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Abstract
In this thesis we study thermal properties and melting behavior of crystals
using Monte Carlo simulations. The Monte Carlo method is very difficult to
implement for melting investigation, unlike for problems where particles (such
as spins) are localized on lattice sites. However, once it is well formulated, it
is among the most efficient numerical techniques, to be able to study melting.

We have created a high-performance algorithm shown in chapter 1, based
on an optimized Verlet procedure, which allowed us to investigate, with effi-
ciency, thermal properties up to the melting. This optimization was neces-
sary for treating an large number of atoms in very long runs to have good
statistics, without prohibitive CPU time. We applied our algorithm to rare-
gas crystals using the Lennard-Jones potential with parameters given by
Bernardes which are widely used in the literature since 1958. Our results,
thanks to their precision, show that we should modify these parameters in
order to have a good agreement with experimental data.

In chapter 2, we studied melting of bulk semiconductors and metals by
considering the case of Si and Ag. These materials have been chosen for
our project in the following chapters as will be seen below. Silicon has a
diamond structure, and silver has the FCC lattice structure, both of them
have been well experimentally studied with well-known experimental melting
temperatures. In spite of this, no good simulations have been done. For Si,
one of the major problems is the choice of a potential which stabilizes the
diamond structure at finite temperatures. We need a multi-body potential
specific for each lattice structure. We have applied our algorithm to these
materials using the multi-body Stillinger-Weber and Tersoff potentials for Si
and the Gupta and EAM (embedded atom method) potentials for Ag. We
obtained results much more precise than in early simulations and in good
agreement with experiments.

In chapter 3, we studied the Ag(111) surface trying to elucidate the long-
standing controversy whether or not there is the “anomalous” thermal ex-
pansion which happens, for certain metals, when the inter-layer distances
between the topmost atomic planes changes from a contracted situation to
an expansion with respect to the bulk distance. We showed that, depending
on the potential, the anomalous crossover exists and the surface melting can
occur at a temperature very far below that of the bulk melting. This is the
case of EAM potential, but not the Gupta potential where surface melting
occurs just below bulk the melting.

In chapter 4, we studied the thermal stability of a stand-alone silicene
sheet. Silicene is the Si counterpart of 2D carbon sheet called “graphene”.
Silicene attracts the attention of many researchers because of its electronic
and thermal properties which seem to be comparable to those of graphene,



which is actually one of the most studied materials, due to its unusual proper-
ties susceptible for revolutionary device applications. Furthermore, because
it is a Si-based material, the compatibility, with the actual Si-based electronic
industry, is expected to be better than for graphene. We show that, using the
Tersoff potential with two sets of parameters (the original and the modified
ones), the silicene 2D honeycomb structure is stable up to high temperatures
without buckling. We have tested the Stillinger-Weber potential: it yields
a buckled honeycomb sheet at low temperatures but the 2D structure is de-
stroyed in favor of a tri-dimensional structure at the melting. Discussion of
this point is given.

A general conclusion with some open perspectives is given at the end.



Résumé
Dans cette thèse nous étudions le comportement thermique de matériaux
cristallins, par le biais de la simulation Monte Carlo. Cette technique est
très difficile à implémenter pour l’étude de la fusion à cause de la variation
du volume du système et des déplacements des atomes hors des noeuds du
réseau cristallin. Mais une fois bien mise au point, elle est l’une des plus
efficaces pour traiter ce genre de problématique.

Dans le premier chapitre nous présentons notre algorithme conçu en opti-
misant la procédure de Verlet. Cette optimisation a permis d’étudier le com-
portement thermique d’un cristal jusqu’à la fusion, avec des simulations très
longues pour de meilleures statistiques sans avoir des temps CPU prohibitifs.
Nous avons appliqué cet algorithme aux cristaux de gaz rares en utilisant le
potentiel de Lennard-Jones (LJ) avec les paramètres calculés par Bernardes
en 1958. Ces paramètres ont été largement utilisés dans la littérature depuis.
Or nos résultats, grâce à la précision de l’algorithme, montrent que ces
paramètres conduisent à une surestimation des températures de fusion de ces
cristaux par rapport aux températures de fusion expérimentalement mesurées.
Nous avons donc proposé une modification des paramètres qui permet un
meilleur accord avec l’expérience.

Dans le chapitre 2, nous avons étudié la fusion des semiconducteurs et
des métaux en prenant le cas du silicium de structure diamant et le cas de
l’argent de structure cubique à faces centrées. L’objectif de ce chapitre est
de comprendre le comportement thermique et la fusion de ces matériaux
tridimensionnels avant d’examiner les cas des cristaux bi-dimentionnel et
semi-infini dans les chapitres suivants. Ces matériaux dans l’état massif ont
été expérimentalement bien étudiés. Malgré ceci, il n’y a pas de résultats
théoriques et de simulations avec précision sur le comportement de fusion.
L’un des problèmes majeurs dans l’étude de fusion est le choix d’un poten-
tiel qui est capable de reproduire, à basses températures, des structures de
réseau autres que le réseau FCC qui est la structure obtenue avec un po-
tentiel isotropique à deux corps tel que le potentiel LJ. Nous avons choisi
les potentiels de Stillinger-Weber et de Tersoff pour Si, et les potentiels de
Gupta et EAM pour Ag. Les résultats obtenus pour les deux potentiels sont
similaires et meilleurs que les résultats publiés dans la littérature. Ils sont en
accord avec l’expérience.

Dans le chapitre 3, nous avons traité le cas d’un problème très étudié
mais restant controversé: le comportement de la surface (111) d’un cristal
d’argent. Expérimentalement, certaines études ont montré que la distance
entre la surface et la deuxième couche atomique subit une contraction à basses
températu- res. Au fur et à mesure que la temperature augmente, cette dis-
tance rattrape celle entre deux couches intérieures et puis la dépasse: ce



résultat est connu sous le nom d’anomalie de dilatation thermique. Nous
avons étudié ce problème en prenant deux potentiels multi-corps EAM (em-
bedded atom method) et de Gupta. Les résultats montrent que le potential
EAM décrit mieux cette anomalie qui a lieu après la fusion de la surface alors
que le potentiel de Gupta ne donne pas la fusion de surface. Par conséquent,
l’anomalie de dilatation évoquée n’a pas lieu avec le potentiel de Gupta.

Finalement, dans le chapitre 4 nous avons étudié la stabilité thermique
d’une feuille de silicène libre, c’est-à-dire non supportée par un substrat. Ce
matériau attire l’attention de nombreux chercheurs du fait de ses propriétés
électroniques et thermiques qui semblent comparables à celles du graphène,
de même structure en nid d’abeille mais avec des atomes de carbone. C’est
l’un des matériaux les plus étudiés actuellement en raison des propriétés
remarquables pour des applications. En utilisant le potentiel de Tersoff avec
deux jeux de paramètres, nous avons montré que la structure 2D du silicène
est stable jusqu’à la fusion qui a lieu à une température élevée, malgré la
basse dimension du matériau. Il est à noter que le matériau n’a pas le même
comportement selon le jeu de paramètres utilisé. En outre, nous n’avons pas
observé le ”buckling” avec le potentiel de Tersoff. Le potentiel de Stillinger-
Weber donne, en revanche, un buckling mais la structure se déforme vers
une structure tri-dimensionnelle à la fusion. Une discussion sur ce point est
donnée à la fin du chapitre.

La conclusion générale et les perspectives sont présentées à la fin de ce
mémoire.
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jamais m’imposer quoi que ce soit. J’éspère que je saurai avoir autant de
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Introduction

Our study is placed in the general framework of condensed matter physics
and more precisely in the field of phase transitions.

