results with those 

found in the literature. In Chapter 3 we present the modified level set equation with embedded 

source term in a way that the eikonal equation is satisfied, and the evolution of the zero level set 

remains the same as for standard level set equation. Different approximate forms for the source 

term coefficient are derived. Relation with the extension velocity approach is presented. Chapter 

4 is devoted to assessment of the modified level set equation. In this Chapter, we used one- and 

two-dimensional different test cases. Results of comparison with standard approach with and 

without re-initializations of level sets, as well as with analytical solutions are methodologically 



CHAPTER 1. INTRODUCTION  18 

discussed. Finally, in Chapter 5, we give several examples of computation and analysis of 

interfacial flows. The manuscript is ended up by conclusion, with perspectives of use of the 

modified level set equation for modeling free flows with interface. The manuscript is completed 

by three Appendixes. 
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Chapter 2 

Numerical schemes for incompressible 

Navier-Stokes equations 

 
In this chapter we present the numerical method for solving two-dimensional incompressible 

Navier-Stokes equations. Our numerical algorithm is based on the scheme of Zhang & Jackson 

(2009). It represents a high-order incompressible flow algorithm based on the projection method 

and Weighted Essentially Non-Oscillatory (WENO) finite differences. The algorithm of Zhang 

& Jackson (2009) was successfully applied for three-dimensional LES (large eddy simulation) of 

turbulent channel flow by Shetty et al. (2010). Note that very similar algorithms were developed 

in Ph.D. theses of Tanguy (2004) and Couderc (2007) for simulation of complex two-phase 

phenomena, such as turbulent air-blast atomization. In order to increase the accuracy, we 

introduced in our work two modifications in the method of Zhang & Jackson (2009). First, we 

implement low dissipative WENO-Z scheme of Borges et al. (2008) and bandwidth optimized 

WENO-SYM scheme of Martin et al. (2006), instead of classical WENO scheme of Shu & Jiang 

(1996). Second, we used the high-order interpolation scheme in order to determine velocity on 

the staggered grid, instead of the standard linear interpolation. Our algorithm is validated on 

different test problems. 

For purposes of this Chapter, let us remind the basic equations for viscous incompressible 

flows: 

 

1 1
(2 ) ,

0;

u
u u p D F

t

u


 


       


 

 (2.1) 

where p  is the pressure,  , v
T

u u  is the velocity field,   is the density,   is the viscosity and 

D  is the deformation rate tensor, which is the following in 2D case: 
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2 v1 1

( )
v 2v2 2

x y xT

y x y

u u
D u u

u

 
     

 
 (2.2) 

( , )x yF F F  is the volume force, such as gravity force, (0, ),F g   or ( )F G G   

represents the surface tension force in case of two-phase flow. Note that in the latter case the 

density and the viscosity are variable coefficients, which are given by (1.35). For one-phase 

flows   and   are constant in the whole domain. 

2.1 Projection method 

The main difficulty in obtaining a time-accurate solution for incompressible Navier-Stokes 

equations arises from the fact that continuity equation does not contain the time derivative 

explicitly. The constraint of mass conservation is achieved by implicit coupling between the 

continuity equation and the pressure field in the momentum equations. Numerically, this 

difficulty can be circumvented by using the artificial compressibility method of Chorin (1967), 

which introduces a time derivative of pressure in the continuity equation: 

 
1

0,
p

u
t


 


 (2.3) 

where   is the artificial compressibility parameter that needs to be properly chosen in order to 

achieve numerical convergence. The WENO scheme was also incorporated by means of artificial 

compressibility in Chen et al. (1999); Wu (2007). Although it improved the accuracy in the 

spatial discretization, this scheme still suffers from the stiffness of the system when the artificial 

compressibility has to be minimized. In addition, the usual question raises: what is the best 

choice of the tunable artificial compressibility parameter. 

Another class of the numerical methods is based on projection methods. The projection 

method was originally introduced by Chorin (1968) and independently by Temam (1968) as an 

efficient method of solving the incompressible Navier-Stokes equations. The theoretical 

background of projection type method is the decomposition theorem of Ladyzhenskaya, 

sometimes referred to as Helmholtz-Hodge decomposition. It states that the vector field u , 

defined on a simply connected domain, can be uniquely decomposed into a divergence-free 

(solenoidal) part and an irrotational part: 

 ,solu u G    (2.4) 

where G  is some scalar function. Let us show how the set of equations (2.1) can be integrated 

from time nt  to time 1nt   using the projection method. Typically, the algorithm consists of two 
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stages. In the first stage (velocity predictor), an intermediate velocity ( , v )Tu u    that does not 

satisfy the incompressibility constraint is computed: 

 
(2 )

( ) ,
n n

n n n

n

u u D
u u F

t





  
   


 (2.5) 

where nu  is the velocity at thn time level. In the second step, the pressure is used to project the 

intermediate velocity onto a space of divergence-free velocity field. Then the velocity field at the 

new time step, 1 1 1( , v )n n n Tu u   ,  is given by (velocity corrector): 

 
1 1/2

,
n n

n

u u p

t 

   
 


 (2.6) 

Computing the right-hand side of the above equation requires knowledge of the pressure 1/2.np   

Taking the divergence of (2.6), with satisfaction of divergence free condition for 1nu  , one comes 

to the Poisson equation for pressure: 

 
1/2

.
n

n

p u

t

   
  

 
 (2.7) 

It is worthwhile to note that equation (2.6) may be written in the following form 

 1 1/2 ,n nt
u u p



  
    (2.8) 

which is the standard Hodge decomposition for vector field .u  

In the Chorin’s original version of the projection method, all spatial gradients in (2.5) - (2.7) 

were approximated by second central difference schemes. In this work we use high-order 

projection method by Zhang & Jackson (2009). Details of the spatial discretization and time 

integration scheme will be given in the next sections. 

2.2 Variables arrangement 

We use a finite difference approximation for governing equations. A computational domain 

is a rectangle with sizes xL  and yL  in x  and y  direction respectively. A variant of the staggered 

Cartesian grid of Harlow & Welch (1965) is used as depicted in Fig. 2.1. The cell corners 

( , )i jx y  (grid points) are represented by circles. The centers of the cell faces, 1/2( , )i jx y  and 

1/2( , )i jx y  , are denoted by triangles in this figure. The pressure variable is defined at the corners 
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of each cell, and the velocity variables on the faces, which are parallel to their directions, u  and 

v , are defined on horizontal and vertical edges of the cell in two dimensions, respectively.  

Let ij  be a particular cell of the computational grid. Then the following relations are valid: 

 1 1[ , ] [ , ],       1 ,1 ,ij i i j j x yx x y y i N j N         (2.9) 

where the cell corners and the spatial increments are defined by 

 
( 1) ,   / ( 1),  

( 1) ,   / ( 1),            

i x x

j y y

x i x x L N

y j y y L N

     

     
 (2.10) 

and the cell faces points are defined by 

 1/2 1 1/2 1

1 1
( ),    ( ).           

2 2
i i i j j jx x x y y y        (2.11) 

 

 

Figure 2.1: Schematic of the staggered grid in two dimensions. 

 

With the staggered grid, the momentum equations are evaluated at velocity nodes, and the 

continuity equation is enforced in each cell. A main advantage of the staggered arrangement is 

the strong coupling between the velocities and pressure. This alleviates the convergence problem 

and oscillations in pressure and velocity fields, occurring in the non-staggered discretization 

(Ferziger & Peric, 2002). Another advantage of this particular grid arrangement is that the 
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tangential velocity on the boundary can be imposed directly (Zhang & Jackson, 2009). On the 

other hand, a disadvantage of the staggered grid is that the additional interpolation is required to 

determine unknown values of the velocity components on cell faces, , 1/2i ju   and 1/2,vi j . The 

standard approach of finding these unknown values is the simple averaging (bilinear 

interpolation) of velocities from neighbor grid points (see Fig. 2.2): 

 

1/2, 1/2, 1/2, 1 1/2, 1

, 1/2

, 1/2 , 1/2 1, 1/2 1, 1/2

1/2,

,     
4

v v v v
v .           

4

i j i j i j i j

i j

i j i j i j i j

i j

u u u u
u

     



     



  


  


 (2.12) 

However, interpolation procedure (2.12) has the second-order spatial accuracy only. In this work, 

we use a higher-order WENO interpolation scheme, which leads to 5
th

-order spatial accuracy. 

Details of the interpolation scheme are given in Appendix C. 

 

          

 (a) (b) 

Figure 2.2: Schematic of linear interpolation of the velocity on the staggered grid: (a) for u -

component, (b) for v -component. 
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2.3 WENO schemes 

In comparison to low-order numerical methods, the high-order methods (third-order and 

higher) offer an enhanced efficiency in the flow resolution, especially in multidimensional 

problem and for long time of integration. Recently, Zhang & Jackson (2009) proposed a high-

order scheme for integration of the incompressible Navier-Stokes equations. Motivation was to 

handle the sharp gradients. This method incorporates the projection method and 5th-order 

WENO scheme (Jiang & Shu, 1996), applied for approximation of convective terms. The classic 

WENO scheme, developed for flows with shock waves, is numerically dissipative. The higher-

order hybrid methods (Pirozzoli, 2002; Deng & Zhang, 2000) or modified WENO formulations, 

for example optimized WENO scheme (Martin et al., 2006) and WENO-Z scheme (Borges et al., 

2008), can decrease such a dissipation.  

 

2.3.1 WENO reconstruction 

Without loss of generality, our description is focused on one-dimensional scalar law: 

 0,
u f

t x

 
 

 
 (2.13) 

where ( )f f u  is the flux function. First, following Shu & Osher (1988), the numerical flux 

function ( )h x  is determined by 

 
1

( ) ( ) .

x x

x x

f x h d
x

 





   (2.14) 

Equation (2.14) defines ( )h x  implicitly in such way that 

 1/2 1/2 .i i iu h h

t x

  
 

 
 (2.15) 

The conservative numerical schemes can be formulated by approximating ( )h x  in (2.15). These 

approximations of ( )h x  are denoted by ˆ ( )f x , and they are constructed using a polynomial form 

with undetermined coefficients. Substitution of this polynomial into (2.14) leads to the system of 

equations where the flux is a known quantity at the nodes surrounding the interface of interest. 

This allows the unique set of coefficients to be found. Then the spatial derivative in (2.13) is 

approximated by ˆ ( )f x  obtained: 
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 1/2 1/2
ˆ ˆ

.

i

i i

x x

f ff

x x

 






 
  (2.16) 

Fifth-order WENO schemes are based on the stencils displayed in Fig. 2.3. The numerical flux, 
3

1/2 1/2
ˆ ( )k

i if h O x     with {0,1,2}k , is calculated for each of the three point stencils. The 

1/2
ˆ k

if   from these stencils are then combined in a weighted average in a way to get maximal order 

of convergence. In the flow regions containing discontinuities, the weights are assigned such that 

the solution is essentially non-oscillatory.  

 

        

 (a) (b) 

Figure 2.3: Discretization stencils for the standard five-order WENO scheme: (a) left-biased 

derivative, (b) right-biased derivative. 

 

The numerical flux is now calculated according to 

 
2

1/2 1/2 1/2

0

ˆ ˆ .k

i i k i

k

h f f  



   (2.17) 

where 1/2
ˆ k

if   are thr -order accurate polynomial interpolants evaluated at 1/2ix  , and computed by 

 
2

1/2 2

0

ˆ .k

i kl i k l

l

f a f   



  (2.18) 

Here kla  are the stencil coefficients. For 0,1,2k  , we have 
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0

1/2 2 1

1

1/2 2 1

2

1/2 2 1

1 7 11ˆ ,
3 6 6

1 7 11ˆ ,
3 6 6

1 7 11ˆ ,
3 6 6

i i i i

i i i i

i i i i

f f f f

f f f f

f f f f

  

  

  

  

  

  

 (2.19) 

where weights k  in (2.17) are defined by 

  

1 1
1 12

1 1 2 3

2 2
2 22

2 1 2 3

3 3
3 32

3 1 2 3

,     ,
( )

,     ,
( )

,     .
( )

d

IS

d

IS

d

IS


 

   


 

   


 

   

 
  

 
  

 
  

 (2.20) 

In these expressions, coefficients 0 0.3d  , 1 0.6d  , 2 0.1d   are called ideal weights or optimal 

weights, since they generate the central upstream 5
th

-order scheme for 5-points stencil 5S . We 

refer k  to as the non-normalized weights. The parameter   is set to 610  in order to avoid 

division by zero in the calculations of the non-linear weights k . The smoothness indicators kIS  

measure the regularity of the thk  polynomial approximation ˆ ( )k

if x  at the stencil kS  , and they 

are given by 

 
1/2

1/2

2
2

2 1

1

ˆ ( ) .
i

i

x l
l k

k l
l x

d
IS x f x dx

dx









 
   

 
    (2.21) 

In terms of discretized ( )f x  , i.e. if ,  the expression of kIS  are given by 

 

2 2

0 1 2 1 2

2 2

1 1 1 1 1

2 2

2 2 1 2 1

13 1
( 2 ) ( 4 3 ) ,

12 4

13 1
( 2 ) ( ) ,

12 4

13 1
( 2 ) (3 4 ) ,

12 4

i i i i i i

i i i i i

i i i i i i

IS f f f f f f

IS f f f f f

IS f f f f f f

   

   

   

     

    

     

 (2.22) 

In general sense, definition (2.20) of weights is that on smooth parts of the solution, the 

smoothness indicators kIS  are all small, thereby generated weights k  become close to ideal 

weights kd . On the other hand, if a given stencil kS  contains a discontinuity, then (1)kIS O , 
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and the corresponding non-linear weight k  is small relatively to other weight corresponding to 

another k . 

 

2.3.2 Order of convergence at critical points 

In Henrick et al. (2005), truncation error analysis of the finite difference approximation 

(2.17) led to necessary and sufficient conditions on the weights k  for the WENO scheme in 

order to achieve the formal fifth-order 5( )O x  convergence at smooth parts of the solution. The 

Authors have also found that at first-order critical points ,cx  points where the first derivative of 

the solution vanishes ( ( ) 0cf x  ), convergence degraded to only third-order 3( )O x . The 

demarche of Authors was as follows. Adding and subtracting 
2

1/2

0

ˆ k

k i

k

d f 



  to (2.17), leads to: 

 

2 2

1/2 1/2 1/2

0 0

2
5 6

1/2 1/2

0

ˆ ˆ ˆ( )

ˆ           ( ) ( ) .

k k

i k i k k i

k k

k

i k k i

k

f d f d f

h B x O x d f







  

 

 

 



   

       

 


 (2.23) 

Here, the superscripts   correspond to the   in 1/2
ˆ .if   Including the next term in the Taylor 

expansion 3

1/2 1/2
ˆ ( )k

i if h O x    ,  Henrick et al. (2005) have written: 

 

 
2 2

3 4
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0 0

2 2 2
3 4
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0 0 0

ˆ( ) ( ) ( )

                               ( ) ( ) ( ) ( ).
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i k k k k k k k k

k k k

d f d h A x O x

h d x A d A d O x

 

  

 

 

 

  



  

       

      

 

  
 (2.24) 

Substituting this result at a finite difference formula (2.23) for the polynomial approximation 

1/2
ˆ
if   , Henrick et al. (2005) obtained: 
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) ( ) ( ) ( ).k k k k

k k k

d d O x   

  
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     
 

  

 (2.25) 
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The 5( )O x  term remains after division by x  because B B   in (2.23). Thus, necessary and 

sufficient conditions for fifth-order convergence are given by 

 
1

2

2

0

( ) ( ),

( ).

p

k k k

k

p

k k

A d O x

d O x











  

  


  (2.26) 

The order of the WENO scheme is given by  

 1 2min(5, 2, 3)p p p    (2.27) 

For fifth-order accuracy, it is necessary 1 23, 2p p  . 

