Degenerate parabolic stochastic partial differential equations

par Martina Hofmanová

Thèse de doctorat en Mathématiques

Sous la direction de Arnaud Debussche et de Jan Seidler.

Le jury était composé de Bohdan Maslowski, Florian Méhats, Julien Vovelle.

Les rapporteurs étaient Franco Flandoli, Benoît Perthame.

  • Titre traduit

    Équations aux dérivées partielles stochastiques paraboliques dégénérées


  • Résumé

    Dans cette thèse, on considère des problèmes issus de l'analyse d'EDP stochastiques paraboliques non-dégénérées et dégénérées, de lois de conservation hyperboliques stochastiques, et d'EDS avec coefficients continus. Dans une première partie, on s'intéresse à des EDPS paraboliques dégénérées- on adapte les notions de formulation et de solutions cinétiques, puis on établit l'existence, l'unicité ainsi que la dépendance continu en la condition initiale. Comme résultat préliminaire, on obtient la régularité des solutions dans le cas non-dégénéré, sous l'hypothèse que les coefficients sont suffisamment réguliers et ont des dérivées bornées. Dans une deuxième partie, on considère des lois de conservation hyperboliques avec un forçage stochastique, et on étudie leur approximation au sens de Bhatnagar-Gross-Krook. En particulier, on décrit les lois de conservation comme limites hydrodynamiques du modèle BGK stochastique lorsque le paramètre d'échelle microscopique tend vers 0. Dans une troisième partie, on donne une preuve nouvelle et élémentaire du théorème classique de Skorokhod, concernant l'existence de solutions faibles d'EDS à coefficients continus, sous une condition de type Lyapunov appropriée.


  • Résumé

    In this thesis, we address several problems arising in the study of nondegenerate and degenerate parabolic SPDEs, stochastic hyperbolic conservation laws and SDEs with continues coefficients. In the first part, we are interested in degenerate parabolic SPDEs, adapt the notion of kinetic formulation and kinetic solution and establish existence, uniqueness as well as continuous dependence on initial data. As a preliminary result we obtain regularity of solutions in the nondegenerate case under the hypothesis that all the coefficients are sufficiently smooth and have bounded derivatives. In the second part, we consider hyperbolic conservation laws with stochastic forcing and study their approximations in the sense of Bhatnagar-Gross-Krook. In particular, we describe the conservation laws as a hydrodynamic limit of the stochastic BGK model as the microscopic scale vanishes. In the last part, we provide a new and fairly elementary proof of Skorkhod's classical theorem on existence of weak solutions to SDEs with continuous coefficients satisfying a suitable Lyapunov condition.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : École normale supérieure. Bibliothèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.