The thermal behavior of materials is of great importance for several rea-
sons. One of them concerns the functioning of electronic devices. As we
know, when the temperature increases, even a simplest device such as a re-
sistance, has a different behavior at high and low temperatures because the
electronic transport is modified by the temperature. It is the same for all
electrical components such as diodes, self, transistors, etc. Furthermore, with
the nanoscale of new 2D materials in the electronic industry, the material
is more sensitive to temperature than 3D ones. The change of properties of
materials with temperature is also of crucial importance in other domains
such as in the nuclear industry.

We focus in this thesis on the melting phenomenon. The understanding
of the melting transition is not an easy task and actually we do not have a
complete understanding of the phenomenon because melting depends on dif-
ferent mechanisms according to the nature of the interaction between atoms.
We have decided to tackle this problem by studying a number of cases using
the Monte Carlo technique. This technique is based on statistical physics
at equilibrium. Statistical physics is a powerful methodology which allows
scientists to study systems containing a large number of particles.

When we deal with a system composed of a tremendous number of par-
ticles such as atoms in a crystal (we recall that in 1 cm3 of a solid crystal
there are about 6.02 × 1023 atoms), solving the Schrödinger equation of all
interacting particles is simply impossible.

In a system at a fixed temperature (canonical ensemble), the partition
function allows us to study almost all physical quantities. This partition
function can be obtained by summation over all the microscopic states. In
statistical physics, an important idea is the ergodicity principle which is based
on the fact that if we average a physical quantity over all the microscopic
states at a given time, we will find the same value obtained by an average over
all the microscopic configurations that the system takes during a very long
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2 INTRODUCTION

(theoretically infinite) time. This principle allows us to write the average of
a quantity X as follows:

〈X〉 =
∑

σ

XσPσ (1)

where Pσ is the probability of the microscopic state σ and Xσ the value of
X in the microscopic state σ. The probability Pσ is given by :

Pσ =
1

Z
e
− Eσ

kBT (2)

Z being the partition function which is defined by :

Z =
∑

σ

e
− Eσ

kBT (3)

As we said above, the partition function allows us to describe physical
properties of the system. For example, the average the energy of the system
is given by :

〈E〉 = −∂ln(Z)

∂β
(4)

where β = 1
kBT

.
In simulations, microscopic states are created with some rules during the

simulation time as seen below. The Monte Carlo technique is based on the
following considerations :

i) The simple sampling method which consist in the generation of several
microscopic states in a random manner. Each new microscopic state is
chosen independently of the previous one. The average of the observ-
able X being taken over these microscopic states. For a system where
N is large, one can understand that all the microscopic states cannot
be created. For example a system of N Ising spins has 2N states, this
number is huge even if we take N = 1000 very far from real systems.
So, even if we were able to find all these microscopic states, it is impos-
sible to make numerically such a huge sum. Hence, some theoretical
considerations are needed in order to retain only the most important
states without changing physical properties of the system. This is what
provided by statistical mechanics in the following importance sampling.

ii) The importance sampling method which is more elaborate than the
first one. This sampling uses the generation of most probable states
for a given set of parameters such as temperature, volume, number of
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particles. These states follow the Boltzmann probability distribution.
In this case, each new microscopic state is chosen from the previous one
following a Markov chain with a transition probability between these
states which respects the equilibrium condition as seen below.

In this thesis we have always used the importance sampling. This proce-
dure, widely used in the field of Monte Carlo simulations, has been proposed
by Metropolis et al. in 1953 [1]. The algorithm uses Markov chains as follows.

In a Markov chain, each new state is generated from an existing one
with a transition probability ω (σ → σ∗), where σ and σ∗ are respectively
the actual and new microscopic states. In order to be a Markov chain the
following condition has to be verified :

∑

σ∗

ω (σ → σ∗) = 1 (5)

We want to generate a Markov chain (i.e. a succession of microscopic
states) where each state σ is weighted by the frequency of occurrence of
such equivalent states.

At the beginning, we start with a configuration which is generally not
at equilibrium. The probability of such state is given by Pσ (t0), where t0 is
the initial time. Thereafter, Pσ (t) evolves with time following the evolution
equation given by :

Pσ (t+ dt) = Pσ (t) +
∑

σ∗

[ω (σ∗ → σ)Pσ∗ (t)− ω (σ → σ∗)Pσ (t)] (6)

As we can understand, this evolution depends on the number of configu-
rations σ∗ which lead to σ, weighted by the transition probability ω (σ∗ → σ)
and depends also of the number of microscopic states which leave σ, weighted
by ω (σ → σ∗).

The needed thermalization time will be achieved when the convergence
of the distribution of probabilities Pσ will be done.

When the thermalization is done, the detailed balance is given by :

∀ (σ, σ∗) , Pσω (σ → σ∗) = Pσ∗ω (σ∗ → σ) (7)

⇐⇒ e
Eσ
kBT ω (σ → σ∗) = e

Eσ∗

kBT ω (σ∗ → σ) (8)

This equation guaranties the system is in equilibrium. Hence we do not
have to know the partition function of the system Z, for the choice of the
transition probabilities ω (σ → σ∗).
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The choice proposed by Metropolis is :

ω (σ → σ∗) =

{

e−β(Eσ∗−Eσ) if Eσ∗ > Eσ,
1 if Eσ∗ ≤ Eσ

(9)

The Metropolis criterion is then :

• Eσ∗ < Eσ, the transition is accepted

• Eσ∗ ≥ Eσ, the transition is accepted with a probability ωσ→σ∗ . If not,
the system returns to its previous configuration.

In this thesis we have used the NPT set of quantities (N is the number
of partivles, P is the pression, T is the temperature) because of the varia-
tion of volume with temperature. In this case, the quantity involved in the
Metropolis criterion is the free enthalpy given by :

W = P (Vσ∗ − Vσ) +
1

2
(Uσ∗ − Uσ) +NkBT ln

(

Vσ

Vσ∗

)

(10)

where Vσ∗ and Vσ are respectively the new and old volumes of the system,
Uσ∗ and Uσ being respectively the new and old energies when changing
the microscopic state. Note that the temperature plays a major role in the
Metropolis criterion.

The manuscript is organized as follows :
In chapter 1, we review different existing studies on the melting phe-

nomenon. We will see that the melting transition is not well understood in
spite of numerous investigations over decades. Indeed, existing theories are
not able to give a complete description of the mechanisms underlying this
phase transition. This has motivated our work. In the chapter, we build our
algorithm and we apply it to the melting of bulk 3D rare-gas crystals. We
will give detailed results obtained for Ar, Kr and Xe. In this thesis, we are
using a classical approach, hence the case of Ne will not be treated, because
of non negligible quantum effects due to its weak mass. The reason for us-
ing rare-gas crystals was to calibrate our algorithm with these well studied
materials. Indeed, the three rare gas chosen can be easily described by sim-
ple potentials such as the Lennard-Jones potential because of the isotropic
bonds which govern in these crystals. We find that in order to get a good
agreement for the melting temperature, we should modify the parameters of
that potential.

In chapter 2, we will apply our algorithm to a semi-conductor material,
Silicon. As we will see, all the numerical approaches of the melting transition



INTRODUCTION 5

of Si diamond structure (which are not so numerous) have failed to obtain
the correct melting temperature of this material. Several artificial techniques
have been implemented but some of them are questionable (see the voids nu-
cleated method used in Monte Carlo simulation by Agrawal et al.[2]). After
the presentation of the two potentials used for modeling Si diamond struc-
ture, namely the Stillinger-Weber and Tersoff potentials, and of ours results,
we will propose a modification of some parameters of the Stillinger-Weber
potential in order to obtain the melting temperature in agreement with ex-
perimental measurements. Such an approach has been used by Agrawal et
al. for the Tersoff potential. We will present also this modification. Another
material has also been studied with our algorithm: the bulk face-centered
cubic lattice of Silver atoms. As we will see, using the two currently popular
potentials for simulations of metals, the melting temperature obtained with
our algorithm is in good agreement with experiments. This material was
used next to study the behavior of the (111) surface of a silver sample.