 

2.3.3 WENO-Z scheme 

Borges et al. (2008) derived a new set of WENO weights k  that satisfies the necessary and 

sufficient conditions (2.26) for fifth-order convergence. The idea was to use the whole 5-points 

stencil 5S  (see Fig. 2.3) in order to introduce a new smoothness indicator of a higher order than 

the classical smoothness indicators. Denoting it by 5IS , and it is given by 

 5 0 2IS IS IS   (2.28) 

Then Borges et al. (2008) defined the new smoothness indicators z

kIS  in the following form: 

 
5

,    0,1,2z k
k

k

IS
IS k

IS IS






 

 
 (2.29) 

with the new WENO weights z

k  correspondingly: 

 5,    1 .

q
z

z zk k
k k kz z z z

k k k k k

d IS
d

IS


 

    

  
      
     

 (2.30) 

When 2q  , conditions (2.26) are satisfied and the fifth order is achieved. 

 

2.3.4 Bandwidth-optimized WENO-SYM scheme 

Martin et al. (2006) discussed the dispersion and dissipation properties of WENO schemes. 

First let us interpret the numerical dispersion and dissipation in a simple way, as follows. 
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The bandwidth properties of linear numerical schemes are determined by Fourier analysis. 

Consider a pure harmonic function 

 ( ) .ikxf x e  (2.31) 

Then exact spatial derivative of ( )f x  is given by 

 ( ) .ikxf x ike   (2.32) 

First derivative of ( )f x  obtained from the finite difference scheme can be expressed as 

 *( ) ( ),f x ik f x   (2.33) 

where ( )k k k   is the modified wavenumber. The real part of k  is responsible for phase 

errors; the imaginary part of  k  describes dissipative amplitude errors. It is easy to show that 

any central scheme has zero dissipation. In practice the scaled modified wavenumber is used in 

analysis: k k x   . For example, consider the standard second order central difference scheme. 

We have 

 
1 1 sin( )

,
2 2

j

ik x ik x

j j j j

j

x x

f f f e f ef i k x
f

x x x x

  

 



  
  

   
 (2.34) 

therefore, the modified wavenumber in this case is defined by 

 ( ) sin( ).k k k x    (2.35) 

In similar way, the modified wave number for WENO scheme given by (2.17) can be obtained 

and it is the following: 

 ( 2 )

,

( ) (1 ) .ik i m l k

m ml

m l

k k i e d a e         (2.36) 

Here, the expression of k   contains the stencil coefficients and optimal weights of WENO 

scheme as free parameters. One may design bandwidth-optimized optimal weights kd  that 

maximize Lele’s bandwidth resolving efficiency index. The bandwidth optimization is expressed 

as the minimization of an integrated error function. Following Martin et al. (2006), the error 

function used is 

   
2 2

( )

0

Re( ) 1 Im( ) sin ( / 2)  .kI e k k k k dk


                   (2.37) 
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The optimal weights kd , contained in this function in k , are free parameters. Martin et al. 

(2006) have chosen to define the stencil coefficients ,kla  also embedded in the modified 

wavenumber, completely through the order of accuracy constraints. Taking the following values 

of free parameters 1/ 2  , 16  , 6  , 1    , the integral in (2.37) has been minimized. 

In so doing, they specified the resulting WENO schemes of the third-order accuracy with optimal 

weights: 0 0.094647545896d  , 1 0.428074212384d  , 2 0.408289331408d   and 

3 0.068988910311d  . Note, that in WENO-SYM scheme there is an additional weight 3d  

corresponding to additional candidate stencil 3S , which provides symmetric discretization for 

1/2
ˆ
if  .  

Fig. 2.4 displays the bandwidth properties for the WENO-SYM and the original WENO-JS 

with optimal weights. This figure we completed by results from the second-order central scheme, 

from the first order forward scheme, and from six-order Padé scheme. As expected, the 

numerical dispersion and dissipation are minimal when the Padé scheme is used. For what 

follows, it is worthwhile to note that dissipation error is much less in the case of WENO-SYM 

than in the case when WENO-JS is used.  

 

 

Figure 2.4: Bandwidth efficiency for several numerical schemes. 
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2.4 Viscous terms 

In our algorithm, all spatial gradients, which take place in viscous terms, are calculated 

explicitly by using the fourth-order accurate central difference scheme. To this end, derivatives 

in x-direction are represented usually as: 

 
2

2
( ) .

u u u

x x x x x


 

    
 

    
 (2.38) 

In approximation of (2.38), Zhang & Jackson (2009) used compact finite difference to discretize 

all spatial derivatives. It requires tri-diagonal system of linear equations. In the framework of 

standard fourth-order central differences, we approximated the first-order derivative by  

 
2, 1, 1, 2, 4

,

8 8
( ),

12

i j i j i j i j

i j

f f f ff
O x

x x

       
   
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 (2.39) 

and the second-order derivative we approximated by 
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2, 1, , 1, 2, 4

2 2

,

16 30 16
( ),
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i j i j i j i j i j

i j

f f f f ff
O x

x x

        
   

  
 (2.40) 

where , vf u , or .  Expressions for ,( )y i jf  are derived similarly.  

2.5 Time integration scheme 

The easiest way to obtain a high-order in time discretization is to use a high-order Runge-

Kutta method. However, it has been observed that the classical fourth-order Runge-Kutta method 

may develop large oscillations in the solution although the space discretization is made by TVD. 

Therefore, different designs of Runge-Kutta schemes merit careful inspection.  

The semi-discretized form of (2.5) by the method of lines yields a system of ordinary 

differential equations 

 ( ),
d

F
dt


U

U  (2.41) 

where F  is the discrete flux vector. This system of differential equations is solved using the 

Runge-Kutta method. It is performed within one time step t  



CHAPTER 2. NUMERICAL SCHEMES FOR NAVIER-STOKES EQUATIONS 32 
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( ) ,       1,2, ,
k

i i k i k

k k

i

t F i m 




    U U U  (2.42) 

with (0) ( )tU U  and ( )( ) mt t U U . Coefficients ( )i

k  and ( )i

k  are given from the constraint 

of requiring the maximal order of accuracy and from the TVD constraint, as follows. 

If ( ) 0i

k   and the forward Euler method 

 1 ( )n n nt F  U U U  (2.43) 

is TVD under the CFL condition 0  ( / )t x      , then the method (2.42) is TVD under the 

CFL condition  

 
( )

0 ( ),
min .

i

k

ii k
k


 


  (2.44) 

Indeed, for each Runge-Kutta stage it holds: 
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where we used that ( ) 0i

k  ,  and that the forward Euler parts in the sum above are TVD under 

the constraint (2.44). Use induction by assuming that ( ) (0)( ) ( )kTV TVU U  for all .k i  This is 

certainly true for 1.i   This inequality gives 

 
1

( ) ( ) (0) (0)

0

( )  ( ) ( ) ( ).
i

i i

k

k

TV TV TV




 U U U  

Thus ( ) (0)( ) ( )mTV TVU U  is verified and it represents the TVD condition 1( ) ( ).n nTV TV U U  

 

The second order TVD Runge-Kutta is given by (Gottlieb & Shu, 1998): 
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(2) (1) (0) (1) (1)
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U U U
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 (2.45) 
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The third order TVD Runge-Kutta scheme is given by 

 

(1) (0) (0)

(2) (0) (1) (1)
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U U U U

 (2.46) 

Note that Poisson equation should be solved at the end of each Runge-Kutta stage.  

2.6 Stability condition 

All terms in our method are discretized explicitly. This requires restriction on a time step to 

preserve stability. Here we use a condition proposed by Kang et al. (2000). The convective time 

step restriction is given by 

 max max| | | v |
1

u
t

x y

 
   

  
 (2.47) 

where max max| | ,| v |u  are the maximum magnitudes of the velocities. The viscous time step 

restriction is given by 

 
2 2

2 2
1,t

x y

  

    
   

 (2.48) 

The effects of any volume force ( , )x yF F F  can be included in the convection estimate noting 

that max max| | | |xu F t   is a linear approximation to a bound on the horizontal component of the 

velocity. Then 
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F tu F t
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x y

   
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 (2.49) 

Rewriting (2.47) as 1cflt C   and (2.48) as 1cfltV   , one yields 

 2
| || |

0.5 ( ) 4 4 1,
yx

cfl cfl cfl cfl

FF
t C V C V

x y

 
       
  
 

 (2.50) 

where ( , )x yF F F  is the net acceleration due to forces such as gravity and surface tension. 



CHAPTER 2. NUMERICAL SCHEMES FOR NAVIER-STOKES EQUATIONS 34 

2.7 Boundary conditions 

In order to maintain the high-order accuracy of spatial discretization, we avoided use of 

lower-order or one-sided discretization scheme near the wall. Instead, we employed three layers 

of ghost nodes outside the boundaries of the computational domain. This allowed us to retain a 

single discretization scheme throughout the entire domain. The values at the ghost nodes are 

calculated near the wall in the normal to wall direction. Schematic of the ghost nodes for 

boundary treatment is given by Fig. 2.5. 

Periodic boundary conditions: 
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, 1/2 1 , 1/2

,

v v .

x
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N k j k j

N k j k j

u u  
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


 (2.51) 

Solid wall (no-slip) boundary conditions: 

 
1/2 , 1/2 ,
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,
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 (2.52) 

 

Figure 2.5: Schematics of computational boundary. 
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2.8 Validation 

In this section we presented test computations obtained by described above numerical 

schemes. 

2.8.1. Taylor-Green Vortex problem 

First, in order to assess the spatial and temporal accuracy of the overall algorithm, the two-

dimensional Taylor-Green Vortex problem is considered. In this case Navier-Stokes equations 

have analytical solution which is given by: 
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2 4
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   


    

 (2.53) 

In this example, vortices are translated in diagonal direction. Along with such translation their 

intensity decays exponentially.  Coefficient of kinematic viscosity is chosen to be 210   which 

corresponds to Reynolds number 100.Re   Vortex amplitude was chosen to be 2.0A   and 

wavenumber 2 .k   Fig. 2.6 below represents this solution at initial time and final time 1.0.t    

 

 

Figure 2.6: Solution ( , )u p  to Taylor-Green Vortex flow at 0t   (left plot); 1.0t   (right plot). 
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Simulations are performed on the periodic unit square domain using WENO-JS, WENO-

SYM and WENO-Z schemes. For each case the 2L  norm of the error in the u-component of the 

velocity is computed to assess the order: 

 2

2|| || ( ) / ,exactL
u u u N   (2.54) 

where x yN N N  represents the total number of nodes used ( xN  and yN  are numbers of nodes 

in x  and y  directions, respectively). Because of symmetry of this problem 2L  error norm for the 

v  velocity component 2 2|| || || || .
L L

v u  For assessing the spatial accuracy, the time step is fixed at 

410t    and grid resolution chosen for the study is 2 2n n  with 3,4,5,6n   and 7. A log-log 

plot of 2L  error norm vs. number of grids used is shown in Fig. 2.7a. The slope of the plot shows 

that current algorithm has spatial order of accuracy of 5. Note that for coarse grids (8 and 16 

points per wavelength) WENO-SYM is more accurate than classical WENO-JS scheme, while 

for fine grids the classical scheme has smaller error. The reason is that WENO-SYM scheme is 

only third order accurate while WENO-JS has fifth order. It is seen that WENO-Z scheme 

improved the accuracy for coarse and fine grids. The error is about one order of magnitude 

smaller and fifth order is achieved. 

In the next set of simulations, the number of nodes is 2256 ,  and within the CFL condition, 

the time step size changes from 210t    to 31.125 10 .t     The log-log plot of 2L  error norm 

vs. time step size is shown in Fig. 2.7b. The plot clearly shows third-order accuracy of time 

integration algorithm of the code. Table 2.1 gives detailed information about spatial error for 

three different algorithms. 
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                     (a) Spatial                                                             (b) Temporal 

Figure 2.7: 2L  error norm. 

 

Table 2.1: 2L  Error and Convergence Rates for u  in Taylor-Green Vortex problem. 

 WENO-JS WENO-SYM WENO-Z 

Grid 2|| ||
L

u  Rate 2|| ||
L

u  Rate 2|| ||
L

u  Rate 

8 8  22.55 10    21.42 10    38.02 10    

16 16  31.31 10  4.28  45.57 10  4.67  42.49 10  5.00  

32 32  54.77 10  4.78  56.73 10  3.05  66.67 10  5.22  

64 64  61.53 10  4.95  67.70 10  3.12  71.70 10  5.29  

128 128  84.67 10  5.03  79.06 10  3.08  93.58 10  5.57  
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2.8.2. Shear Layer Problem 

Next, we perform simulation of Shear Layer test problem. Introduced by Bell et al. (1989) 

and examined more recently in Minion & Brown (1997), the present test concerns two jets in a 

doubly periodical domain of size [0,1] [0,1],  to which a sinusoidal perturbation perpendicular to 

the plane of motion is imposed at the lowest wavenumber resolved by computational mesh. The 

initial pressure field is uniform 0p   and initial velocity field is given by: 

 

tanh(( 0.25) / ),         for  0.5,
( , )

tanh((0.75 ) / ),         for  0.5,

( , ) sin(2 ),

y y
u x y

y y

v x y x





 

 
 

 



 (2.55) 

where   is the shear layer width parameter and   the strength of the initial perturbation. In the 

absence of any additional perturbations, each of the shear layers rolls up in a single vortex as the 

flow evolves. Fig. 2.8 depicts components of the velocity field at time 0.t   

 

Figure 2.8: Velocity profiles for Shear Layer problem at time 0.t   

 

Two cases are considered: thick layer with 1/ 30,  0.05    and thin layer with 

1/ 300,  0.05.    In first case there is no viscosity, while the second case is viscous and the  

corresponding Reynolds number is 410 .Re   Calculations are performed on 

32 32, 64 64, 128 128  and 256 256  grids. Fig 2.9 shows the vorticity field of the computed 

solutions on 256 256  grid for different WENO schemes. Qualitatively all schemes give results 

comparable with the reference solution on 1024 1024  given by spectral method. 
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 (a) (b) 

 

 (c)  (d) 

Figure 2.9: Vorticity field in the thick Shear Layer test. Comparison of the numerical schemes at 

time 2.0t   with a grid resolution of 256 256  points: (a) WENO-JS, (b) WENO-SYM, (c) 

WENO-Z and (d) Spectral method. 
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In this case the flow is inviscid, and consequently, the total kinetic energy as well as the total 

enstrophy should be conserved in time. In the framework of different numerical schemes, we 

compared evolution of kinetic energy and enstrophy on the coarse grid with 64 64  points. Fig. 

