Résilience et vulnérabilité dans le cadre de la théorie de la viabilité et des systèmes dynamiques stochastiques contrôlés

par Charles Jacques Jean Rougé

Thèse de doctorat en Informatique

Sous la direction de Guillaume Deffuant et de Jean-Denis Mathias.

Le président du jury était Maurice Lemaire.

Le jury était composé de Eric Servat, Luc Doyen, Daniel Schertzer.

Les rapporteurs étaient Eric Servat, Luc Doyen.


  • Résumé

    Cette thèse propose des définitions mathématiques des concepts de résilience et de vulnérabilité dans le cadre des systèmes dynamiques stochastiques contrôlés, et en particulier celui de la viabilité stochastique en temps discret. Elle s’appuie sur les travaux antérieurs définissant la résilience dans le cadre de la viabilité pour des dynamiques déterministes. Les définitions proposées font l’hypothèse qu’il est possible de distinguer des aléas usuels, inclus dans la dynamique, et des événements extrêmes ou surprenants dont on étudie spécifiquement l’impact. La viabilité stochastique et la fiabilité ne mettent en jeu que le premier type d’aléa, et s’intéressent à l’évaluation de la probabilité de sortir d’un sous-ensemble de l’espace d’état dans lequel les propriétés d’intérêt du système sont satisfaites. La viabilité stochastique apparaît ainsi comme une branche de la fiabilité. Un objet central en est le noyau de viabilité stochastique, qui regroupe les états contrôlables pour que leur probabilité de garder les propriétés sur un horizon temporel défini soit supérieure à un seuil donné. Nous proposons de définir la résilience comme la probabilité de revenir dans le noyau de viabilité stochastique après un événement extrême ou surprenant. Nous utilisons la programmation dynamique stochastique pour maximiser la probabilité d’être viable ainsi que pour optimiser la probabilité de résilience à un horizon temporel donné. Nous proposons de définir ensuite la vulnérabilité à partir d’une fonction de dommage définie sur toutes les trajectoires possibles du système. La distribution des trajectoires définit donc une distribution de probabilité des dommages et nous définissons la vulnérabilité comme une statistique sur cette distribution. Cette définition s’applique aux deux types d’aléas définis précédemment. D’une part, en considérant les aléas du premier type, nous définissons des ensembles tels que la vulnérabilité soit inférieure à un seuil, ce qui généralise la notion de noyau de viabilité stochastique. D’autre part, après un aléa du deuxième type, la vulnérabilité fournit des indicateurs qui aident à décrire les trajectoires de retour (en considérant que seul l’aléa de premier type intervient). Des indicateurs de vulnérabilité lié à un coût ou au franchissement d’un seuil peuvent être minimisés par la programmation dynamique stochastique. Nous illustrons les concepts et outils développés dans la thèse en les appliquant aux indicateurs pré-existants de fiabilité et de vulnérabilité, utilisés pour évaluer la performance d’un système d’approvisionnement en eau. En particulier, nous proposons un algorithme de programmation dynamique stochastique pour minimiser un critère qui combine des critères de coût et de sortie de l’ensemble de contraintes. Les concepts sont ensuite articulés pour décrire la performance d’un réservoir.

  • Titre traduit

    Resilience and vulnerability in the framework of viability theory and stochastic controlled dynamical systems


  • Résumé

    This thesis proposes mathematical definitions of the resilience and vulnerability concepts, in the framework of stochastic controlled dynamical system, and particularly that of discrete time stochastic viability theory. It relies on previous works defining resilience in the framework of deterministic viability theory. The proposed definitions stem from the hypothesis that it is possible to distinguish usual uncertainty, included in the dynamics, from extreme or surprising events. Stochastic viability and reliability only deal with the first kind of uncertainty, and both evaluate the probability of exiting a subset of the state space in which the system’s properties are verified. Stochastic viability thus appears to be a branch of reliability theory. One of its central objects is the stochastic viability kernel, which contains all the states that are controllable so their probability of keeping the properties over a given time horizon is greater than a threshold value. We propose to define resilience as the probability of getting back to the stochastic viability kernel after an extreme or surprising event. We use stochastic dynamic programming to maximize both the probability of being viable and the probability of resilience at a given time horizon. We propose to then define vulnerability from a harm function defined on every possible trajectory of the system. The trajectories’ probability distribution implies that of the harm values and we define vulnerability as a statistic over this latter distribution. This definition is applicable with both the aforementioned uncertainty sources. On one hand, considering usual uncertainty, we define sets such that vulnerability is below a threshold, which generalizes the notion of stochastic viability kernel. On the other hand, after an extreme or surprising event, vulnerability proposes indicators to describe recovery trajectories (assuming that only usual uncertainty comes into play then). Vulnerability indicators related to a cost or to the crossing of a threshold can be minimized thanks to stochastic dynamic programming. We illustrate the concepts and tools developed in the thesis through an application to preexisting indicators of reliability and vulnerability that are used to evaluate the performance of a water supply system. We focus on proposing a stochastic dynamic programming algorithm to minimize a criterion that combines criteria of cost and of exit from the constraint set. The concepts are then articulated to describe the performance of a reservoir.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.