In chapter 3, we will study the thermal behavior of the Ag(111) surface
which is, as we will see, well investigated in the literature. Indeed, surface be-
haviors of crystals have already been studied a long time ago (1969) [3]. It is
well known that surfaces of metals (almost all metals) have contraction of the
inter-layer distances of the first topmost layers. The case of the Ag(111) sur-
face is one of the most studied surfaces both experimentally and theoretically.
An anomalous lattice relaxation of the topmost inter-layer distances, namely
a crossover between contraction and expansion with increasing temperature,
is suspected for this surface. As we will see, this anomalous behavior is still
a subject of controversy. Note that, probably due to difficulties of implemen-
tation, the Monte Carlo method has never been used to study this behavior
before. Hence, our study is the first Monte Carlo contribution to this prob-
lem. Our main results are reported in [4]. The study of the (111) surface
of silver is also due to the fact that it will be used as a substrate to study
physical properties of silicene which is a 2D honeycomb lattice of Si atoms.

In chapter 4 we will introduce this promising material which is probably
the most serious concurrent of the graphene which has an analogous struc-
ture: a 2D honeycomb lattice of C atoms. Indeed, experimentally, the most
favorable surface for the growth of silicene is the (111) surface of Ag. That is
why a thorough understanding of this surface was needed. We will describe
the thermal behavior of a free-standing silicene sheet even if experimentally
such a configuration has never been obtained so far. The reasons why we
study such a configuration are numerous. Firstly we can mention that the
study of such a stand-alone material is needed in the case where the inter-
action from the substrate is negligible. Furthermore, experimentally it is
possible to grow a free sheet of graphene so we expect that it will be done
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for silicene in the near future. Secondly, theoretical studies of free-standing
silicene, based on density-functional theory (DFT) calculations have already
been done and prove the stability of this hypothetical situation. Thirdly,
this is probably the best approach to the problem: we begin to study the
system in the simplest situation and we will introduce afterwards interac-
tions with the substrate in order to better describe the actual experimental
configuration. Interactions with the substrate have been studied but will not
be presented in this thesis because the results are too preliminary. Calcula-
tions are in progress. One of the main difficulties is to choose an appropriate
potential to describe the silicene-substrate interaction.

The last chapter is devoted to a general conclusion of the present thesis.



Chapter 1

Melting of Bulk Rare-Gas
Crystals

1.1 Introduction

Melting of crystals has always been a fascinating subject for more than a cen-
tury since the discovery of the empirical Lindemann’s criterion [5]. The Lin-
demann’s criterion says that if the average of vibration amplitude u, namely
√

〈u2〉 , exceeds a certain value, usually 10% of the distance between nearest-
neighbors, then the melting occurs. Times and over again, many authors
have tried to find out microscopic precursor mechanisms that lead a crystal
to melt. Until 30 years ago, one of the favorite pictures of melting is the soft-
ening of a phonon mode due to thermal fluctuations. The atoms no longer
have restoring forces which keep them staying close to their equilibrium po-
sitions: they move around freely and the system goes to a liquid state. The
soft-mode picture has encountered some scepticism because in real crystals
as well as in simulations one observes that well below the melting temper-
ature (Tm ), many defects, dislocations, interstitial atoms, etc are excited.
Therefore, it is hard to believe that the system stays in a periodic structure
with propagating phonon modes up to Tm . Evidence of defects is found in
many works [6, 7, 8, 9]. Another question that is unsolved in a clear manner
is the form of the potential that binds the atoms together in a given lat-
tice structure. From a microscopic point of view, the potential should come
mainly from the symmetry of atomic orbitals. But ab-initio calculations are
still far away from being able to use realistic potentials [10]. Empirical poten-
tials have been used instead to study melting. One can mention the popular
6-12 power Lennard-Jones (LJ) potential [11, 12], various similar power po-
tentials, the many-body Gupta’s potential [13], the Stillinger-Weber (SW)

7



8 CHAPTER 1. MELTING OF BULK RARE-GAS CRYSTALS

potential [14], the Tersoff potential [15, 16] and the Embedded Atom Model
potential (EAM) [17]. Two-body potentials such as the LJ one crystallize
atoms in the FCC at low temperatures and nothing else; this comes from the
fact that LJ potential is isotropic so the atoms are crystallized in the most
dense isotropic structure, namely the FCC lattice. In order to stabilize other
structures, several phenomenological potentials have been introduced, often
without a microscopic justification. For example, the SW potential or the
Tersoff potential stabilize the diamond structure at low temperatures. These
potentials have been used with success to calculate properties of Si clusters
[18] and amorphous Si crystals [19].

In this chapter, we use the LJ potential to study the melting of rare-gas
crystals which have the FCC lattice structure at low temperatures. In the
case of rare gas, it is amazing that such a simple question was not studied
with precision so far in spite of an abundance of experimental data on Ar,
Xe, Ne and Kr. Most of the melting studies concerning rare gas were done
in particular cases: small clusters [19], adlayers on a substrate, etc. The
main reason to avoid to study the bulk melting may be due to some techni-
cal difficulties such as periodic boundary conditions, volume expansion with
temperature, etc. Previous Monte Carlo (MC) studies of bulk melting have
been carried out with LJ potential but emphasis was put on the melting
mechanism rather than on the precise melting temperature in real materials
[7, 8].

The purpose of this chapter is therefore to test whether or not the ex-
perimental Tm can be reproduced by MC simulation using the values of the
parameters given in literature for all the materials tested here. For example
in rare gases, they are deduced in the gaseous state long time ago [20]. We
will show here that by appropriate choices of technical procedures, we are
able to obtain melting temperature for various rare gas directly from our sim-
ulations, unlike previous methods [21, 22, 23, 24] which have had recourse
to various means and some thermodynamic functions to deduce it. We find
in this work the melting temperatures for several rare gases are higher than
experimental values. A revision of the values of LJ parameters widely used
in the literature for more than 50 years should be made in order to better
describe the solid state of the rare gas. Note that in a recent work [23], a
hypothetical thermodynamic integration path is used to find the relative free
energies of the solid and liquid phases, for various system sizes, at constant
cutoff radius, in an attempt to explain the overestimate of the melting tem-
perature with the LJ potential. However, due to various approximations,
several results were not physically clear, in particular why the melting tem-
perature oscillates with increasing cutoff distance.

In the case of Silicon, it is more difficult to have a good agreement with
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experiments as we will see in the next chapter. Indeed, unlike the LJ poten-
tial, SW and Tersoff potentials, are more difficult to modify because of the
huge number of parameters and because they contain a many-body contribu-
tion. This is even more true for the Tersoff potential, where the many-body
part is not so transparent. In the case of the SW potential, the many-body
part concerns only the lattice-geometrical part, so modifications are easier.
For Silver, as we will see in the next chapter, the melting temperature sim-
ulated with our algorithm is in good agreement with experiments, with the
two potentials used.

The organization of the present chapter is as follows: In Sec. 1.2 we
present an overview of different principal theories and numerical works deal-
ing with melting of materials since 1891, in Sec.1.3 we show details of our
algorithm and finally in Sec.1.4, we present our results obtained for rare-gas
crystals.