2.10 shows the evolution of kinetic energy, and Fig. 2.11 shows the evolution of enstrophy. From 

both these figures, the advantage of WENO-Z scheme is clearly seen in comparison with 

WENO-JS and WENO-SYM scheme. The computed loss of kinetic energy on different grids, 

from 32 32  to 256 256 , is presented in Table 2.2. 

Next, in Fig. 2.12-2.14, the results are presented for thin shear layer. Here, the flow is 

viscous. The decay of the total kinetic energy and the enstrophy are compared with the results 

obtained by spectral method. It is seen that WENO-Z scheme gives better results, while WENO-

JS and WENO-SYM have almost the same accuracy in prediction of energy and enstrophy 

evolutions. 

 

Figure 2.10: Evolution of the total kinetic energy in the thick Shear Layer test. Comparison 

between WENO-JS, WENO-SYM and WENO-Z. Grid resolution 64 64 points. 
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Figure 2.11: Evolution of the total enstrophy in the Shear Layer test. Comparison between 

WENO-JS, WENO-SYM and WENO-Z. Grid resolution 64 64 points. 

 

Table 2.2: Loss of kinetic energy (%) for the thick shear layer simulations. 

Grid WENO-JS WENO-SYM WENO-Z 

32 32  6.6554  6.6204  3.6936  

64 64  1.9111 1.9591 0.9895  

128 128  0.5262  0.5436  0.2518  

256 256  0.1305  0.1355  0.0528  
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 (a) (b) 

 

 (c)  (d) 

Figure 2.12: Vorticity field in the thin Shear Layer test. Comparison of the numerical schemes at 

time 0.8t   with a grid resolution of 256 256  points: (a) WENO-JS, (b) WENO-SYM, (c) 

WENO-Z and (d) Spectral method. 
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Figure 2.13: Evolution of the total kinetic energy in the thin Shear Layer test. Comparison 

between WENO-JS, WENO-SYM, WENO-Z and Spectral method. Grid resolution 128 128  

points. 

 

Figure 2.14: Evolution of the total enstrophy in the thin Shear Layer test. Comparison between 

WENO-JS, WENO-SYM, WENO-Z and Spectral method. Grid resolution 128 128  points. 
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2.8.3. Driven cavity problem 

The next test simulation is performed for two-dimensional driven cavity flow. For 

assessment of numerical methods for viscous incompressible flows, this problem is the most 

frequently used benchmark problem. Fig. 2.15 shows its geometry and the boundary conditions. 

 

 

Figure 2.15: Geometry of the driven cavity flow 

 

Flow is driven by upper wall, while three others walls remain fixed. No-slip boundary conditions 

were employed on all four walls. The moving wall generates vorticity which diffuses inside the 

cavity thereby forming the driven cavity flow. At low Reynolds number ( 100Re  ), the flow is 

almost symmetric with respect to the centerline, and two corner eddies are visible. As Reynolds 

number increases, the center of the main vortex moves toward the downstream corner before it 

returns toward the center at higher Reynolds numbers. At high Reynolds numbers, several 

secondary and tertiary vortices begin to appear; the flow structure  becomes strongly depending 

on the Reynolds number. 

Fig. 2.16 and Fig. 2.17 show the computed results of streamlines and contours of constant 

vorticity for several Reynolds numbers 100Re   and 3200.  In Fig. 2.18, we present 

comparisons of the u-component velocities on the vertical centerline and the vertical velocities 

on the horizontal centerline of the square cavity for 100Re   and 3200,  and compare our data 
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with those of Ghia et al. (1982). In each case, obtained velocity profiles exhibit a perfect match 

with Ghia’s results. 

   

Figure 2.16: Driven cavity test. Streamlines and contours of constant vorticity for 100Re  . Grid 

resolution 128 128  points. 

 

Figure 2.17: Driven cavity test. Streamlines and contours of constant vorticity for 3200Re  . 

Grid resolution 128 128  points. 
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Figure 2.18: Driven cavity test. Centerline slices of velocity: (a) u-component along 0.5,y   (b) 

v-component along 0.5.x   Grid resolution 128 128  points. 
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2.8.4. Two-dimensional decaying turbulence 

The accuracy and efficiency of the presented above finite difference approximations is 

completed by simulation of two-dimensional decaying turbulence. The computational results are 

compared with those given by spectral method. Parameters of simulation are given by Herring et 

al. (1974). The computational domain is a square with sides of length 2 .  Periodic boundary 

conditions are applied. All runs start from precisely the same initial conditions: a fixed pseudo-

random number generator is used for construction of a Gaussian ensemble in two-dimensional 

incompressible flow with isotropic energy spectrum 

 4 2

0( , 0) exp( 2( / ) ),E k t Ck k k    (2.56) 

where 2 2| | ,x yk k k k    C  is the constant with value based on initial turbulent energy, and 0k  

is the peak of the spectrum. In this study 0 8k   and the initial turbulent energy is 1.5 in all 

simulations. The magnitude of velocity Fourier coefficients related to the assumed initial energy 

spectrum becomes 

 | ( ) | ( )
k

u k E k


  (2.57) 

The initial velocity distribution in Fourier space is then obtained by introducing a random phase 
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 (2.58) 

where the phase function is given by ( ) ( ) ( )k k k    , where ( )k  and ( )k  are independent 

random values chosen in [0,2 ]  at each coordinate point in the first quadrant of the -x yk k  

plane. The conjugate relations for other quadrants are 
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 (2.59) 
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The energy spectrum given in (2.56) and initial vorticity field are illustrated in Fig. 2.19. 

Once the random initial flow field is generated, it is fixed as initial distribution for different 

numerical schemes assessed hereafter.  

 

 

Figure 2.19: Initial energy spectrum (on the left) and vorticity field (on the right) in 2D 

turbulence test. 

In Fig. 2.20, four snapshots of the vorticity-field are exhibited correspondingly to WENO-

JS, WENO-SYM, WENO-Z and to Spectral method which we also realized in this work, 

following the Herring’s et al. (1974) paper. It is seen that  instantaneous vorticity distribution is 

very similar for all schemes applied.  More evidently, this is seen when statistics are calculated. 

In Fig.2.21, spectra of turbulent energy are given for those numerical schemes at different times. 

These spectra are very similar to each other. From computed evolution of the velocity field, the 

following turbulent statistics are compared by different methods: the mean turbulent energy 

21
| | ,

2
tk u  the mean enstrophy, 21

 | | ,
2

u    the enstrophy dissipation rate, 

2| ( ) | ,u     the turbulent macro length scale 1/2 1/3/tL k   and the corresponding 

Reynolds number, 1/3/ ( ).L tRe = k   Here, angular brackets denote spatial average. These 

statistics are presented in Fig 2.22. Due to interpolation errors of velocity components on the grid 

used here, we did not succeed to have initial statistics in WENO schemes exactly the same as in 

Spectral method. It is seen in Fig 2.22. However from the decay of turbulent energy it is seen 

that WENO-JS is more dissipative than WENO-SYM, WENO-Z; two last schemes give very 

similar decay as one obtained from Spectral method. The same is for the enstrophy decay.  
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 (a) (b) 

 

 (c) (d) 

Figure 2.20: Vorticity field in 2D turbulence test. Comparison of the numerical schemes at time 

0.8t   for 35 10    with a grid resolution of 2256 points: (a) WENO-JS, (b) WENO-SYM, 

(c) WENO-Z and (d) Spectral method.  
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 (a) (b) 

 

 (c) (d) 

Figure 2.21: 2D turbulence test. Spectrums of energy for different schemes: (a) WENO-JS, (b) 

WENO-SYM, (c) WENO-Z and (d) Spectral. Grid resolution 256 256.  
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 (a) (b) 

 

 (c) (d) 

Figure 2.22: 2D turbulence test. (a) Total kinetic energy, (b) total enstrophy, (c) enstrophy 

dissipation rate and (d) Reynolds number based on integral scale. Comparison of the results for 

WENO-JS, WENO-SYM and WENO-Z with solution by Spectral method. Grid resolution 

128 128.  
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For a “refined” parameter, such as the enstrophy dissipation, the difference between Spectral 

method and all appraised here schemes is more pronounced. However it is seen again that 

WENO-SYM, WENO-Z are closer to Spectral method than WENO-JS. As to the turbulent 

Reynolds number, no explicit favor can be done to one of WENO schemes; at earlier times 

WENO-JS is closer to Spectral method, at later times WENO-SYM, WENO-Z are. 

2.9 Cost of Poisson solver 

This Section concerns numerical solution of Poisson equation. The pressure equation was 

discretized by second order central differences, and the resulting linear system was solved by 

using different linear algebraic solvers: Gauss-Seidel method, successive over relaxation (SOR) 

and incomplete Cholesky conjugate gradients (ICCG). The details about these numerical 

methods are given in book of Ferziger & Peric (2002), and are not revisited here. In general, 

Gauss-Seidel or successive over relaxation (SOR) types of iterative algorithms for solving the 

Poisson equation are of 2( ),O N  where N  is the total number of grid points ( x yN N N  for two-

dimensional problems). The use of these types of iterative Poisson solvers for high-resolution 

computations, along with long time integration, is not feasible. In order to accelerate these 

solvers, the multigrid ICCG algorithm has been successfully developed. In this algorithm, the 

computational effort is reduced to 3/2( ).O N  Figure 2.24 demonstrates the required number of 

iterations to achieve the convergence in Poisson equation for different methods. 

Fig. 2.23 shows a comparison between different Poisson solvers. In this figure the 

dependence of a residual norm on number of iterations is demonstrated for one time step in 2D 

turbulence test. It is seen that ICCG requires about one order of magnitude smaller number of 

iterations for convergence than SOR and Gauss-Seidel method. It allows to reduce the total 

computational cost of our algorithm about 5 times for ICCG in comparison with Gauss-Seidel 

method. In all simulations presented in this Chapter, as well as in Chapter 5, were performed 

with ICCG Poisson solver. 
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Figure 2.23: Residual versus number of iterations in Poisson solver during one time step in 2D 

Turbulence test. 

2.10 Conclusions 

A numerical method for solving the incompressible Navier-Stokes equations with a 5th-

order WENO scheme was presented. The WENO scheme is applied to the convective terms in a 

straight-forward way without artificial compressibility. The algorithm was validated by several 

numerical tests with exact solutions or previous numerical results, and was shown to be close to 

5
th

-order accurate for velocity variables and 3
rd

-order in time. We demonstrated that results of 

WENO-Z scheme for convective terms are fairly better than those obtained for the standard 

WENO scheme. From other side, the computational cost of the modified scheme remains the 

same as for the standard WENO scheme. As to WENO-SYM scheme, it shows also 

improvement in numerical results, but not so significantly as it does by WENO-Z. 
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Chapter 3 

Modified level set equation: derivation 

 

3.1 Source term in the level set equation 

To begin, consider the level set equation (1.23), supplemented by a source term proportional 

to the level set scalar G : 

 ( , )
G

u G A x t G
t


  


, (3.1) 

where ( , )A x t  is an arbitrary function. 

 

Claim 3.1: The sign of solution of equation (3.1) is conserved in respect to equation (1.23), and 

consequently, equations (3.1) and (1.23) give the same evolution of the zero level set 

( ( ), ) 0fG x t t  , where ( )fx t  is the position of points lying on the zero level set surface. 

In our derivation this claim plays the key role. It is worthwhile to note that this claim is stated for 

arbitrary choice of the source term coefficient ( , )A x t .  It is illustrated hereafter. 

Example: Let us consider the case of diagonal translation of a circular interface. Initially G  is a 

signed distance in respect to the circle, and let us choose  two following expressions of the 

source term coefficient: 1( , ) sin( )sin( )A x t x y  and 2( , )A x t x y  . Solutions of Equation (3.1) 

corresponding to 1( , )A x t  and 1( , ),A x t  we denote as 1( , )G x t  and 2 ( , ),G x t  respectively. Fig. 3.1 

shows the computed iso-contours of both solutions. It is seen that the zero iso-contour (i.e. the 

predicted interface) remains invariant for both source terms, though outside the interface, the 

solutions are very different. It is clear that these solutions are immaterial for simulation of 

interface. However, they have direct impact on accuracy of prediction of interface. Truncation 

errors of the numerical approximation in the vicinity of the zero-level function depends on the 
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global distribution of the level set scalar. From numerical practice, it is desirable to keep the 

level set as signed distance function (Chopp, 1993; Sussman et al., 1994). This allows to obtain a 

better accuracy in prediction of the interface shape, of interface normal vectors and of its 

curvature. So, the objective is to have such a form of the source term coefficient that the eikonal 

equation is satisfied. 

 

 

Figure 3.1: Isolines of the level set scalar. From top left to bottom right: initial distribution of G ; 

solutions to (3.1) at time 1.0t   with ( , ) 0A x t  , ( , )A x t x y   and ( , ) sin( )sin( )A x t x y , 

respectively. Red line represents the zero level set, dashed line represents initial interface 

position. 
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3.2 Source term preserving signed-distance solution 

In lines of the above claim, we introduce a new scalar field ( , )x t , and let us consider the 

following initial value problem in suffix notation 

 
D

( , )
D

k

k

u A x t
t t x

  


 
  
 

, (3.2) 

 00
( )

t
x 


 , (3.3) 

where 0 ( )x  represents the initial distribution of the level set function and it is taken in form of 

the signed-distance function, i.e. 0 ( ) 1x  . 

Now, let us assume that the solution to (3.2)-(3.3) lies in the class of signed-distance functions, 

the eikonal equation is satisfied for all times 

 ( , ) 1,     0x t t     (3.4) 

The expression for the unit vector, normal to interface, is reduced to ( , ) ( , ).n x t x t   By use 

of constraint (3.4), the source term coefficient ( , )A x t  is determined as follows. Differentiating 

first equation (3.2) with respect to ix , and then multiplying it by i2 , where, by virtue of 

(3.4), i i

i

n
x





   


, we obtain: 

      2 2 2i i i i k k i iu A
t

     


        


 (3.5) 

Then transforming the second term in (3.5) 

  2 2 2 2 2i i i k i k i i k k i i i iu u A A
t

         


              


 (3.6) 

Using a change rule for second derivatives, ,i k k i     after summing over the suffix i  we 

see that first two terms in (3.6) are converted in material derivative of 
2

 , 

 
2 2D

2 2 2
D

i i k k i iu A A
t

                (3.7) 

By virtue of (3.4), we obtain the governing equation for ( , )A x t : 
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 i i i i k kA A u          (3.8) 

or in equivalent form 

 
( , )

( , ) k
i i k

i i

uA x t
n A x t n n

x x



  

 
 (3.9) 

Equation (3.9) can be integrated analytically by using the method of characteristics. 

