Extension des méthodes de géométrie algorithmique aux structures fractales

par Anton Mishkinis

Thèse de doctorat en Informatique

Sous la direction de Christian Gentil et de Sandrine Lanquetin.

Le président du jury était Marc Daniel.

Le jury était composé de Stefanie Hahmann.

Les rapporteurs étaient Michael Barnsley, Ronald Goldman, André Lieutier.


  • Résumé

    La définition de formes par ces procédés itératifs génère des structures avec des propriétésspécifiques intéressantes : rugosité, lacunarité. . . . Cependant, les modèles géométriques classiquesne sont pas adaptés à la description de ces formes.Dans le but de développer un modeleur itératif pour concevoir des objets fractals décrits à l’aide duBCIFS, nous avons développé un ensemble d’outils et d’algorithmes génériques qui nous permettentd’évaluer, de caractériser et d’analyser les différentes propriétés géométriques (la localisation, lecalcul de l’enveloppe convexe, de la distance à partir d’un point, etc) de fractals. Nous avons identifiéles propriétés des opérations standards (intersection, union, offset, . . . ) permettant de calculer uneapproximation d’image des fractales et de plus d’optimiser ces algorithmes d’approximation.Dans certains cas, il est possible de construire un CIFS avec l’opérateur de HUTCHINSON généralisédont l’attracteur est suffisamment proche du résultat de l’opération par rapport à la métrique deHausdorff. Nous avons développé un algorithme générique pour calculer ces CIFS pour une précisiondonnée. Nous avons défini la propriété d’auto-similarité de l’opération, qui définie un ensemble detransformations utilisé dans un système itératif résultant.Pour construire un CIFS exact de l’image, si il existe, il faut prouver tous les similitudes nécessairesmanuellement. Nous explicitons également la condition de l’opération, quand le résultat peut êtrereprésenté par un IFS avec un opérateur de HUTCHINSON généralisé. Dans ce cas, il n’est que cettecondition à prouver manuellement

  • Titre traduit

    Extension of algorithmic geometry to fractal structures


  • Résumé

    Defining shapes by iteration allows us to generate new structures with specific properties (roughness,lacunarity), which cannot be achieved with classic modelling.For developing an iterative modeller to design fractals described by a BCIFS, we developed a set oftools and algorithms that permits one to evaluate, to characterize and to analyse different geometricproperties (localisation, convex hull, volume, fractal dimension) of fractals. We identified properties ofstandard CAD operations (intersection, union, offset, . . . ) allowing us to approximate them for fractalsand also to optimize these approximation algorithms.In some cases, it is possible to construct a CIFS with generalised HUTCHINSON operator, whoseattractor is close enough to the operation result with respect to the HAUSDORFF metric.We introduceda generic algorithm to compute such CIFS for a given accuracy.We defined the self-similarity propertyof the operation defining a set of transformations, which are used in the output iterative system.In order to construct an exact CIFS of the image, if it exists, we must prove all the necessarysimilarities manually. We explicit also the condition of the operation to be represented by an IFS witha generalised HUTCHINSON operator. In this case, only this condition should be proved manually


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (122 p.)
  • Annexes : Bibliographie p. 116-122, 90 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Bourgogne. Service commun de la documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : TNSDIJON/2013/49
  • Bibliothèque : Université de Bourgogne. Service commun de la documentation. Bibliothèque de ressources électroniques en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.