1.2 Melting transition: historic developments

Lindemann’s criterion

Sutherland was one of the pioneer scientists who considered atoms as hard
spheres vibrating around their equilibrium position [25]. He was the first
to propose that the melting transition occurs when the atomic distance be-
tween particles reaches a certain value with respect to the atomic diameter.
This model leads the calculation to an important consequence: all elements
have almost the same ratio of vibration amplitude to the atomic spacing.
Nineteen years later and following Sutherland’s idea, Lindemann [5] shows
that when the temperature reaches the melting point, the displacements of
crystal atoms are so large that some collisions between neighboring atoms
occur. The instability created by these collisions could be responsible for
the melting transition. In 1956, Gilvarry [26] has proposed the formulation
of the Lindemann’s criterion which says that the melting occurs when the
square root of the mean-square amplitude of thermal vibrations of atoms
reaches around 10% of the nearest-neighbor distance. This criterion was
often used and tested. This was the case in 1982 when Cho [27] found that
the Lindemann parameter (the critical ratio of vibration amplitude over the
nearest-neighbor distance) depends on the structure of the lattice. For bulk
centered cubic (BCC) or face centred cubic (FCC) or also hexagonal com-
pact (HCP) the Lindemann parameter is different. Even if the Lindemann’s
criterion is still widely used, it’s a one-phase theory and this model does not
explain the mechanisms responsible for the melting transition.
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Born’s criterion

When the temperature rises, the inter-atomic distance increases. This phe-
nomenon implies a decrease of the restoring force and then, the shear modulus
decreases. Sutherland has studied the dependence of the shear modulus with
temperature for metals. In his work [25], he proposed an empirical law with
the following expression :

G = G0

(

1− T

T0

)

)2

(1.1)

where G is the shear modulus. As we can see with this model, the shear
modulus fall to zero when T = T0. For Sutherland, the melting point could
be the temperature at which the rigidity falls to zero. In 1938, Brillouin [28]
pointed out a difference between macroscopic rigidity and the microscopic
one. Indeed, he has observed that the macroscopic rigidity of a solid falls
to zero at the melting temperature while the microscopic one has a non
zero value. By the consideration of the anisotropy of crystalline phases, he
emphasized that the different rigidity coefficients would not become zero at
the same temperature. He proposed that melting occurs when one of the
rigidity coefficients falls to zero.

In 1939, Born [29] proposed his criterion for the melting of crystal which
suggests that melting occurs when one the shear modulus becomes zero. The
main problem of this theory is that the liquid phase is not described. The
first-order behavior of the melting transition is then not treated. Indeed,
the main characteristic of a first order transition is the heterogeneity of the
system during the transition. During the transition, some parts of the system
are in the liquid state while other parts are in the solid state.

Role of the defects as melting mechanism

The importance of the role of defects in the melting mechanism was under-
stood by Gorecki [30]. He studied the role of vacancies in melting transition
of metals. For him, there is a correlation between the bonding energy of
metal and the vacancy formation energy. One of his major results concerns
the value of 0.37% which is the equilibrium vacancy contraction at the on-
set of melting for many metals in different lattice configurations. Using this
model, the volume change on melting can be explained by the fact that the
volume increases because of the formation of vacancies at the melting temper-
ature. Also the electric resistivity can be interpreted by vacancies formation.
Indeed, when vacancies are created, electrons have more difficulties to go
through the material. The latent heat can also be interpreted in terms of
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the energy associated with the formation of vacancies in metals. This theory
is also well supported by one experiment. Indeed, the gamma irradiation
which creates vacancies allows experimentalists to lower the melting point
proportionally to the irradiation.

In the same period (1979), Nelson and Halperin studied the melting tran-
sition in 2D systems. They show that the melting is due to defects [6]. It is
the same phenomenon which occurs with the XY 2D model where we have
a Kosterlitz-Thouless transition.

In 2001, a Monte Carlo study of the role of defects in the 3D melting tran-
sition was carried out by Gómez, Dobry and Diep [7], using the LJ potential.
They show that defects which occur in the solid phase are responsible for
the melting. They monitored the number of defects by integrating the radial
distribution function (RDF) between two neighboring minimum. They found
that, although the sample temperature is below the melting point, a lot of
defects are created (around 26% of the total number of sites). This result
is in contrast with the scenario of the phonon soft-mode responsible for the
elasticity instability at the melting point, as we have seen above with the
hypothesis of a defect-free crystal structure. They have also evaluated the
percentage of defects just above the melting point and found a value of 80%.

Using RDF for the defects (Fig. 1.1) and histograms (Fig. 1.2), they have
also studied their structure. More precisely, they have found that the defects

Figure 1.1: Radial distribution function between defects of coordination 13
just below the melting point (0.76 in reduced unit) (taken from Ref. [7]).

form clusters and that they are linked over large distances near the transition.
Indeed, we can see in the histograms that the probability to observe clusters
of large sizes increases with the temperature (Fig. 1.2). The appearance of
the third and the fourth peaks at temperatures near the melting transition
is in supports of the idea that the clusters are not isolated but linked. The
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Figure 1.2: Histogram of the number of defects in a cluster.Left : T = 0.3,
center: T = 0.58 and right: (T = 0.725 (taken from Ref. [7]).

authors used the expression “strings of defects“ which summarizes very well
the results obtained.

In an other work [8] (the first one where strings of thermally excited
defects are seen), it is shown that the strings of defects are dislocation lines
like it was suggested in [31, 32]. Their computations are consistent with the
melting theory based on the saturation of the crystal by dislocation loops of
all sizes including open lines crossing the system.

Extrapolation using the results from clusters

More recently in 2008, Pahl et al. have numerically extrapolated the melt-
ing temperature of bulk Ar starting from clusters [33, 34]. Using complete
Mackay icosahedra which are more stable configurations for cluster contain-
ing less than 1000 atoms they studied cluster of size 13, 55, 147, 309, 561
and 923. These “magic numbers“ are given by the following formula :

N = 1 + 2
n

∑

k=1

(

5k2 + 1
)

(1.2)

They found a linear behavior of the melting temperature with the increas-
ing of the cluster sizes, provided that the number of atoms in the cluster
be greater than about 100. When we deal with clusters of a few hundreds
(around 923 atoms at maximum), it is obvious that surface effects cannot
be neglected. Indeed, the ratio between surface and volume is again in fa-
vor of surface effects domination over volume effects. As we can see in Ref.
[34] (Fig. 8), the behavior of the melting temperature with clusters of less
than 100 atoms is different from the behavior of clusters of more than 100
atoms. With clusters of 100 to 923 atoms the behavior is linear while this
is not the case before 100 atoms. Although 923 particles is a quite good
number of atoms, it is not clear that after that limit the surface effect on the
melting temperature follows this linear behavior. The fact that the melting
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temperature can be extrapolated from clusters with increasing sizes is then
questionable. Indeed, there is a huge difference between a cluster of 923
particles and a macroscopic sample of materials. We are not sure that such
a linear behavior will continue until the macroscopic level will be reached.
Noya and Doye [35] have questioned this convergence by monitoring the heat
capacity curves for different sizes of clusters. Indeed, a premelting phenom-
ena remains for clusters with sizes greater than 309 atoms. Furthermore,
Pahl et al. [33, 34] have also compared their clusters results with their bulk
calculations using periodic boundary conditions for system sizes less than
256 particles. Unfortunately, as we will see below, we find a threshold of 500
atoms for the saturation of the melting temperature with periodic boundary
conditions. To finish, they also used the minimum image convention like us,
but for all the sizes tested, they never used the same cutoff for the potential
so it is difficult to analyze their results.