Characteristics of the eikonal equation are the straight lines 0x x n     normal to zero-

isosurface ( , ) 0x t  . Here 0x  implies a point position, at which the characteristics, indexed 

by the position x , will land on the zero-isosurface. 

For what follows, it is useful to express equation (3.9) in the form of the normal derivatives. 

To this end consider a distance n  from interface along the characteristics, which, again, is a 

straight line directed normally to the interface. It is clear that along this line, the components of 

( , ) ( , )n x t x t   do not change, i.e. 0




n

nk ; besides, by virtue of (3.4),    aligns n : 

 n    (3.10) 

Then equation (3.9) can be recast as 

 
 

0
k kAn u n

n

 



 (3.11) 

The exact solution to (3.11) is straightforward: 

  
0

( , ) k k k k n
A x t n u n u n


   (3.12) 

where the condition  
0n
 denotes  

( , ) 0x t 
, i.e.  

0
( ( ), ) ( ( ), )k k k f k fn

u n u x t t n x t t

 . 

It is worthwhile to note that on the zero level set ( , ) 0x t  , equation (3.9) takes the following 

form: 

 
 

0 0
0 00 0

( , ) k k k k
k i kn

n ni n n

u nu u u n
A x t n n n

x n n n
 

  

   
   

   
 (3.13) 

It is seen that at 0n , (3.12) tends to (3.13). 
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Figure 3.2: Schematic of integration along characteristics of the eikonal equation. 

 

3.3 Local approximations to the source term coefficient in the 

narrow band 

Around the interface of interest, we introduce a narrow band (NB) of a thickness defined by 

a distance n . Then expanding the speed k ku n  in (3.12) in a Taylor series about n  may provide a 

useful set of approximations to the source term coefficient ( , )A x t . Hereafter the zero- , first- , 

and second -order approximate forms are derived. 

Expansions in a Taylor series for ( , )A x t  up to the second-order term 

 2 3

0 1 2( , ) ( )A x t A A n A n O n     (3.14) 

and for k ku n , up to the third-order term 

  
2 3

2 3 4

2 30
0 0 0

1 1
( )

2 6

k k k k k k
k k k k n

n n n

u n u n u n
u n u n n n n O n

n n n
  

      
        

       
 (3.15) 

lead in (3.12) to 

2 3
2 3 2 3

0 1 2 2 3

0 0 0

1 1
( ) ( ).

2 6

k k k k k k

n n n

u n u n u n
A A n A n O n n n O n

n n n
  

      
          

       
 (3.16) 
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By equating coefficients at coincident powers of n , the coefficients kA  can be expressed through 

derivatives 
1

1

0

, 0,1,2
k

i i

k

n

u n
k

n







 
 

 
. Thereby setting these expressions for kA  into (3.14), leads 

to successive approximate forms of ( , )A x t
1
. 

 

I. Zero-order local approximation 

The zero-order coefficient in (3.16) is given by 

 0

0

k k

n

u n
A

n


 
  

 
 (3.17) 

Computation of source term coefficient 0( , ) ( )A x t A O n   by (3.17) is not convenient for 

practical purposes, since it includes the derivative of k ku n  to be taken at the front. Therefore, 

without changing the order of approximation to ( , )A x t , we replace 0A  by its approximation at a 

spatial point x  belonging to the narrow band, x NB . Indeed, accurate to the first-order within 

the narrow band, the first derivative of k ku n  at the front in (3.17) can be represented by the first 

derivative of k ku n  at any x NB : 

 
0

( )k k k k

n x

u n u n
O n

n n


    
    

    
 (3.18) 

Then an approximation to (3.17) takes the form 

 ,0 ( , ) k k
LA

x

u n
A x t

n

 
  

 
 (3.19) 

Here  ,0 ,LAA x t is referred to as the zero-order local approximation. 

 

 

 

 

                                                 

1
 For illustration in Appendix B, expressions for kA are derived directly from equation (3.9)  
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II. First-order local approximation 

From (3.16) including the first-order term, we have 

 
2

0 1 2

0 0

1

2

k k k k

n n

u n u n
A A n n

n n
 

   
     

    
 (3.20) 

As previously noted, the fact that coefficients 0A  and 1A  are expressed by velocity derivatives to 

be taken on the front makes 2

0 1( , ) ( )A x t A An O n    inconvenient for computation. Then an 

alternate is the same as for (3.17): without changing the order of approximation to ( , )A x NB t , 

coefficient 0A  and 1A  may be represented by their local approximations within the narrow band. 

To this end at any x NB , the following Taylor expansions are used to leading order: 

 
2

2

2

0 0

( )k k k k k k

x n n

u n u n u n
n O n

n n n
 

      
      

       
 (3.21) 

 
2

2

2

0 0

( )k k k k k k

n x n

u n u n u n
n O n

n n n
 

      
      

       
 (3.21a) 

 
2 2

2 2

0

( )k k k k

x n

u n u n
O n

n n


    
    

    
 (3.22) 

Then, putting (3.21a), (3.22) into (3.20), the local approximation to ( , )A x NB t  takes the 

following form: 

 
2

,1 2

1
( , )

2

k k k k
LA

x x

u n u n
A x t n

n n

   
    

    
 (3.23) 

which is referred here to as the first-order local approximation. 

 

III. Second-order local approximation 

From (3.16) we have 

 
2 3

2 3

2 3

0 0 0

1 1
( , ) ( )

2 6

k k k k k k

n n n

u n u n u n
A x t n n O n

n n n
  

      
       

       
 (3.24) 
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Here again, without changing the order of this approximation to ( , ),A x t x NB , one can 

transform coefficients 0

0

k k

n

u n
A

n


 
  

 
, 

2

1 2

0

1

2

k k

n

u n
A

n


 
  

 
 and 

3

2 3

0

1

6

k k

n

u n
A

n


 
  

 
 in their 

local approximations using the first, second and third-order derivatives of k ku n  at any x NB . 

The following Taylor expansions are used 

 
2 3

2 3

2 3

0 0 0

1
( )

2

k k k k k k k k

x n n n

u n u n u n u n
n n O n

n n n n
  

         
         

          
 (3.25) 

 
2 2 3

2

2 2 3

00

( )k k k k k k

x nn

u n u n u n
n O n

n n n


       
       

       
 (3.26) 

 
3 3

3 3

0

( )k k k k

x n

u n u n
O n

n n


    
    

    
 (3.27) 

We find from (3.25) - (3.27): 

 
2 3

2 3

2 3

0

1
( )

2

k k k k k k k k

n x x x

u n u n u n u n
n n O n

n n n n


         
         

          
 (3.25a) 

 
2 2 3

2

2 2 3

0

( )k k k k k k

n xx

u n u n u n
n O n

n n n


       
       

       
 (3.26a) 

 
3 3

3 3

0

( )k k k k

n x

u n u n
O n

n n


    
    

    
 (3.27a) 

With the expressions (3.25a) - (3.27a), the second-order local approximation to (3.24) is 

 
2 3

2

,2 2 3

1 1
( , )

2 6

k k k k k k
LA

x x x

u n u n u n
A x t n n

n n n

      
      

       
 (3.28) 
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With the help of definitions k

k

n
x


 


, 

j jn x x

  
 

  
, and taking into account that along the 

characteristics 0




n

nk , 

0k kn
x x

 



  
 

  
 and n   , expressions (3.19) and (3.23) can be 

incorporated into level set equation (3.1) in the following form: 

 ,0 ( , ) k
LA

i i k

u
A x t

x x x

   
  
   

 (3.29) 

 
2

,1 ,0

1
( , ) ( , )

2

k
LA LA

l m l m k

u
A x t A x t

x x x x x

  


   
   

     
 (3.30) 

The expression (3.28) can be also rewritten in terms of   in the level set equation (3.2): 

 
3

2

,2 ,1

1
( , ) ( , )

6

k
LA LA

n l m n l m k

u
A x t A x t

x x x x x x x

   


    
   

       
 (3.31) 

However this expression involves the velocity third-order derivative; this, along with the non-

linearity, presents difficulty in practical calculations. In this work, we assessed only the zero-

order (3.29) and the first-order (3.30) local approximations to the source term coefficient, as well 

as its exact expression (3.12). Note that in terms of the level set function  , the exact expression 

(3.12) is 

  
0

( , ) k k n
k

A x t u u
x







  
  

 (3.32) 

Finally, the level set equation (3.2) to be integrated with (3.32), and with (3.29), (3.30) in the 

narrow band, takes the following forms respectively: 

  
0k k k n

k k

u u u
t x x

  


  
   
   

 (3.33) 

 k
k

k j j k

u
u

t x x x x

   


    
         

 (3.34) 

 
2

1

2

k k
k

k j l l j j k

u u
u

t x x x x x x x

    
 

      
            

 (3.35) 
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Note again that when (3.33) is integrated, there is no need in the re-initialization procedure, but 

at each time and spatial position, one needs to determine the corresponding value of  
0k n

u


. 

When (3.34) and (3.35) are integrated, the front needs to be re-initialized. However in 

comparison to standard approach (1.23) with (1.32), the number of re-initializations is expected 

to be reduced. Thus the objective in next Chapter is to assess the results of integration (3.33) - 

(3.35) for different tests configuration. 

 

Remark (Relation to the extension velocity formulation). As we mentioned in Chapter 1, the 

extension velocity method (Adalsteinsson & Sethian, 1999) consists of 

 ext 0,u
t





  


 (3.36) 

where extension velocity extu  is determined from two conditions: 

  ext 0u n
n


 


     and     ext

00
.u u

 
  (3.37) 

It is seen, that our approach with exact source term is equivalent to the extension velocity 

formulation, where 

 ext .u u A n   (3.38) 

Here, the source term coefficient is given by (3.12). The advantage of our formulation is: it 

allows naturally to obtain the approximate solutions of ( , )A x t  in the vicinity of the isosurface 

( , ) 0x t  . 

3.4 Particular case: homogeneous strain 

Consider the flow produced by homogeneous strain. In this case the velocity field is given 

by 

 ( , ) ( ) , 1,2,3i ij ju x t S t x i   (3.39) 

Here the components of the velocity gradient tensor, ijS , depend at most on time. All spatial 

derivatives of the velocity of order higher than one are equal to zero, and consequently, all-order 

local approximations to the source term coefficient, as well as its exact expression, are 

coincident, and are equal to the zero-order local approximation, i.e.: 
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  
0k k k k ijn

i j

u n u n S
x x

 




 
 

 
 (3.40) 

Indeed, consider a value of the velocity components on the interface ( ( ), ) 0fx t t  : 

    
0k k kl ln

l

u u x S x
x


  



 
     

 
 (3.41) 

By using (3.40) and the property that  
0k k n

n n


  along characteristics of the eikonal equation, 

we may rewrite the LHS in (3.40) in the following form: 

     
0 0k k k k k k k kl l kl l kln n

l k l k

u n u n u u n S x S x S
x x x x

   
 

 

     
              

 (3.42) 
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Chapter 4 

Assessment of the modified level set equation 

 
In this chapter, results of computations obtained by the non-modified level set equation are 

referred to as “standard approach”. These results are compared with results from integration of 

(3.33) - (3.35), which are referred to as “new approach”. Thereafter the results of computation 

are referred to as “source term 1” for the zero-order local approximation (3.34), “source term 2” 

for the first-order local approximation (3.35), and “source term 3” for the exact expression of the 

source term coefficient (3.33). A series of calculations including well-known test problems and 

several new test cases will be presented. 

4.1 Numerical implementation 

Integration procedure. Numerical integration of the level set equation was performed using a 

uniform Cartesian mesh. The two first (simplest) test problems were resolved on the whole 

computational domain, whereas for other test cases we introduced the adaptive narrow band 

around the interface (Adalsteinsson & Sethian, 1995; Peng et al., 1999). Its schematic is 

illustrated in Fig. 4.1: the thickness of the narrow band is controlled by presumed parameters 

12 x    - the external layer width, and 9 x    - the external layer width. In order to avoid 

the development of spurious oscillations from edges of the narrow band, the cutoff function for 

the velocity field was introduced in the form of the smoothed Heaviside function (Peng et al., 

1999). The first-order extrapolation of boundary conditions at the edge of narrow band was done 

according to (Adalsteinsson & Sethian, 1995).  

The level set equation was discretized in time using the 3-stage third-order TVD Runge-Kutta 

scheme (Shu & Osher, 1988; Gottlieb & Shu, 1998). For spatial discretization of the convective 

term, the fifth-order WENO scheme (Jiang & Shu, 1996) was used. Concerning discretization of 

the source term in (3.34) and (3.35), we used the fifth-order WENO scheme for Hamilton–Jacobi 

equations, which was proposed in Jiang & Peng (2000). In this scheme, the Hamiltonian 

,ij i j ij i jH u          (e.g. for zero-order local approximation) is approximated by global 
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Lax-Friedrichs flux function. Our experience showed that such approximation to the source term 

eliminates the high-frequency numerical oscillations; later are developed if the central-difference 

scheme is used. 

 

Figure 4.1: Schematic of narrow band: inner and buffer zone. 

 

As to the RHS in (3.33), the main difficulty is to embed 
0n

u


 into computation of ( , )x t , i.e. to 

determine the interface propagation velocity in the direction of the characteristics indexed by the 

position of interest x . Schematically, our calculation of 
0n

u


 is illustrated in Fig.4.2. Similar to 

Gomes & Faugeras (2000), it is also based on computation of 
0

x x


 

    first, and then of 

0n
u


, corresponding to 

0
x


. However, the direct computation of 
0

x x


 

    reduces the 

robustness of the algorithms: the errors in   may introduce errors in 
0

x


. This motivated us 

to use the iterative gradient descent procedure, as follows: 
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    
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x x
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 (4.1) 



CHAPTER 4. MODIFIED LEVEL SET EQUATION: ASSESSMENTS 67 

Here the superscript k  is the number of iterative step. Once the point 
0

x


 is computed, the bi-

cubic interpolation was used in order to determine velocity in point 
0n

u


 by velocities in 

neighboring grid cells. 

 

 

Figure 4.2: Schematic of calculation 0x  and 
0n

u


. 

Accuracy and parameters. When the exact solution to the level set equation is known, the mean 

computational error in the shape of the interface may be estimated by: 

 exact

1

1
( , ),

N

shape k k

k

E x y
N




   (4.2) 

where N
 
is the number of the interface points ( , )k kx y  computed by linear interpolation between 

cells adjacent to the zero level set: , 1, 0i j i j   
 
or , , 1 0.i j i j     The mean deviation from the 

signed distance was estimated by 

  
21

1 .
ij

i, j

E
N





    (4.3) 

The interface curvature in two dimensions is given by 
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 (4.4) 

All spatial derivatives in (4.3) and (4.4) are calculated by second-order central differences. In 

order to explore the mass conservation property, we estimate the area of the interior region using 

the first-order accurate approximation to the integral: 

 ( ) .A H dx dy


   (4.5) 

where H  is a numerically smeared out Heaviside function given by (1.27). Finally, the 

convergence criterion for reinitialization was used in the following form: 
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

 (4.6) 

where N  is the number of grid points where ,| |n

i j   and the prescribed parameters are chosen 

as: 1.5 x   , 0.1t x    and 2p  . 