1.3 Our algorithm

1.3.1 Motivation

As we have seen in the previous section, a lot of artificial tricks or hypothesis
are used to modeling the melting of a material. The major motivation of our
work was to built an algorithm which minimizes the use of these artificial
manipulations. For example, we don’t want to introduce artificial voids into
the system as it as been done in several works with the two widely used tech-
niques for modeling the melting transition: molecular dynamic simulations
(MD) and MC simulations. In order to fulfill our objectives, we have used MC
simulations. Indeed, unlike in MD simulations, the MC method allows the
system to have defects created by the huge quantity of random numbers used
(several tens of millions of MC steps in this work). Indeed, sometimes, a non-
favorable configuration can be accepted thanks to the Metropolis criterion.
That’s why fluctuations can be seen in all the quantities monitored. The
introduction of defects (artificially) is a widely used practice with MD simu-
lations (see Refs. [36, 37, 38]). This procedure is essential in this technique
because the atoms follow the Newton laws of motion so that defects cannot
be naturally created. In Ref. [2], Agrawal et al. have artificially introduced
voids in a silicon bulk crystal in order to reduce the melting temperature
that they find well above the experimental one. With MC techniques, it is
not necessary to apply this method. We think that superheating due to the
difficulty to break the crystalline order cannot happen with MC simulations
because the method is based on statistical averages in the phase space with-



14 CHAPTER 1. MELTING OF BULK RARE-GAS CRYSTALS

out following vibration modes and because the tremendous number of Monte
Carlo steps used in this work. The phase space is then well explored. That’s
why, without a free surface in our sample, starting from a perfect crystal,
we can have the formation of defects with increasing temperature during the
simulation, a thing which is not possible with the MD technique.

1.3.2 The algorithm

The modeling of the melting transition is difficult for several reasons. One
of these reasons is the off-lattice behavior. Another one is that we have
to perform our computations in the NPT ensemble, in order to take into
account the volume variation with temperature, and the volume fluctuations
with time. This second characteristic is difficult to take into account when
we use the periodic boundary conditions (PBC).

In this subsection, we will describe precisely how we have done to take
into account these behaviors.

Firstly, a diagram of the algorithm can be found in Fig. 1.3.

Figure 1.3: Diagram of the algorithm.

For all simulations, we have to consider a finite size system with PBC,
because of the finite available memory in the computer. Of course, differ-
ent sizes of system can be tested but always limited by the memory. The
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simulation box corresponding to the system is a cubic box1 (for a cubic sys-
tem) which contains all the system atoms. Example of simulation boxes are
represented in Fig. 1.4

Figure 1.4: Simulation boxes for 2D-square lattice and for 2D-triangular
lattice

The off-lattice behavior of the atoms can be described as follows: when
the crystal melts, all the atoms can go everywhere, in the simulation box.
In this case, the crystalline structure is completely broken. Why is this a
difficulty for the algorithm ? For each atom, when the algorithm is running,
we have to compute different quantities which depend on the neighborhood of
the considered atom. When the atoms are fixed each to a node of the lattice
or when the atoms can move but near its node, the list of the neighbors is
always the same. This list is known as the Verlet list [39, 40]. The knowledge
of the list of neighbors allows the algorithm to be faster. If we don’t use tricks
to accelerate the algorithm, we have to compute 1

2
N(N −1) terms with most

of them turning out to be zero. With his early version, the computing time
was cut by a factor of 10. We have used a modified version rather than the
original one. In this former version, for a particle, the algorithm builds a
table containing all the particles within a distance rn from that particle. In
this algorithm, the list is updated every n− 1 Monte Carlo Step (MCS). No
error was made as long as rn is sufficiently larger than the potential cutoff
rc. The number of MCS n can be determined by considering the worst case
for the displacements, namely when a particle moves in the same direction
and with the same maximum magnitude while the others go in the opposite
direction with the same maximum magnitude. The problem of this version
is that the number of MCS n, does not depend on the temperature. As we

1Depending on the crystal considered, the box can be of different shape like parallelepi-
pedic
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can easily understand, this number of MCS must be different at low T when
the atoms are almost fixed on the nodes of the lattice, and at high T when
the crystal is melted. As we can see, this former version was not the optimal
one.

rm

X

Figure 1.5: Illustration of the worst case considered for the determination
of the radius rd within the neighbors list can be conserved without update.
The green sphere is the area where the atom can move without changing it
neighbors list. The red circle is the potential cutoff sphere and the black
one is the neighbors sphere. The blue sphere represents the displacement
of the red one when the atom undergoing the MCS has accomplished its
displacement.

We have modified the previous algorithm in order to take into account
the dependence of n on temperature. The new algorithm is able to determine
itself the number of MCS to do before the update of the list of neighbors.

For the convenience of the reader, we denote Sn the sphere containing the
neighbors and Sc the potential cutoff sphere.

The algorithm is as follows: for each atom (at the beginning of the pro-
gram) the list of neighbors is built and the atom’s nearest node of the lattice
is saved. For each MCS we compute the distance between the new position
of the atom and its node. When this distance is greater than the value rd ,
the old position is replaced by the new one and it becomes the new ’node’.
The list of neighbors is then updated. With this procedure, the temperature
is taken into account automatically. As we can easily understand, the value
of rd is of great importance. Indeed, if this radius is too small, the list
of neighbors is too often updated and then we do not earn any CPU time.
Conversely, if rd is too great, the list of neighbors can be wrong. These two
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last points are illustrated in Fig. 1.5, in the simplified case of a 2D lattice.
We have made our choice by considering the worst case: at each MCS the
considered atom goes straightly in the same direction; This direction is cho-
sen as follows: the nearest atom outside Sn is the closer of all this outside
atoms. In the worst case, this outside atom goes in the direction of the atom
undergoing the MCS. As rc < rn, when the outside atom comes in the neigh-
bors list, we do not have to update the neighbors list immediately. When
the atom under consideration moves, Sc moves with it and the previously
outside atom then interacts. It happens when the two considered atoms have
moved one half of the difference rn − rc. In our simulation we have chosen
to take rd = 0.2 (rn − rc) to have a sufficient safety margin. We can mention
that this factor 0.2 can be modified until 0.5. Our decision to take 0.2 is
arbitrary but allows us to have reasonnable CPU time for the considered
systems in this study.

Of course, as we can imagine, when the temperature is greater than the
melting temperature, the list is more often updated than at low temperature
where the list is almost never updated. That is why, for high temperatures we
need more CPU time than at low temperatures to achieve the same number
of MCS.

Another important case is the treatment of the atoms on the edge of the
simulation box. Let us discuss these further. When one atom is on the edge
of the simulation box, a little displacement can put the atom out of the box.
In this case, the PBC are applied and we reput the atom on the other side of
the box. The PBC is only a manner to simulate an infinite crystal. The PBC
can be seen as instantaneous copies of the system (26 copies in 3D, 8 copies
in 2D and 2 copies in 1D). An instantaneous snapshot of a system with its
PBC is shown in Fig. 1.6.

When the considered atoms leave the box in one direction, one of its 26
copies on the opposite direction comes into the system. The new atom of
the system is then the copy of the previous atom. This new atom has a
list of neighbors which does not change while the distance between it and
its attached node is less than rd. That is why these atoms have a different
treatment than the core’s atoms.

The last trick that we have used is that we have saved the 26 copies of
each atom. An atom with its 26 copies are moved in a parallel manner. With
this procedure, we do not have to make copies of the system at each MCS.
Furthermore, for each copies of one atom, the list of neighbors is built hence,
when the periodic boundray conditions are applied and when an atom of the
system go out of the simulation cell, the list of neighbors of this last one is
replaced by the list of neighbors of the corresponding copy of the atom. This
procedure allows us to save CPU time.
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This optimization allowed us to simulate systems with 4000 particles for
about 20 million MCS during 4 weeks in the cluster of computers of the
University of Cergy-Pontoise. For each temperature, a simulation was run in
an independent node of the cluster. In its original version, Verlet algorithm
was at least 10 times faster than the algorithm without any optimization. In
our case, the speed of the algorithm is much greater than the Verlet speed.
Without this optimization, the CPU time needed was discouraging.