4.2 Homogeneous strain 

As it was shown in the previous chapter (Section 3.4) for flow produced by homogeneous 

strain (see equation (3.39)) all local approximations to ( , )A x t , as well as its exact expression, 

are equivalent, and are equal to the zero-order local approximation. Here we compare our 

numerical results with analytical solutions. To this end, we consider two simple cases: 

     (i)  Flow is one-dimensional, and it is produced by a homogeneous strain 

 ,  v 0.u kx    (4.7) 

The initial distribution of the level set function is given by 

 0 0 0( ) , 0.3.x x x x       (4.8) 

It is easy to obtain the exact solution of the level set equation (without source term), which is 

given by 

 0( , ) exp( ) ,x t x kt x     (4.9) 

and exact location of front corresponding to (4.9) is the following 
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 0( ) exp( ).fx t x kt   (4.10) 

     (ii)  Two-dimensional flow is also stretched homogeneously, but simultaneously, it is rotating. 

We prescribe the following velocity components: 

 ,  v 2 .u x y x y     (4.11) 

The initially circular interface, with radius 0.15R   and center ( , ) (0,0)x y  , is represented by 

the following level set function: 

 2 2

0( , ) .x y x y R     (4.12) 

In this case exact solution can be obtained by using the method of characteristics: 

 

1 20 0

,   2 ;

, .
t t

dx dy
x y x y

dt dt

x y 
 

   

 

 (4.13) 

or in vector form of (4.13): 

 
1 1

,   .
2 1

x Ax A
 

    
 

 (4.14) 

Solution to (4.14) is given by the matrix exponential. Let us determine .Ate  First, we find the 

eigenvalues of :A  

 2

1 2

1 1
det( ) 1 0   ,   .

2 1
A I i i


   



  
         

  
 (4.15) 

Here I  is the identity matrix. The eigenvector 1 11 21( , ) ,Tv v v corresponding to the eigenvalue 

1 , is determined by 
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11 21

21

1 1
0,    2 (1 ) 0.

2 1

vi
v i v

vi

    
       

    
 (4.16) 

Setting 21v s  we obtain 11 (1 ) / 2.v i s   Thus the first eigenvector is given by  

 
11

1

21

(1 ) / 2 1
.

2

v i s i
v

v s

      
      

    
 (4.17) 
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Similarly, we find the eigenvector 2 12 22( , ) ,Tv v v  associated with the eigenvalue 2 :  

 
12

12 22

22

1 1
0,    2 (1 ) 0.

2 1

vi
v i v

vi

    
       

    
 (4.18) 

The second eigenvector is given by 
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v i
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 (4.19) 

Now the transition matrix can be written as 

 
11 12

1 2

21 22

1 1
( , ) .

2 2

v v i i
T v v

v v

    
     

  
 (4.20) 

Exponential matrix is determined by 

 1
0

, .
0

At Jt
i

e Te T J
i

  
   

 
 (4.21) 

Here J  is the Jordan form of A . Solution to (4.13) is given by 

 .Atx e   (4.22) 

Characteristic variables 1 2( , )T    can be obtained directly from (4.22) 

 1 2(cos sin ) sin ,   2 sin (cos sin ).x t t y t x t y t t         (4.23) 

Solution to level set equation now is determined in terms of the initial data and characteristic 

variables as 

 0 1 2( , , ) ( , ).x y t     (4.24) 

Finally, let us check that (4.24) with (4.23) give us the exact solution. By substitution (4.23) and 

(4.24) into the level set equation, one yields: 
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Thus, analytical solutions for both cases of homogeneous strain were obtained. Making use of 

(4.2), these solutions may give estimation of the mean computational error in interface shape. 

Fig. 4.3a and Fig. 4.3b show the initial shape of the interface and the vector plot of the 

prescribed velocity field corresponding these two cases, respectively. In this case, computations 

have been performed on a whole computational domain. In the framework of new approach, 

level sets were not re-initialized. The new approach was compared with results from the standard 

one without and with re-initialization procedure. 

 

 

Figure 4.3: Initial location of the interface and the velocity field produced by homogeneous 

strain; on the left – one-dimensional case (4.8); on the right – two-dimensional case (4.12). 
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Case (i): The computational domain is [ 0.5,0.5] [ 0.5,0.5]     with grid resolution 128 128 , 

and in (4.7), 2k  . For time corresponding to 1.0t  , Fig. 4.4 shows the level set distribution 

obtained by standard approach without re-initialization (on the left), and by new approach (on 

the right). As expected, the new approach conserved the distance between level sets, whereas a 

high density of level sets is accumulated closely to interface in the case of the standard approach. 

This is also illustrated in Fig. 4.5 by level set distributions at different times. It is seen that new 

approach provides the translation of level sets with time, contrary to standard approach; the later 

inclines level sets with time as   ~ ktt e . In Fig. 4.6, we compared results given by new 

approach with those given by standard one but with re-initializations of level sets. It is seen that 

standard approach requires about 50 iterations in the reinitialization procedure against zero re-

initializations in new approach. Interesting is that although the eikonal equation is satisfied 

within both approaches, in the standard one with re-initializations, and in the new one without re-

initializations, the new approach predicts the analytical position of interface much better. This is 

demonstrated on the right part in Fig. 4.6. Such an improvement in prediction of front location is 

also confirmed in Table 4.1 for different grid resolutions. 

 

 

Figure 4.4: Level set isolines at time 1.0t   in one-dimensional flow produced by a 

homogeneous strain; on the left: standard method, on the right: new approach; thick line 

represents the zero level set. 
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Figure 4.5: Level sets at different times in one-dimensional flow produced by a homogeneous 

strain; on the left: standard method, on the right: new approach.  

 

 

Figure 4.6: One-dimensional flow produced by a homogeneous strain; on the left: comparison of 

number of iterations in the reinitialization procedure; on the right: mean computational error in 

the interface location. 
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Table 4.1. Case (i): mean shape error for different meshes at time 1.0t   

mesh 64 64  128 128  256 256  512 512  

standard no reinitialization 89.50 10  81.19 10  91.50 10  101.86 10  

standard with reinitialization 51.28 10  79.65 10  76.43 10  89.23 10  

new approach 81.31 10  91.63 10  102.04 10  112.53 10  

 

From Table 4.1 it is seen that the smallest error was obtained for new approach. Let us explain 

these results. First, note that in this test case 0
n

nx





 for 2,3,n  . It means that a truncation 

error of the numerical scheme is determined only by temporal discretization. In standard 

approach without reinitialization we have the following estimation max

n
n kt

n
x k e

t





, where maxx  

is the maximum value of x . At the same time, in new approach, all temporal derivatives are 

characterized by smaller absolute value, 0

n
n kt

n
x k e

t

 



 ( 1k  ). Consequently, the truncation 

error of temporal discretization for modified equation is smaller than it is for standard level set 

equation. In standard approach with reinitialization procedure a total error is dominated by 

reinitialization. Zero interface moves during iterations (Russo & Smereka, 2000). Fig. 4.7 

illustrates how zero level set perturbs during reinitialization step. 
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Figure 4.7: One-dimensional flow produced by a homogeneous strain. Front motion during 

reinitialization. 

Case (ii): In this case the velocity field is divergence free, and contrary to the case (i), the area 

enclosed by the interface should be conserved. The first illustration here is to compare the new 

and the standard approaches, the both without re-initialization procedure. For different times, and 

for grid resolution 128 128 , Fig. 4.8 shows distributions of the level set and of its gradient norm 

(in color). The standard approach without re-initializations is presented on the left, and the new 

approach on the right. Obviously, the new approach preserved the distance between level sets, 

and the gradient norm is equal to unity in most part of the computational domain. Noticeable 

exceptions represent points inside the zero level set, where discontinuities in  -distribution, or 

skeleton points, may appear on the intersection of normal to interface directions. From other 

side, the standard approach displays a complex distribution around the zero-level set, with 

increased and decreased densities of level sets in the minor and major directions, respectively. 

For these two considered approaches, Fig. 4.9 shows the area enclosed by zero level set. It is 

seen that after a certain time ( 0.3t   for 64 64 ; 0.5t   for 128 128 ; 0.7t   for 256 256 ), 

the flow is so strongly stretched that due to approximations to source terms in (3.33) - (3.35), the 

new approach fails to keep this area constant. Simultaneously, solution from standard approach 

without re-initializations exhibits large oscillations in computation of this area. Otherwise when 

the re-initialization procedure is activated in the standard approach, the numerical oscillations are 

suppressed, but it incurred the supplementary loss of accuracy in the area computation, in 

comparison to the new approach. This is shown in Fig. 4.10. 
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Figure 4.8: Case (ii): isolines of the level set function and its gradient norm (in color); from top 

to bottom: 0, 0.4, 1t  . Left column: standard method; right column: new approach, the both 

without re-initializations; thick line corresponds to the zero level set.  



CHAPTER 4. MODIFIED LEVEL SET EQUATION: ASSESSMENTS 77 

 

 

 

Figure 4.9: Case (ii): evolution of the normalized area in new and standard approaches, the 

both without re-initializations (on the left); evolution of the normalized area in new and 

standard approaches, the later with re-initializations (on the right). 
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Additionally to this comparison, the number of iterations employed with time into re-

initialization procedure is given in Fig. 4.10 for grid resolution 128 128 . This number is almost 

30 40  against zero in the new approach. Table 4.2 shows results for mean shape error for 

different grid resolutions. 

 

 

Figure 4.10: Case (ii): Number of iterations employed in re-initialization procedure for standard 

and new approach. 

 

Table 4.2. Case (ii): mean shape error for different meshes at time 1.0t   

mesh 64 64  128 128  256 256  512 512  

standard no reinitialization 41.28 10  53.26 10  67.88 10  61.93 10  

standard with reinitialization 46.71 10  58.23 10  67.91 10  63.11 10  

new approach 44.67 10  55.69 10  65.89 10  75.81 10  
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We complete assessment of this case by important remark about discretization of the source 

term. As it was noted before, in all our calculations we used the 5
th

-order WENO scheme with 

global Lax-Friedrichs approximation for Hamiltonian (Jiang & Peng, 2000). Our experience 

showed that discretization of the source term by central schemes often leads to unstable results. 

In Fig. 4.11, results obtained by 4
th

-order central scheme are compared versus 5
th

-order WENO 

scheme. In this figure, the results for distribution of the level set function and of its gradient 

norm (in color) are shown. Central difference scheme is presented on the left, and WENO 

scheme on the right. For central difference scheme we see that oscillations occur in points of 

discontinuity in  -distribution, or skeleton points. From other side, WENO scheme shows 

stable results. Due to numerical diffusion segment of skeleton points is smeared out by 3-4 grid 

cells. It is expected that the use of less diffusive approximations for Hamiltonian, such as Roe 

flux or Godunov flux, will give a sharper resolution of segment with skeleton points. 

 

      

Figure 4.10: Isolines of the level set function and its gradient norm (in color) for new approach at 

time 0.5t  . On the left: 4
th

-order central scheme; on the right: 5
th

-order Hamilton-Jacobi 

WENO scheme. 
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Figure 4.12: Profile of the level set function along 0.5y   for new approach at time 0.5t  . On 

the left: 4
th

-order central scheme; on the right: 5
th

-order Hamilton-Jacobi WENO scheme. 

 

4.3 Interface stretching by single vortex 

For this classical test, the conditions are taken from Rider & Kothe (1998). The initial zero 

level set is a circle, centred at ( , ) (0.5,0.75)x y  , and with radius 0.15R  : 

 2 2

0( , ) ( 0.5) ( 0.75)x y x y R       (4.25) 

This interface is stretched in a computational domain :[0,1] [0,1]   by an external flow field 

which is defined by the following stream function: 

 2 21
( , ) sin ( )sin ( )ψ x y = πx πy

π
 (4.26) 

After time 3.0t   we change the velocity sign, and our calculations are continued until time 

6.0t  . Thereby the aim is to observe how the zero level set is reversed to its initial position. 

Computations with new approach were performed using the zero- order and the first-order local 

approximations (equations (3.34) and (3.35), respectively), as well the exact expression of the 

source term coefficient, i.e. (3.33). In all computations, the CFL number (based on the maximum 

velocity) is set to 0.5. First, the reference solution is obtained on refined mesh 1024 1024  by 
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standard level set approach without reinitialization. The initial configuration and the reference 

solution at 3.0t   is given in Fig. 4.13. 

 

Figure 4.13: Single vortex test. On the left: initial zero level function and the velocity field plot; 

on the right:  reference solution at 3.0t   obtained by 1024 1024  computational grid without 

re-initializations of level sets. 

 

At time 3.0t  , we compared this reference solution with computations on a coarser mesh 

containing 256 256  grid points. The computations included the standard approach with the re-

initialization procedure, and the new one with different expressions of the source term 

coefficient. In Fig. 4.14, fifteen isolines of level set function are shown in the domain of narrow 

band; the thick red line represents the zero level set of  . It is seen that though the zero-order 

local approximation (3.34) gives resolution similar to the standard method, the first-order local 

approximation (3.35) and the exact expression of the source term (3.33) resolve the stretched 

filament fairly better. However, when we observed the reversed shape at time 6.0t  , all four 

methods produced approximately the same configurations of zero level set, with still smoother 

shapes in cases „source term 2” and  „source term 3”.  The results are demonstrated in Fig. 4.15. 

The convergence criterion in the re-initialization procedure for all appraising here 

approaches is taken the same, but the number of iterations is observed different: an advantage of 

the new method is manifested by smaller number of iterations required for the convergence 

criterion. For different times, Fig. 4.16 shows a comparison of iterations number in standard 

approach and in the case when the first-order local approximation (3.35) is applied. The maximal 

number of iterations was limited by 30. It is seen that until time 0.5t   the new approach 

requires a very small number of re-initializations compared to 19 iterations in standard approach. 
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After this time, a strong deformation of the front requires more iteration in both approaches, but 

still in the case of the new approach the iteration number is considerably reduced. In Table 4.3, 

the mean number of iterations, the mean computational cost per time-step and the mean shape 

error are demonstrated for all four approaches employed. In comparison with standard approach, 

it is seen that computational efficiency is progressively improved when successively higher order 

of local approximation is employed by (3.33) - (3.35). 

 

Figure 4.14: Single vortex test. Isolines of level set function at 3.0t   using standard (with re-

initializations) and new approaches. New approach: the zero-order local approximation - source 

term 1; the first-order local approximation - source term 2; the exact expression of the source 

term coefficient - source term 3. Here, 15 isolines of   are shown in the narrow band domain; 

thick red line represents the zero level set of  . Grid resolution: 256 256  points. 
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Figure 4.15: The reversed shape at time 6.0t   in single vortex test. Isolines of level set function 

obtained by standard (with re-initializations) and new approaches. New approach: the zero-order 

local approximation - source term 1; the first-order local approximation - source term 2; the 

exact expression of the source term coefficient - source term 3. Here, 15 isolines of   are shown 

in the narrow band domain; thick red line represents the zero level set of  . Grid resolution: 

256 256  points. 



CHAPTER 4. MODIFIED LEVEL SET EQUATION: ASSESSMENTS 84 

 

Figure 4.16: Single vortex test. Number of iterations employed with time in the re-initialization 

procedure; new approach is presented by the first-order local approximation. 

 

Table 4.3: Single vortex test. Averaged number of iterations, mean computational cost per time-

step and mean shape error. Grid resolution: 256 256  points. 

Method <Niter> CPU time, sec shape error 

standard method 24.44 0.4521 26.76 10  

“source term 1” 20.16 0.3954 26.74 10  

“source term 2” 10.46 0.2317 24.93 10  

“source term 3” - 0.2878 24.21 10  
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4.4 Oscillating circle test 

This test case was proposed in Hartmann et al. (2008): in a computational domain 

:[ 5,5] [ 5,5]    , the initially circular interface, with radius 3R   and with center 

( , ) (0,0)x y  , is represented by level set function:  

 2 2

0( , ) .x y x y R     (4.27) 

The level set function is subject to a presumed velocity field, in which only the normal 

component is non-zero. The modulus of this component is defined by trigonometric functions of 

azimuth and time: 

 
2

,  cos(8 )sin( ),  ,  
y

u sn s t arctg
x T


        (4.28) 

The period of oscillation is set to 5.T   Parameters of simulation are chosen the same as in the 

original paper (Hartmann et al., 2008). The time step / 4t x    corresponds to CFL number of 

0.25, and the grid resolution is based on 256 256  points. The normal vector n  is approximated 

using the second-order centered difference scheme.  

The oscillating circle test is a particularly difficult test, since the interface shape is strongly 

coupled with the interface motion. Small perturbations of the normal to interface vector n  may 

lead to errors in level set function  , and consequently, to modification of the external velocity 

vector .u  As it was noted in (Hartmann et al., 2008), this test case requires a large number of re-

initializations of the level set function. Otherwise, when standard approach is used without re-

initialization, the interface shape suffers from strong oscillations.  

The results of computation and comparison between appraising approaches are illustrated in 

Fig. 4.17 and Fig. 4.18 at times 2.5t   and 5.0t  , respectively. Time 5.0t   corresponds to 

return of convected interface back to its initial circled shape. Here, ten iso-lines of   are shown 

in the narrow band domain, and the thick line represents the zero level set. Concerning time 

2.5t  , all considered approaches give the same configuration. However an advantage of new 

approach is clearly seen in Fig. 4.18. This figure exhibits the returned circled shape at 5.0t  . It 

is seen that including the zero-order local approximation, the modified level set equation leads to 

the better predicted circled shape. In the next figure, Fig. 4.19, such an improvement is 

demonstrated by calculation of curvature along the returned shape at 5.0t  . It is seen that 

spurious modes, developed in computation of curvature by standard approach, are remarkably 

reduced in the new approach.  
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Figure 4.17: Oscillating circle test. Isolines of level set function are computed by standard and 

new approaches. New approach: zero-order local approximation - source term 1; first-order local 

approximation - source term 2; exact expression of the source term coefficient - source term 3. 

Here, 10 isolines of   are shown in the narrow band domain, thick red line represents the zero 

level set of  . Grid resolution: 256 256  points. 
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Figure 4.18: Return to the circled shape ( 5.0t  ) in oscillating circle test. Isolines of level set 

function are computed by standard and new approaches. New approach: zero-order local 

approximation - source term 1; first-order local approximation - source term 2; exact expression 

of the source term coefficient - source term 3. Here, 10 isolines of φ are shown in the narrow 

band domain, thick red line represents the zero level set of  . Grid resolution: 256 256  points. 
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Figure 4.19: Interface curvature in the returned circled shape ( 5.0t  ) in oscillating circle test. 

 

 

Figure 4.20: Oscillating circle test. Number of iterations in the reinitialization procedure 

employed with time in appraising approaches. 
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We observed it at different grid resolutions: 64 64 ; 128 128 ; 256 256 ; 512 512 , and we 

compared our computations with results issued from the method proposed in (Hartmann et al., 

2010). The mean shape error is given in Table 4.4 from standard approach, from zero-order local 

approximation and from computation in (Hartmann et al., 2010). Starting from 128 128  grid 

points, the zero-order local approximation gives the mean shape error an order less compared to 

other results. Additionally to this improved computation of curvature, the number of iterations in 

the re-initialization procedure is approximately five times less in the new approach than in the 

standard one. This is shown in Fig. 4.20 for the zero- and first-order local approximations, as 

well as for standard approach. As expected, it is seen in this figure that higher order local 

approximation requires less of re-initializations. Table 4.5 concludes the oscillating circle test: 

the mean number of iteartions, the mean computational cost per time-step and the mean shape 

error are given for the returned shape at 5.0t   applying standard approach and the zero- order 

local approximation (3.34). Computational efficiency of later is clearly seen. 

 

Table 4.4: Oscillating circle test. Mean shape error at 5.0t   for different grid resolution. 

Method 64 64  128 128  256 256  512 512  

standard approach 21.57 10  36.72 10  33.10 10  31.07 10  

source term 1 21.22 10  45.65 10  54.74 10  53.87 10  

Hartmann et al. (2010) 37.40 10  32.58 10  31.26 10  46.26 10  

 

Table 4.5: Oscillating circle test. Averaged number of iterations, mean computational cost per 

time-step and mean shape error. Grid resolution: 256 256  points. 

Method <Niter> CPU time, sec shape error 

standard method 16.46 0.5758 33.10 10  

source term 1 3.89 0.1960 54.74 10  
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4.5 Propagation of the premixed flame front 

Another interesting example, when the interface configuration is coupled with its 

advancement, is the propagation of the premixed flame in the framework of G -equation 

approach. In one-dimensional formulation, the flame front is governed by the following 

evolution equation: 

 Fu u
t


 


   


 (4.29) 

with the following initial condition: 

 0 0( , ) .x y x x     (4.30) 

Here Fu  is a proper speed of the flame front, u  determines the external flow field, 0x  

corresponds to initial position of the flame front. It is assumed that ( , , ) 0x y t   in the burnt 

gases. Consequently, the flame propagates from the left to the right. At initial time, according to 

(4.33), all level surfaces of ( , )x t are planes normal to the x  direction. Another form of (4.29) is 

this: 

 ( ) 0Fu u n
t





   


 (4.31) 

It is seen that advection of ( , )x t  is controlled by prescribed velocity field and by the front 

propagation speed, which in turn, depends on the normal vector n . In our calculation we 

presumed the shear velocity field:  

 ( , ) ( (1 cos( ))cos(2 ),0)T Tu u v ky ky     (4.32) 

As previously, a computational domain :[0,1] [0,1]   is discretized by uniform grid. Parameters 

of calculations are as follows: the flame front speed is 1.0Fu  , the shear intensity parameter is 

0.4,  the intensity of modulation 0.5  , and the wave number is 8 .k   The final time of 

computation is 0.5.t   

Fig. 4.21 shows the solution of (4.31) at different times obtained in the whole computational 

domain on the fine grid 512 512  by standard approach without re-initialization.  
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Figure 4.21: Flame propagation test. The reference solution at different times obtained without 

re-initializations of level sets by standard approach in the whole domain with 512 512  points. 
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In Fig. 4.22,  three plots of the premixed flame front are shown from numerical integration of 

(4.31): results on the left are obtained on the mesh 512 512  by standard approach without re-

initializations (referred to as reference solution); in the middle - on the mesh 64 64  by standard 

approach with re-initializations; on the right - on the mesh 64 64  by the zero-order local 

approximation. Below these plots, three fronts are put together for comparison. A slight 

difference in the front location is seen:  computations with new approach give the front location 

slightly closer to reference solution than in the case of standard approach. The same was 

observed for other times.  

 
               reference solution                 standard, re-initializations      new approach, source term 1 

                   (512 512 )                                    ( 64 64 )                                ( 64 64 ) 

Figure 4.22: Flame propagation test. Isolines of the level set function at time t = 0.4. Interface 

location is represented by the thick line; on the bottom: three fronts are put together. 
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 64 64  128 128  

Figure 4.23: Flame propagation test. Interface location at time t = 0.4. Comparison of the 

standard re-initialization approach and new approach with reference solution. Grid resolution: 

64 64  (left plot) and 128 128  (right plot). 

 

The difference is also seen from the curvature computation at the leading edge of the front in  

Fig. 4.24. The cusped zones of the front are better resolved by new approach. However in 

general for this test case, the difference between approaches is not very pronounced. In the 

future, this motivates to study the more complex situations with premixed flames. What is 

remarkable at the moment, it is the number of iterations employed in the reinitialization 

procedure. This number is fairly different: the new approach requires much smaller number of 

iterations, and as in the previous test, the number of iterations is decreasing with application of 

higher order of the local approximation to the source term coefficient. This is illustrated in     

Fig. 4.25. 
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Figure 4.24: Flame propagation test. Interface curvature at t = 0.4 for the standard re-

initialization and new approach on 64 64 grid. Dashed line corresponds to the reference 

solution. 

 

Figure 4.25: Flame propagation test. Number of iterations employed with time in the re-

initialization procedure. 
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4.6 Assessment of different numerical schemes for advection term 

4.6.1 Convergence rate by different WENO schemes in the single vortex test 

In this Section, we compare different WENO schemes described in Chapter 2.  Our 

computations here are based only on the standard form of the level set equation without re-

initializations, and without source term on the right-hand side. Both forms of the level set 

equation are considered: the first one is the divergent form   0t u     (we will refer as 

conservative form), and the second one is the advective form 0t u      (non-

conservative). 

For single vortex test, Fig. 4.26 and Fig. 4.27 show the interface location for different 

schemes at times 3.0t   and 6.0t  , respectively. Dashed line corresponds to the reference 

solution. We see that the choice of advection schemes has a strong influence on the interface 

resolution. The most resolved solution was obtained with WENO-Z scheme in conservative 

form. Figure 4.28 illustrates the capacity of different schemes to preserve the area enclosed by 

the zero level function. For example at the moment of maximum stretching area error for the 

standard WENO-JS (n-cons.) is about 40%, while WENO-SYM and WENO-Z schemes give 

only 2-3%. For comparison, the particle level set method of Enright (2002) gives 0.71% of error 

on the same grid resolution. 
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 (a) (b) 

 

 (c) (d) 

Figure 4.26: Single vortex test. Interface at time 3.0.t   Comparison of different schemes for 

convective term in the level set equation: (a) WENO-JS n-cons., (b) WENO-JS cons, (c) WENO-

Z cons. and (d) WENO-Z cons. Grid resolution 128 128  points. 
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 (a) (b) 

 
 (c) (d) 

Figure 4.27: Single vortex test. Interface at time 6.0.t   Comparison of different schemes for 

convective term in the level set equation: (a) WENO-JS n-cons., (b) WENO-JS cons, (c) WENO-

Z cons. and (d) WENO-Z cons. Grid resolution 128 128  points. 
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Figure 4.28: The temporal evolution of the normalized area in single vortex test.. Grid resolution: 

128 128  points. 
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4.6.2 Zalesak’s test 

The next step is examination of the ability in applied schemes to resolve the sharp corners 

and the thin structures. To this end, we consider the widely used test problem proposed by 

Zalesak (1979). This test represents a rigid body rotation of disk with a thin slot in prescribed 

time-independent velocity field. The initial interface has a shape of slotted circle centered at 

( , ) (50,75)x y   with radius 15R  , the slot width of 5 and the slot length of 25. The 

corresponding initial data for the level set function is the following: 

   2 2 1/2

0( , ) max min 2.5, 2.5, 10 , ( )c c c c cx y x x y x y R          (4.33) 

where 50,  75.c cx x y y     The velocity field is given by 

    50 ,    v 50 ,
314 314

u y x
 

     (4.34) 

This velocity fields provides the disk to complete one revolution every 628 time units.  In this 

case, the right hand side in (3.9) is equal to zero, 0k
i k

i

u
n n

x





, and consequently, the source 

term in the modified level set equation is as well equal to zero. This implies that in the Zalesak’s 

problem the both approaches, new and standard, have identical formulation, and hence, the 

numerical results are given hereafter in the framework of standard form of the level set equation, 

without re-initialization procedure. 

Computational domain is a square [0,100] [0,100]  discretized on 100 100  grid. Only 5 cells 

are used to resolve the disk’s slot. Similarly as for previous test problem (Section 4.2) we can 

obtain the exact solution. It is given by 

 0 1 2( , , ) ( , ),x y t     (4.35) 

where the characteristic variables are  

 

 

       

       

1

2

50 cos 50 sin ,

50 cos 50 sin ,

/ 314.

x t y t

y t x t

  

  

 

   

   



 (4.36) 

The initial configuration and the exact solution at different times are given in Fig. 4.29. 
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Figure 4.29: The velocity field and exact interface location at different times in the Zalesak’s 

test. 

First, as for previous test case, we compare different level set transport schemes, namely 

WENO-JS n-cons., WENO-JS cons., WENO-SYM cons. and WENO-Z cons schemes. Fig. 4.30 

and Fig.4.31 compare the interface location after one and ten full rotation, respectively. Results 

for different level set transport schemes are presented here and compared with the exact solution 

(dashed line). It is clearly seen that WENO-SYM cons. and WENO-Z cons. lead to more 

accurate solution. This is due to increased accuracy of these schemes in comparison to WENO-

JS, and due to the fact that the conservative form of the level set equation has been used. For 

different advection schemes, Fig. 4.32 shows the evolution in time of the normalized area 

enclosed by the interface. It can be seen that for this test problem the conservation errors remain 

very small for all considered schemes. The maximum deviation is less than 0.2%. For 

comparison, the same error was obtained with the ACLS method (Desjardins et al., 2008), where 

the error was estimated by 0.0352%.  

The next step consists in estimation of grid convergence. This analysis is performed using 

both 50 50  and 200 200  grids in addition to the 100 100  grid applied earlier. The CFL 

number is kept constant (0.5) for the different cases. Table 4.7 summarizes the 2L  norm of error 

for    and the convergence rate for three grid resolutions. As previously, it can be seen that 

WENO-SYM and WENO-Z schemes lead to more accurate solution. However, as expected due 

to sharp corners in the solution, all schemes give at most the first order of convergence rate.  

Discontinuities in the gradient of solution to Hamilton-Jacobi equation affect the convergence  
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 (a) (b) 

 

 (c) (d) 

Figure 4.30: Zalesak’s test. Interface after 1 full rotation. Comparison of different schemes for 

convective term in the level set equation: (a) WENO-JS n-cons., (b) WENO-JS cons, (c) WENO-

Z cons. and (d) WENO-Z cons. Grid resolution 100 100  points. 
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 (a) (b) 

 

 (c) (d) 

Figure 4.31: Zalesak’s test. Interface after 10 full rotations. Comparison of different schemes for 

convective term in the level set equation: (a) WENO-JS n-cons., (b) WENO-JS cons, (c) WENO-

Z cons. and (d) WENO-Z cons. Grid resolution 100 100  points. 
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rate, similar as it does when in computation of compressible flow the shocks appear.  In the 

vicinity of shocks, the shock-capturing schemes have at most the first order accuracy. The papers 

by Engquist & Sjogreen (1999) and Ostapenko (2010) are devoted to this issue. 