When we use the PBC we have to avoid having a copy of the considered
atom in its list of neighbors. This can create some artificial correlations. To
avoid this well-known phenomenon in simulations, we are in the minimum
image convention: all the dimensions of the simulation box are chosen at
least twice the potential cutoff.

Now let us discuss about the volume variations in the NPT statistical
configuration. When the temperature is increased, the system tends to dilate.
This implies an increase of the volume of the simulation box. How can we
associate this behavior with the previous considerations namely the node
distances and the PBC ? The solution that we have taken is to use the reduced
coordinates. We can describe the mechanism as follows: the positions of the
system atoms are saved in reduced coordinates with the dilatation coefficient.
In this set of coordinates, the volume of the simulation box does not change.
When we compute distances between atoms, we multiply the reduce distance
by the dilatation coefficient to get the real one and then we can compute the
energy or RDF.

The volume fluctuates during the simulation time at each temperature.
We took into account the real volume when we calculated the necessary
quantities.

1.4 Application to rare-gas crystals2

1.4.1 Interaction potential

The Lennard-Jones potential is an empirical potential which is well suited for
noble gas atom interactions. Rare-gas atoms, in their crystalline state, are
slightly modified relative to the atomic stable configuration they have in the
gaseous state. This little deformation can be described by the van der Waals
interaction. This interaction is attractive and responsible for the cohesion of
the crystal of these rare-gas materials. The interaction is usually modeled
by the power 6 of the inverse of the interatomic distance. The power 6 can
be justified by the fact that the van der Waals interaction is dipolar. Indeed,

2Published work, see Ref. [41]
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Figure 1.6: 2D periodic boundary conditions of a system (blue atoms). In
2D, an atom has 8 copies of itself. The lines indicate the simulation box.

we consider two atoms (1 and 2) separating by a distance r. Let −→p1 be
the dipolar moment of the atom 1, the dipolar moment of the second atom
induced by the atom 1 is proportional to p1

r3
(p2 ≃ αp1

r3
). Furthermore, two

atoms with a dipolar moment have an interaction energy proportional to the
product of the moment, divided by the power 3 of the interatomic distance:
p2p1
r3

≃ p2
1

r6
. That is why we consider the power 6 of the interaction distance.

In order to avoid the collapse of the crystal into a single point, and to be
in agreement with the Pauli exclusion principle, a repulsive part is also taken
into account. This interaction is mathematically described by the power 12
of the inverse of the interatomic distance.

The repulsive part of the potential is greater than the attractive part
at small distances, and inversely at long distances. After this analysis, the
potential has the following expression:

V (r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(1.3)

where ǫ and σ are adjustable parameters which depend of the material. The
values of these parameters used for noble gas [20] (Ne, Ar, Kr and Xe) are
reported in Tab.1.1. The representative curve of the potential is plotted in
Fig. 1.7.

If we write the expression of the distances between atoms compared to
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Table 1.1: Lennard-Jones parameters (from [20]).

Element ǫ (eV) σ(Å) Tm (K)
Ne 0.00312075487 2.74 24
Ar 0.01042332126 3.40 84
Kr 0.01404339691 3.65 117
Xe 0.01997283116 3.98 161
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Figure 1.7: Curve of the Lennard-Jones potential.

the nearest neighbor (NN) distance taken as unit length we obtain :

U =
1

2

∑

−→r

V (−→r ) = 2ǫ

[

A12

(σ

r

)12

− A6

(σ

r

)6
]

(1.4)

where

An =
∑

−→r 6=0

1

α (−→r )n (1.5)

with α being the multiple of the nearest neighbor distance corresponding to
−→r .

The lattice constants An depend on the lattice structure. In the case of
rare gas, the lattice is FCC, we have A12 = 12.13 and A6 = 14.45 [42].
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These two last quantities are useful to find the equilibrium nearest-neighbor
distance satisfying: ∂U

∂r
= 0. Starting from Eq.1.4, we have:

∂U

∂r
= 2ǫ

[

6A6σ
6 1

r7
− 12A12σ

12 1

r13

]

∂U

∂r
= 0

⇐⇒ 6A6σ
6 1

r7
= 12A12σ

12 1

r13

=⇒ rth0 =

(

2A12

A6

) 1

6

σ (1.6)

where rth0 is the first nearest-neighbor distance minimizing the crystal energy.
Now, if we put the result given in Eq. 1.6 into the Eq. 1.4, we can obtain

the equilibrium cohesive energy of noble solids :

U0 = − ǫA2
6

2A12

= −8.6ǫ (1.7)

In Tab. 1.2, we can see the agreement between theoretical and experi-
mental values (Data coming from [43, 44, 45]). The greater the atomic weight
is, the better the results are. This phenomenon is a consequence of the fact
that the zero-point energy has been neglected. Here we consider the atoms
in a classical point of view, and then, at zero temperature, we supposed that
all the atoms are perfectly localized with zero kinetic energy [46]. As we
know3, the zero-temperature kinetic energy is proportional to ~2

M(∆x)
2 , where

M is the weight of the element. The more M is important, the smaller is
this kinetic energy.

3using the uncertainty principle of Heisenberg
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Table 1.2: Nearest-neighbor distance and equilibrium cohesive energy at at-
mospheric pressure for noble solids.

Ne Ar Kr Xe

rExp.
0

(

Å
)

3.13 3.75 3.99 4.33
rTh.
0 = 1.09σ 2.99 3.71 3.98 4.34
% of error ≃ 4.47 ≃ 1.06 ≃ 0.25 ≃ 0.23

UExp.
0 (eV.atom−1) -0.02 -0.08 -0.11 -0.17

UTh.
0 = −8.6σ -0.027 -0.089 -0.120 -0.172

% of error ≃ 35 ≃ 11.25 ≃ 9.09 ≃ 1.17

Using the lattice parameters A6 and A12 we can also compute the bulk
modulus :

B = −V

(

∂P

∂V

)

T

⇐⇒ B =

v
∂

∂v

(

∂u

∂v

)

⇐⇒ B = 2ǫ

[

1

σ2

A
7

3

6

A12
4

3

]

(1.8)

In this subsection we will show our MC results for Ar, Kr and Xe. We
did not perform simulations on Ne because of its quantum effects, namely
the zero-point energy due to its weak atomic mass. Indeed, as previously
noted, we used a classical approach. In this approximation, every atom
can be precisely localized. As we know, this is not correct because of the
Heisenberg uncertainty principle which implies that the kinetic energy at 0
K is proportional to ~

2

M(∆x)
. Here, we consider that the cohesive energy of our

crystal is only a potential energy, that is why we do not consider the case of
Ne. We can see in Tab. 1.2 the percentage of error for the NN distance and
the cohesive energy. The materials are ordered with increasing atomic mass.

In a more quantitative way, we can use the de Boer parameter which
is defined as follows: Λ = h

σ
√
Mǫ

. In Tab. 1.3, we give the values of this

parameter for several rare gas (Ref. [46]).

Table 1.3: de Boer parameter Λ for rare gas.

4He Ne Ar Kr Xe
2.6 0.59 0.19 0.10 0.064

Λ2 roughly represents the ratio between the kinetic energy and the po-
tential energy. It allows us to measure the importance of the quantum effects.
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In the following we show first the results obtained for the Ar crystal, using
the Bernardes parameters. These will put in light the necessity to modify
the original parameters. Next, we will show the new results obtained with
the modified parameters.

1.4.2 Monte Carlo results using the Bernardes param-
eters

Let us show first the results for Ar obtained by using the values listed in
Table 1.1. We will discuss next the modification necessary for obtaining the
results in agreement with experiment. In order to take a correct average of
physical quantities, we record spontaneous values of all physical quantities
during each MC run. We have to go to several million of MC steps before
observing statistical equilibrium. We show an example of the energy per atom
E versus MC time in Fig. 1.8 for N = 256 atoms at two temperatures T = 92
K and 94 K. At T = 92 K, the system is still in the solid phase. Its energy is
stabilized after about one million MC steps per atom. However, at T = 94 K,
the system melts after three millions of MC steps per atom: E is stabilized
in the liquid phase only after such a long MC time. It is very important
to emphasize that the convergence time to equilibrium depends on various
MC parameters such as value of displacement magnitude r, volume variation
δ etc. So, nothing can replace an observation of the time-dependence of
physical parameters during the simulation, although this consumes a huge
computer memory.
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Figure 1.8: Energy per atom versus MC time for two temperatures: above
(94K) and below (92K) the melting temperature.

We show in Fig. 1.10 the energy per atom E versus T in the case of Ar
with N = 256 atoms, using the parameters given in Table 1.1.
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Figure 1.9: Energy per atom E versus temperature T with Bernardes param-
eters. Tm ≃ 93K. Argon crystal, N = 256 atoms. Run of 50 million of MC
steps / atom
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We observe here that the melting occurs at Tm = 93K with a large latent
heat. This value of Tm is rather far from the experimental data given in
Table 1.1. We return to this point later.

5. 4

5. 5

5. 6

5. 7

5. 8

5. 9

6

6. 1

70 75 80 85 90 95 100 105 110

T (K)

Lattice constant (A)°

Figure 1.10: Evolution of the lattice constant against temperature T with
Bernardes parameters Tm ≃ 93K. Argon crystal, N = 256 atoms. Run of 50
million of MC steps / atom
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We also display in Fig. 1.10 the lattice constant versus T showing a jump
at 93 K.

We show now the snapshots of the system for different temperatures in
Fig. 1.11 below and above the melting. As seen, the system just starts to be
spatially disordered at 92 K, and is well in the disordered phase (liquid) at
100 K.

Figure 1.11: Instantaneous pictures of the supercell of Ar for different tem-
peratures, respectively, from up to down: 75K (far below Tm), 92K (close to
Tm), and 100K (above Tm). N = 256 atoms. After 35 million of MC steps.
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The radial distribution function for Ar is shown in Fig. 1.12 at several
temperatures.
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Figure 1.12: Radial distribution of Ar for different temperatures: below melt-
ing T=74K (dashed red) and T=92K (dashed green), above melting T=94K
(solid blue) and T=100K (solid magenta), N=256 atoms. Run of 50 million
of MC steps / atom

One sees clearly the peaks at first, second, and third neighbor distances
for T < Tm indicating the crystalline phase, while there is no such clear
distinction for T > Tm where a liquid phase sets in. Let us discuss now the
difference between our value of Tm (N = 256) = 93 K with the experimental
value Tm (exp)=84K. Clearly, the parameters given in Table 1.1 which have
been deduced with experimental data for gaseous Ar do not well describe
the melting of solid Ar. Note however that the above value of Tm is for N
= 256 atoms. We consider larger samples below to see the variation of Tm.
In order to modify correctly the LJ parameters while respecting the known
properties of Ar, we use the listed values of LJ parameters to estimate the
size effect, namely to find the value of Tm (N = ∞) for an infinite crystal.
Once this task is done, then we look for the parameters ( ǫ , σ ) which give
correctly the experimental Tm(exp). The effect of the cutoff distance will be
examined in the following section.

Size effect and effect of the cutoff distance

The size effect is an important fact when we work with numerical simulations
because of the finite size of the simulation cell. In second-order phase tran-
sitions, finite-size scaling laws allow us to calculate the critical exponents by
varying the system size [47, 48, 49, 50]. The correlation length is infinite at
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the critical point in the thermodynamic limit. However, in first-order tran-
sitions in infinite systems, the correlation length is finite at the transition
pointTc , the two phases coexist [51, 52, 53, 54, 55] and the energy is dis-
continuous. In simulations at finite sizes, if physical quantities such as Tc,
the maximum of the specific heat Cv and the susceptibility, etc., depend on
Ld (system volume) then the transition is of first order [51, 52, 53, 54, 55].
For very weak first-order transition, only with extremely large sample sizes
together with a high-performance technique such as the Wang-Landau flat
histogram technique that we could see evidence of first-order transition (see,
for example, Ref. [56]). In this work, we did not perform these types of finite-
size analysis. We just considered a few system sizes to see the variation of
Tm : Tm is increased but saturated at 102 K for sizes larger than 500 atoms
as shown in Fig. 1.13. The same kind of behavior can be observed with Kr
and Xe in Fig. 1.15. Indeed, the size of 5 lattice constants is the minimal
one to avoid artificial size effects which degrades the quality of results. After
5 lattice constants for the length of the supercell, the melting temperature
Tm is not modified for Ar, Kr and Xe.

- 0 . 075

- 0. 07

- 0. 065

- 0. 06

- 0. 055

- 0. 05

- 0. 045

70 75 80 85 90 95 100 105 110 115 120

  93K 102K

4

5

6

8

10

Size (number of lattice constants)

E (eV/atom)

T (K)

Figure 1.13: Energy per atom versus T with various system sizes from N =
256 (4 FCC lattice cells) to N = 4000 (10 FCC lattice cells). The arrows
indicate Tm for the smallest and largest sizes.

Now, we examine the effect of the cutoff distance rc. For large rc, the
contributions of far neighbors are small. From a certain value of rc, Tm does
not significantly vary with all the considered materials. This is due to the
fast decaying term 1

r6
of the LJ potential. As observed in Fig. 1.14, Tm is
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Figure 1.14: Energy per atom versus T with various values of rc for Ar
crystal with N = 500. The left arrow indicates Tm for rc = 1.5l and the
right arrow indicates Tm for rc = 2l ≃ 10.6Å and 3l ≃ 15.9Å. Note that l
is the FCC lattice constant which is equal to r0

√
2 where r0 = 3.75Å is the

NN distance.

saturated for rc ≥ 2 for all the three materials tested, i.e., rc ≥ 10.6Å in
the case of Ar. Beyond this value, the contributions in energy of the others
atoms become so small that even if we use larger size of system it still suffices
to warrant the main conclusion, namely that the original LJ parameters
yield incorrect melting temperature which is about 20% higher than the
experimental one, i.e., much greater than the errors induced by finite-size or
cut-off effects shown in Figs. 1.13 and 1.14 where finite-size and cutoff effects
are indeed negligible on the scale of interest. The disagreement comes from
the fact that the values of the Bernardes parameters were calculated with
a low-density gas using the second virial coefficient [57]. These parameters
are therefore questionable as we can see in Refs. [58, 59, 60]. The values
of the nearest-neighbor distance, the cohesive energy calculated using the
Bernardes parameters taken from these papers are listed in Table 1.2. We
can see the differences between experimental values and theoretical ones for
all cases Ne, Ar, Kr, and Xe.

The Bernardes parameters also yield a high melting temperature found
in our simulations with respect to the experimental one. At this stage, it is
interesting to note that MD simulation of melting of a perfect crystal with
periodic boundary conditions produce superheating, namely a state in which
the system stays in the “unstable“ crystalline state in a small temperature
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region above the melting temperature due to the lack of defects (surface or
dislocations) to trigger the melting [2].