 

Figure 4.32:. The temporal evolution of the normalized area in the Zalesak’s test. Grid 

resolution: 100 100  points. 

 

Table 4.7: 2L  norm of error for   and convergence rates for Zalesak’s disk after 10 full 

rotations. 

 50 50  100 100  200 200  

Scheme 
2

|| ||Le  
2

|| ||Le  Rate 
2

|| ||Le  Rate 

WENO-JS n-cons. 1.22  14.89 10  1.31 12.87 10  0.77  

WENO-JS cons. 17.69 10  13.52 10  1.12  12.40 10  0.55  

WENO-SYM cons. 15.74 10  13.06 10  0.91  12.36 10  0.37  

WENO-Z cons. 16.09 10  13.08 10  0.98  12.36 10  0.38  
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4.7 Conclusions 

We examined the ability of the new method with different formulations of the source term. 

For all assessed test cases, we observed that use of derived approximations to the source term in 

the level set equation can significantly reduce the number of iterations. This implies that 

modifications proposed for the level set equation provide the interface being more precisely 

predicted, and the computational cost is lower when compared to standard approach with the re-

initialization procedure.  When the external velocity field depends on the derivatives of the level 

set function, this advantage of the new approach is fairly noticeable. “Oscillating circle test” and 

test examples with premixed combustion showed clearly this. However, when the external 

velocity field is independent of the level set field, and when the interface is very strongly 

deformed, both approaches require a relatively large number of iterations to converge re-

initializations. Although the computation of two-dimensional flow, produced by the 

homogeneous strain, showed that area enclosed by the zero level function is preserved better by 

new approach, the accuracy in prediction of the analytical solution of the zero level function is of 

the same order in the new approach and in the standard one with re-initializations.  

In addition to comparison of different forms of the level set equation, we compared also 

different high-resolution schemes applied to the level set transport. We showed an explicit 

advantage of the WENO-SYM and WENO-Z schemes versus the standard 5
th

-order WENO-JS 

scheme. 
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Chapter 5 

Examples with two-phase flows 

 

In this chapter we present three examples of flows with phase boundary. As in Chapter 4, 

the objective is to compare standard and new forms of the level set equation, but in difference 

with Chapter 4, the velocity-field is not presumed here but calculated by the Navier-Stokes 

equations. For numerical solution of the Navier-Stokes equations we use the algorithm presented 

in Chapter 2: WENO-Z scheme is used for convective terms, 4
th

-order central difference scheme 

for viscous terms and 3
rd

-order TVD Runge-Kutta method for time integration. For discretization 

of the level set equation, we use WENO-Z scheme in conservative form. Re-initialization 

equation is discretized with 5
th

-order Hamilton-Jacobi WENO scheme. Convergence criterion, 

given by Equation (4.5), is used for control the number of iterations. When the modified level set 

equation is used, we applied the zero-order local approximation (3.19) with the re-initialization 

procedure. 

5.1 Capillary wave 

This test, referred here to as Prosperetti 1981  test,  represents the viscous decay of a two-

dimensional standing wave on the interface between two fluids of different densities, 1  and 2 . 

For simplicity, two fluids are set to be of the same kinematic viscosity, and the surface tension 

coefficient   is assumed to be constant. Prosperetti (1981) developed the linear theory of such 

interaction between surface tension forces and viscous effects. His solution for evolution of wave 

amplitude with time, scaled by inviscid oscillation frequency  

1 2



 
, represents the reference 

solution. Earlier, this reference solution was used in validation of the refined resolution in the 

interface vicinity, namely by spectrally refined interface method of Desjardins & Pitsch (2008), 

and by balanced force refined level set grid method of Herrmann (2008).  In our work, we have 

undertaken similar demarche: using the same parameters and the same initial form of the 
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interface, as in Desjardins & Pitsch (2008) and Herrmann (2008), we compared new and 

standard approaches with the solution of Prosperetti (1981). The simulations are performed in a 

   0,2 0,2   domain, with 1 1  , 2 1/ 1000    , 2  , 1 1/ =0.0064720863  , and 

using different mesh resolution: 16 16 , 32 32 , 64 64 . The initial form of the interface has 

been taken in the following form: 

   0 0 1, cos 2 /x y y B x B          (5.1) 

where 1B is set to 2  and 0B is set to 10.01B . In the x-direction, periodic boundary conditions 

are employed, while the y-direction assumes top and bottom symmetry. In Fig.5.1, the variation 

of  non-dimensional amplitude (amplitude divided by 2 ) with non-dimensional time is shown 

in comparison with the Prosperetti solution using different grids, and new (on the left) and 

standard approaches. No visible difference is seen between two approaches; more refined mesh 

gives better solution, and 32 32 , 64 64  grids predict very good the reference solution. These 

results are very similar to those obtained by Desjardins & Pitsch (2008) and Herrmann (2008). 

However, if the iterations number in the re-initialization procedure is fixed, and if to compare 

standard approach with the new one when the zero-local approximation is used, then mean 

deviation from | | 1   becomes a pronounced value. This is seen in Fig.5.2. However in 

general in this “smooth” test case, the difference between results from the both approaches is 

negligible.  

 

 

Figure 5.1: Time evolution of the normalized wave amplitude for different grid resolutions; on 

the left – standard approach; on the right – new approach. 
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Figure 5.2: Mean deviation from | | 1   for the case of prescribed number of iterations, 

3.iterN   Grid resolution 32 32  points. 

5.2 Rayleigh-Taylor instability 

Numerous studies have used this test to characterize the quality of the interface transport 

method. In a [0,1] [0,4]  domain, two fluids are initially separated by an interface defined by the 

zero iso-contour  

 0 0( , ) cos(2 ),x y y y x      (5.2) 

where the disturbance amplitude   is taken to be 0.05. The top fluid has density 2  = 1.225; the 

density of the bottom fluid is set to 1 0.1694.   The both fluids have the same dynamic 

viscosity, 3

1 2 3.13 10 .      The surface tension effect is neglected here. Initial velocity field 

and the pressure are set to zero. The periodical boundary conditions for velocity are used in x-

direction and the no-slip condition is taken in y-direction. For the pressure we used the Neumann 

condition in both directions. The reference solution was obtained by standard approach with the 

re-initialization procedure on a fine grid with resolution of 256 1024  points. At different times, 

it is depicted in Figure 5.3 in form of development of a mushroom shape with thin structures. In 

this test case, until time 0.7t  , all numerical approaches (VOF by Zaleski, 2000; Level Set by 

Tanguy, 2005; Interface tracking by Popinet, 1999) give very similar results. However at later 
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times, the obtained in the literature solutions differ depending on the choice of the numerical 

algorithm. In Figure 5.4, the results of calculation from standard (left-hand side of each couple) 

and new approaches (right-hand side of each couple), the both with re-initializations, are 

compared for 64 256  and 128 512  grids. This figure shows snapshots of the density field and 

isolines of the level set function at time 0.9t  .  

 
 (a) 0.0t   (b) 0.4t   (c) 0.7t   (d) 0.8t   (e) 0.9t   

Figure 5.3: The reference density-field at different times in the Rayleigh-Taylor instability; 

solution is obtained on 256 1024  grid, by standard approach with re-initializations of level sets 

 

Observing the interface topology in comparison with the reference solution, it is seen that on the 

grid containing 64 256  points, the both approaches flawed to preserve the stretched filament 

from its “numerical” disintegration. However on the grid containing 128 512 points, one may 

favor the results from new approach, which slightly better preserves filaments from their 

disintegration. The change of the total mass with time, shown in Figure 5.5, favor more 
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significantly the use of the modified level set equation, even in its simplest form, i.e. with the  

the zero-order local approximation (3.19) . This advantage is also explicit when the number of 

iterations in re-initialization procedure is compared. Figure 5.6 shows significantly less of those 

iterations required when new approach is used. This is also seen in Figure 5.7 where the mean 

deviation from | | 1   for the case of prescribed number of iterations, 3iterN  , is given. 

  
                   64 256                128 512  

Figure 5.4: Rayleigh-Taylor instability. Density field and 11 isolines of the level set function 

{ 0.1,...,0.1}    for the standard (left-hand side of each couple of snapshots) and new (right-

hand side of each couple of snapshots) approaches on two grids. On the left: reference solution. 
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Figure 5.5: Change of normalized mass of liquid (fluid “2”) with time in Rayleigh-Taylor 

instability. Grid 64 256  points. 

 

Figure 5.6: Number of iterations in re-initialization procedure in Rayleigh-Taylor instability. 

Grid 64 256  points. 
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Figure 5.7: Rayleigh-Taylor instability. Mean deviation from | | 1   for the case of prescribed 

number of iterations, 3.iterN   Grid resolution 64 256  points. 

5.3 Rising bubble 

In this case, we consider the temporal evolution of a two-dimensional bubble in a fully filled 

container. It is another challenging test for interface tracking methods because of complex 

interface changes. This test problem was also considered by many authors; in our study we used 

the parameters proposed in Gaudlitz & Adams (2008). Initially, the bubble is a circle with radius 

0.5R   centered at ( , ) (1.25,1.25)x y   in computational domain :[0,2.5] [0,5].   The 

corresponding initial data for the level set function is 

 2 2

0( , ) ( 1.25) ( 1.25) .x y x y R       (5.3) 

The physical parameters are the following: 58,Re   104,We   1,Fr   the density ratio 

0.025   and the viscosity ratio 0.012.   The initial velocity field is zero, no-slip boundary 

conditions for velocity used in the both directions. Computation is done up to 5.0t   when 

bubble attains a distance of about half the domain height. During its ascent the bubble undergoes 

strong deformation, and two smaller bubbles are pinched off in outer regions of the stretched 

bubble. The reference solution was obtained by standard approach with 160 320  grid points. 

This solution is presented in Figure 5.8. Here, time sequences of the deformed bubble shape are 
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shown. Starting from the initial spherical shape, the bubble is stretched to its oblate-ellipsoidal 

cap shape, as shown in the figure. During this ascension, a very thin bubble skirt is formed 

behind the bubble, and finally, two small bubbles are pinched off from the “mother” bulk. 

 

 
 (a) 0.0t   (b) 2.0t   (c) 3.0t   (d) 3.5t   (e) 4.5t   

Figure 5.8: Computed shapes of a gas bubble rising in a quiescent liquid in the rising bubble test. 

Grid 160 320  points. 

Comparing standard and new approaches, both with the re-initialization procedure and new one 

with the zero-order local approximation (3.19), Figure 5.9 shows the results on coarse grid with 

40 80  points and on fine grid with 160 320  points. Here a smoothed density field and isolines 

of the level set function are presented. Compared to the reference solution on coarse grid with 

40 80  points, it is seen that new approach predicts pinch-off of “daughter” bubbles, which is 

not the case when standard approach is applied. On fine grid with 160 320 , the both methods 

give very similar distributions with secondary bubbles.  Figure 5.10 shows the time evolution of 

the normalized bubble mass. Using standard approach, our results reproduced the results 

presented in Gaudlitz & Adams (2008). However using new approach, it is seen that the 

normalized bubble mass is conserved fairly better than in the case of standard approach. This 

advantage is confirmed by comparison of the mean deviation of   from signed distance function 

near the interface. This is given in Figure 5.9. 
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                                                              40 80                                             160 320  

Figure 5.9: Density field and 11 isolines of the level set function { 0.15, ,0.15}    at time 

4.5t   in the rising bubble test for the standard and new approach using coarse and fine grids. 

On the left: reference solution from Fig. 5.8 e) 

 

Figure 5.8: Time evolution of normalized mass of bubble in the rising bubble test. Grid: 40 80   
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Figure 5.9: Mean deviation from | | 1   for the case of prescribed number of iterations, 

3iterN   in the rising bubble test. Grid: 40 80 . 

5.4 Conclusion 

Validations, considered in this Chapter, concern Capillary Wave, Rayleigh-Taylor instability 

and Rising Bubble test cases. These assessments performed are preliminary and more refined 

estimation and more complex configurations are needed to be investigated. This is envisaged for 

our future work. On the stage of the presented analysis, it is clear that both approaches, standard 

and new with the zero-order local approximation, the both with re-initializations of level sets, 

may predict very similar configuration of interface. Filaments slightly better preserved from 

numerical disintegration in the case of Rayleigh-Taylor instability, secondary bubbles predicted 

more closely to reference solution on coarse grid in the case of Rising Bubble, all these results, 

obtained by the new approach, does not favor explicitly this approach compared to the standard 

one.  However we observed that the new approach provides the result with better preservation of 

the total mass, and by the number of iterations fairly less than the standard one does. 

Consequently, new approach may significantly reduce the computational cost.  
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General conclusions 

In a variety of physical processes the discontinuity in physical properties is mimicked by 

evolution of a fluid-interface. Examples include immiscible gas-liquid flows, premixed flames, 

solidification and melting phenomena, etc. For computing of interface evolution, the level set 

methods are often used. Our work is done in same lines: we were interested in simulation of two-

phase flows with free interface, which represents a new subject in LMFA, with target in the 

future on atomization process at a high-Reynolds number. After many flawed attempts to get an 

existing already numerical code, we started from the very beginning: we constructed our own 

code. To this end in Chapter 2, the numerical method for solving two-dimensional 

incompressible Navier-Stokes equations is presented. Our chosen numerical algorithm is similar, 

in part, to that in Ph.D. theses of Tanguy (2004) and Couderc (2007). It is related to the scheme 

of Zhang & Jackson (2009), which is a high-order incompressible flow algorithm based on the 

projection method and Weighted Essentially Non-Oscillatory (WENO) finite differences. Our 

contribution is as follows:  in order to increase the accuracy, we introduced two modifications in 

the method of Zhang & Jackson (2009). First, we implemented low dissipative WENO-Z scheme 

of Borges et al. (2008) and bandwidth optimized WENO-SYM scheme of Martin et al. (2006), 

instead of classical WENO scheme of Shu & Jiang (1996). Second, we used the high-order 

interpolation scheme in order to determine velocity on the staggered grid, instead of standard 

linear interpolation. Our algorithm, which is close to 5
th

-order accurate for velocity variables and 

3
rd

-order in time, was validated on different test problems with the reference solution, either 

exact or numerical. The test cases included the Taylor-Green vortex, the two-dimensional shear 

layer, the driven cavity flow and the two-dimensional decaying turbulence. We demonstrated 

that results of WENO-Z scheme for convective terms are fairly better than those obtained for the 

standard WENO scheme. From other side, the computational cost of the modified scheme 

remains the same as for standard WENO scheme. As to WENO-SYM scheme, it shows also 

improvement in numerical results, but not so significantly as it does by WENO-Z. Thus the 

WENO-Z scheme is applied for convective terms in straight-forward way without artificial 

compressibility. Our next step concerned the level set approach itself. 

The well-known problem addressed to the level set equation is this: if the flow velocity is 

not constant, the level set function may become strongly distorted. Thus, the numerical 

integration of the level set equation may suffer from loss of accuracy in prediction of interface. 

In level set methods, this problem is remedied by the reinitialization procedure, i.e. by 

reconstruction of the level set function in a way to satisfy the eikonal equation. However from 
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numerical experience, it has been observed that after several iterations by the re-initialization 

procedure, the zero level set may move towards nearest grid points which will not lie directly on 

the interface. This may incur errors into solution to the level set equation. This motivated us to 

present in Chapter 3 the new form of the level set equation by embedding a source term. The 

exact expression of this term is such that the eikonal equation is automatically satisfied. 

Furthermore on the interface, this term is equal to zero. Thereby integrating this new form of the 

level set equation, there is no more necessity in reinitialization of level sets, similar to the 

extension velocity method. In the meantime, the advantage of new approach proposed is this: the 

exact expression of the source term allows for the possibility of derivation of its local 

approximate forms, of zero-, first- and higher-order accuracy. Then compared to the extension 

velocity approach, the new approach will open simplifications in realization of level set methods. 

Compared to the standard approach with the reinitialization procedure, this approach gives the 

economies in the number of level set re-initializations, and also, due to reduced number of re-

initializations, it allows the improvement in resolution of the interface. Let us remind here the 

modified level set equation and its local approximations. The exact form of the modified level set 

equation is  

 
0k k k

k k

u u u
t x x

  


     
   

         

The zero-order and the first-order local approximations have the following form, respectively:  

k
k

k j j k

u
u

t x x x x

   


    
         

  

2
1

2

k k
k

k j l l j j k

u u
u

t x x x x x x x

    
 

      
            

  

 

Chapter 4 is devoted to numerical assessment of modified level set equation. This equation 

was discretized in time using the 3-stage third-order TVD Runge-Kutta scheme (Shu & Osher, 

1988). For spatial discretization of the convective term, the fifth-order WENO scheme (Jiang & 

Shu, 1996) was used. Concerning discretization of the source term, as local approximation, we 

used the fifth-order WENO scheme for Hamilton–Jacobi equations, which was proposed in Jiang 

& Peng (2000). In this scheme, the Hamiltonian ,ij i j ij i jH u          is approximated by 

global Lax-Friedrichs flux function. Our experience showed that such an approximation to the 

source term eliminates the high-frequency numerical oscillations, which may be developed if the 

central-difference scheme is used. As to the exact form of the source term in the level set 

equation, the main difficulty was to embed 
0

u


 into computation of ( , )x t , i.e. to determine 
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the interface propagation velocity in the direction of the characteristics indexed by the position of 

interest x . Similar to Gomes & Faugeras (2000), our calculation of 
0

u


 was also based on 

computation of 
0

x x


 

    first, and then of 

0
u


, corresponding to 

0
x


. However, the 

direct computation of 
0

x x


 

    reduced the robustness of the algorithm: the errors in   

introduced errors in 
0

x


. This motivated us to use the iterative gradient descent procedure, 

described in Ph.D of Herrmann (2001), for example.  

The following test cases were chosen: (i) the one and two-dimensional flows produced by 

homogeneous strain, since these flows have analytical solutions; (ii) the interface stretching by a 

single vortex, with the reference solution preliminary obtained on the  grid 1024 1024 ; (iii) the 

oscillating circle test proposed by Hartmann et al. (2008); (iv) the premixed flame propagation; 

(v) the solid body rotation of disk with a thin slot proposed by Zalesak (1979).  

We obtained numerical results from the modified level set equation with exact form of the source 

term and without re-initializations; or with local approximation of the source term and with re-

initializations. These results were compared with the reference solutions (either analytical or 

numerical) and with standard approach completed by the re-initialization procedure. For all 

assessed test cases, we observed that the use of derived approximations to the source term in the 

level set equation can significantly reduce the number of iterations. We showed that 

modifications proposed for the level set equation provide the interface being more precisely 

predicted, and the computational cost being lower in the comparison to the standard approach.  

When the external velocity field depends on the derivatives of the level set function, this 

advantage of the new approach is fairly noticeable. “Oscillating circle test”, flow with one-

dimensional strain, and the test example with premixed combustion exhibited clearly this. 

However, when the external velocity field is independent of the level set field, and if the 

interface is excessively deformed, both approaches, require a relatively large number of 

iterations to converge re-initializations. Although the computation of two-dimensional flow, 

produced by the homogeneous strain, showed that the area enclosed by the zero level function is 

preserved better by the new approach, the accuracy in prediction of the analytical solution is of 

the same order in the new approach and in the standard one with re-initializations. In this 

Chapter we also examined the ability of different high-resolution schemes applied to the level set 

transport. We showed an explicit advantage of the WENO-SYM and WENO-Z schemes versus 

the standard 5
th

-order WENO-JS scheme. 

In Chapter 5, we considered three examples of flows with interface: Capillary Wave, 

Rayleigh-Taylor instability and  Rising Bubble. As in Chapter 4, the objective was to compare 

standard and new forms of the level set equation, but in difference with Chapter 4, the velocity-

field was not presumed but calculated by the Navier-Stokes equations. We observed that for the 

both approaches, standard one and new one with the zero-order local approximation (the both 
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with re-initializations of level sets), the predictions of interface configuration are very similar. 

Filaments slightly better preserved from numerical disintegration in the case of Rayleigh-Taylor 

instability, the secondary bubbles predicted more closely to the reference solution on coarse grid 

in the case of Rising Bubble, all these positive results, obtained by the new approach, does not 

favor explicitly this approach compared to the standard one.  However we observed that the new 

approach provides the result with better preservation of the total mass, and by the number of 

iterations fairly less than the standard one does. Consequently, new approach may significantly 

reduce the computational cost.  It is worthwhile to note that these assessments performed are 

preliminary and more refined estimation, with more complex flow configurations, are needed to 

be investigated. This is envisaged for our future work. 

The manuscript is ended up with Appendix A, B, C. Appendix A contains demonstration of 

how the re-initialization procedure works. A simple flow produced by one-dimensional strain is 

selected to illustrate clearly the key point of this procedure. Namely, it consists in the use of two 

G-fields at successive time steps: (i) the first field, with 1
~
G , is used to find the position of 

zero level set at current time; (ii) the second field, with 1 reinG , is constructed from the 

knowledge of this position. Appendix B  gives derivation of local approximations from the exact 

equation, and Appendix C concerns WENO interpolation 
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Appendix A 

Simple illustration of the re-initialization procedure 

 

Consider the case of non-rotational time-independent strain ,u kx   0k const  . The one-

dimensional level set equation is 

 00,   ( , 0) .
G G

kx G x t x x
t x

 
     

 
 (A1) 

Its exact solution may readily be verified: 

 0( , ) exp( ) .G x t kt x x    (A2) 

It is seen that the norm of gradient of this solution grows exponentially: 

 ( , ) exp( )
t

G
G x t kt

x 


    


 (A3) 

and the position ( )fx t  of the zero level , ( ( ), ) 0fG x t t  , changes with time according to: 

 0( ) exp( ).fx t x kt   (A4) 

The exponential growth of level set gradients involves progressively the approximation error in 

( , )G x t ; it degrades the numerical accuracy for the zero level set. 

Our simple illustration of the re-initialization procedure deals with the explicit Euler 

scheme. In integration of (A1), the advancement in time after the first time step gives 

 00
0

( ) (1 ) ,
t

t

G
G t G kx t x k t x

x



        


 (A5) 

 
( )

(1 ) 1.
G t

k t
x

 
   


 (A6) 

Thereby according to (A5), the position of the zero level ( ( )) 0fG x t   moves from 0x  to 
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 0( ) .
(1 )

f

x
x t

k t
 

 
 (A7) 

After the second step, we have 

 2

0 0(2 ) ( ) (1 ) (1 ) (1 )
t t

G
G t G t kx t x k t x kx k t t x k t x

x 


                  


 (A8) 

and the new position of zero level 

 0

2

( )
(2 ) .

(1 ) (1 )

f

f

x t x
x t

k t k t


  

   
 (A9) 

After 
t

N
t




 steps, the recursion is 

 0 0( ) (1 ) (1 )N Nt
G t N t x kN t x x k x

N
            (A10) 

and discrete positions of the zero level set, ( ( )) 0fG x t   are determined by: 

 0
0( ) (1 ) .

(1 )

N

f N

x t
x t N t x k

kN t N

    
 

 (A11) 

Obviously, if N   (A10), (A11) reduce to (A2), (A4), respectively.  

Now after each single-step, let us re-initialize the level set. After the first step, ( )G t  field, 

given by solution (A5), should be replaced by the new one, say ( )reinG t  field, in which the zero 

level is the same as in original field, i.e. it is determined by ( )fx t  from (A7), and the norm of 

gradient of this new field should be equal to unity. To this end, ( )reinG t  is simply represented 

by translation of initial field 0( , 0)G x t x x     to 

 ( ) ( ),rein fG t x x t      (A12) 

 
( )

1reinG t

x

 



 (A13) 

Then the second step will start from (A12), and not from (A5). Instead of (A8), we have the level 

set equation: 

 (2 ) ( ) (1 ) ( )rein
rein f

t t

G
G t G t kx t x k t x t

x 


          


 (A14) 
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(2 )

(1 ) 1.
G t

k t
x

 
   


 (A15) 

Note that the zero level in (B14), (2 )(1 ) ( ) 0f fx t k t x t        , has the same new position 

(2 )fx t , as the zero level in original field (2 )G t , and is determined by (A9). The re-

initialization of (2 )G t  is similar to re-initialization of ( )G t : it corresponds to translation of 

( )reinG t  from (A12) to 

 
(2 )

(2 ) (2 ), 1.rein
rein f

G t
G t x x t

x

 
     


 (A16) 

The third step starts from (A16): 

 
2

(3 ) (2 ) (1 ) (2 ),rein
rein f

t t

G
G t G t kx t x k t x t

x  


          


 (A17) 

 *(3 )
(1 ) 1.

G t
k t

x

 
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
 (A18) 

Here again the zero level position at tt  3  coincides with the zero level position (3 )fx t  in 

original field  (3 ) 0fG x t  , and re-initialization of (3 )G t consists in translation of 

(2 )reinG t  to 

 
(3 )

(3 ) (3 ), 1rein
rein f

G t
G t x x t

x

 
     


 (A19) 

Performing the reinitialization at each consecutive time step, we obtain after N time steps 

 
(( 1) )

(( 1) ) (( 1) ), 1rein
rein f

G N t
G N t x x N t

x

  
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
, (A20) 

which represents the intermediate level set function in interval  ( 1) ,N t N t   . Then at 

t N t  , the level sets are updated by the level set equation to 

 
( )

( ) (1 ) (( 1) ), (1 ) 1f

G N t
G N t x k t x N t k t

x

 
           


. (A21) 

Thus at each time the re-initialization procedure is carried out by two stages: preliminary level 

set translation ( , ) ( )ren fG x t x x t   ,  1reinG

x





, and then computation of updated level set by 

the level set equation.  
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Appendix B 

Derivation of local approximations from the exact 

equation 

 

In (3.9), the following expansions in a Taylor series are used: 

 0 0 1 0( , ) ( , ) ( , )A x t A x t A x t       (B1) 
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where .l

l

dx
x








 Inserting these expansions into (3.9) yields 
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By equating coefficients at coincident powers of  , we write 
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From (C5), taking into account that 
2

1,
i ix x

 


 
  

 
 we obtain 
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It is seen that (B4) and (B6) are coincident with (3.20). The higher-order coefficients can be 

obtained by the same proceeding. 
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Appendix C 

WENO interpolation 

 

Consider the 1D interpolation problem (Fig. C1): given the six points 2 ,ix  1,ix  ,ix 1,ix  2 ,ix   

and 3,ix   corresponding data 2 ,if  1,if  ,if 1,if  2 ,if  3,if   we want to estimate a value ( )f x  for 

point  1, .i ix x x   

 

Figure C1: One-dimensional WENO interpolation: candidate stencils and interpolation point. 

 

We begin with three candidate interpolants: 
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where each interpolant corresponds to the cubic polynomial fit to the data given on one of the 

three candidate stencils  1 2 1, , ,i iS x x   2 1 2, , ,i iS x x   and  3 3, ,i iS x x   (see 

Fig.C1). Convex combination of these interpolants gives the WENO interpolant 

 WENO6 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ),I x x p x x p x x p x      (C4) 

where ( ), 1,2,3k x k   are the required weights. In a smooth problem, all the point data should 

be used to obtain an interpolation which is as high order as possible, i.e., that agrees with the 

degree five interpolating polynomial through all six points. These “ideal” weights 

( ), 1,2,3kd x k   are given by 
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 (C5) 

Note that unlike WENO for hyperbolic conservation laws presented in Chapter 2, here the 

interpolation point x  is not fixed and the values of the ideal weights depend on x . Still, these 

weights ( )kd x  are completely analogous to the well-known “1/10, 6/10, 3/10” weights when 

1/2.ix x   

In non-smooth regions, at least one of the interpolations ( ), 1,2,3kp x k   will be superior to 

an interpolation with the “ideal” values because of the problems associated with fitting high-

order polynomials to non-smooth data – namely highly oscillatory results. To decide which 

stencils to use, we compute a smoothness indicator for each interpolant. We take the smoothness 

indicator kIS  for interpolant kp  as a sum of squares of scaled 2L  norms of all the derivatives of 

the interpolant kp  over the interval of interpolation. Specifically, 
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  (C6) 

If a particular interpolant exhibits rapid change on the interval  1,k kx x   compared to the other 

two interpolants, then it will have larger-in-magnitude derivatives on that interval, which in turn 

increases the corresponding smoothness indicator (C6). Desirable smooth interpolants exhibit 

less drastic changes in their derivatives and thus minimize (C6). If all three candidate 
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interpolants are smooth, then all three smoothness indicators will have similar small values. For 

completeness, (C6) can be worked out as 
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We note as expected that the smoothness indicators do not depend on the particular point of 

interpolation x  because they measure a property of the interpolant candidates themselves. The 

computation of the weights is carried out using the smoothness indicators as in the standard 

WENO procedure by first calculating 
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 (C10) 

where   is a small parameter to prevent division-by-zero in the case when all kIS ; we use 

610   in all our calculations. Finally, the weights are 
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Two-dimensional WENO interpolation is built in the standard fashion from one-dimensional 

interpolations. First, we perform six one-dimensional interpolations in x -direction and we obtain 

six x -coordinate values that agree with the interpolation point. Then one-dimensional 

interpolation is carried out on these six points to get the desired interpolated value. See Fig.C2 

for illustration. Three-dimensional case is treated in a similar dimension-by-dimension manner. 
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Figure C2: Two-dimensional WENO interpolation. 
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