There is an empirical rule which states that the melting temperature of
a crystal without any surface and any defects, is 20% [2] higher than the
true thermodynamic melting temperature Tm. However in MC simulations,
defects and dislocations are naturally created in the crystal by means of
random numbers used in every MC step for atom displacements. Thus, the
superheating should not exist. Agrawal et al. have shown in Ref. [2] that
for Ar, with MC simulation, Tm is about 15% higher than the experimental
value. With our results for Ar, we find an increase of about 20%. For Kr,
we find an increase of 13% for N = 256 atoms after 23× 106 MC steps per
atom. This increase is more important if we consider larger sizes as seen in
the case of Ar. As said, the high values of Tm in MC simulations are not
due to the superheating as in MD simulations. Rather, we believe that these
high values are due to the inaccuracy of the listed Bernardes parameters. In
the following section, the modification of the Bernardes parameters is shown.
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Figure 1.15: Top : Energy per Kr atom versus T with various system sizes
from N = 256 (4 FCC lattice cells) to N = 864 (6 FCC lattice cells). The
arrows indicates Tm for largest size. Bottom : Energy per Xe atom versus
T with various system sizes from N = 256 (4 FCC lattice cells) to N = 864
(6 FCC lattice cells). The arrows indicate Tm for smallest and largest size.
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1.4.3 Modification of the LJ Bernardes parameters

In order to reduce the simulated Tm value, we propose to modify the value
of ǫ, the prefactor of the LJ potential, and the coefficient σ. We have done
simulations with different pairs of (ǫ, σ) for Ar, Kr and Xe. The values
of these parameters were computed with two constraints: the ground state
energy and nearest neighbor distance should be respected. It turned out that
Tm depends essentially on ǫ for the three materials. There is however an
optimal value of σ which corresponds to the experimental nearest-neighbor
distance (cf. Table 1.2).
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Figure 1.16: Energy per atom versus T for two selected values of ǫ, with
σ = 3.44Å, for an Ar crystal with N = 500. The arrows indicate Tm for the
two indicated values of ǫ.

Table 1.4: Modified (ǫ, σ) for noble solids.

Ar Kr Xe
ǫOld(eV.atom−1) 0.01042332126 0.01404339691 0.01997283116
ǫNew 0.008767853 0.01197446324 0.01718091625
% ≃ −15.88 ≃ −14.73 ≃ 13.97

σOld
(

Å
)

3.40 3.65 3.98
σNew = −8.6σ 3.44 3.66 3.97

We show in Fig. 1.16 the curves obtained for Ar with two selected values
of ǫ = 0.008767853 and 0.008951794 which give, respectively, Tm = 83 K and
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86 K. These values of Tm are in agreement with the experimental value 84
K within statistical errors. Note that the modified ǫ is about 15% smaller
than the original Bernardes value ǫ = 0.01042332126 in the case of Ar. In
Table 1.4, we have reported all the computed values of (ǫ, σ) for the three
considered materials.

1.5 Conclusion

In this chapter, we have studied the melting transition by Monte Carlo simu-
lations. We have described an algorithm which we use to study with efficiency
phase transitions in the case of bulk 3D materials. We have applied our al-
gorithm to rare-gas crystals ( Ar, Kr and Xe) and obtained directly from our
simulations physical quantities such as internal energy, lattice constant and
radial-distribution function as functions of temperature. We have shown that
melting occurs with a large latent heat and a jump in the lattice constant.
Effects of system size and cutoff distance have been investigated.

For rare-gas crystals, in order to make a correction to the over-estimation
of the melting temperature given by the LJ-Bernardes set of parameters,
we have proposed a new parametrization of LJ potential, for Ar, Kr and
Xe. This new parametrization is obtained by fitting the cohesive energy, the
lattice constant and the melting temperature. We recall that this is not a
surprise because the Bernardes-LJ parameters already yield theoretical NN
distance, cohesive energy, and bulk modulus different from corresponding
experimental ones (see Table 1.2). Our results for those rare gas are in good
agreement with experiments.

In the following chapter, we will study, using our algorithm presented in
this chapter, the Si bulk diamond structure and the Ag face-centered cubic
lattice. We focus our attention in these two materials because they are used
to study the surface effects and the 2D silicene crystal in the remaining
chapters of this thesis.
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Chapter 2

Bulk Silicon and Silver Crystals

Silicon and Silver are two materials which are commonly used in electronics
industry. A deep understanding of the thermal behavior of these is then of
great interest. Silicon crystalize in a diamond structure, while Silver crys-
talize in an face-centred-cubic lattice. In order to modelling such behaviors
we have to consider two differents kind of potentials. The potentials used in
this work regarding Silicon, are able to modelling the tetrahedral geometry
of a diamond structure by the mean of two different approaches (geometrical
and physical). For Silver, the two potentials used are able to modelling the
FCC structure. Further details are given in the following.

2.1 Silicon

Silicon is the most used material in the electronics industry, and there have
been many investigations of this material spanning several decades. Despite
this fact, it is difficult to find in the literature results on the melting of
Silicon perfect 3D infinite crystal. One of the difficulties encountered when
working with Silicon is how to stabilize the diamond structure because it is
not the most dense: the tetrahedral environment of a silicon atom results
from energy considerations only if there is an anisotropy in the potential.
That is why classical pair-potentials like Lennard-Jones potential, which are
isotropic, do not work because they are potentials which depend only on
the distance between two atoms. In such potentials, when the temperature
increases, the system crystallizes in the FCC structure which is energetically
most favorable because of the high packing fraction of this phase.

There are several potentials able to describe silicon phases. Balamane et
al. [61] have done a comparative study of six many-body empirical poten-
tials which are: the Pearson-Takai-Halicioglu-Tiller potential (PTHT), the

35
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Biswas-Hamann potential (BH), the Stillinger-Weber potential (SW), the
Dodson (DOD), the Tersoff-2 [62] and the Tersoff-3 [63] (resp. T2 and T3)
where 2 and 3 denote two distinct sets of parameters for the same potential
function. Inspired by their analysis and in order to compare our results with
the existing ones, we have studied silicon with SW and Tersoff potentials. We
have reported in Fig. 2.1 the comparison of the two-body potential functions
for the potentials treated in [61].

Figure 2.1: Comparison of the two-body potential functions for silicon. The
open circles correspond to ab initio calculation (taken from Ref. [61]).

As we can see in Fig. 2.1, the two-body terms of SW, T2, T3 have almost
the same behavior. The PTHT and the BH are more like LJ potential with
a slow convergence toward zero energy. DOD differs from SW, T2 and T3
by the depth of the well of energy. The global behavior of these potentials
is almost the same. The slope of the large-distance part of these curves
(≥ 2.5Å) is greater in the case of SW, T2 and T3 potentials than that in the
other cases. This could explain why the melting temperature obtained with
these three potentials is rather high.

Fig. 2.2 shows the three-body part of all these potentials. These curves
are obtained by deforming an equilateral triangle with initial bond lengths
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�

Figure 2.2:
Three-body energy versus angle of silicon atoms forming isosceles triangle

(taken from Ref. [61]).

being the equilibrium distance given by the two-body term and computing
the new configurational energy. For the SW we can see the minimum of
energy for θ ≃ 109◦, the tetrahedral angle in the diamond structure. For the
T3, as we can see the angle does not have this value. For the T3, it is the
competition between the two-body and the three-body part which gives the
lower energy for the diamond structure.

The PTHT is the sum of a two- and three-body terms. This potential uses
the LJ potential for the two-body term and the Axilrod-Teller potential for
the three-body term. The use of this last one has no theoretical justification
to describe bonding in covalent material [64], that is why we have decided to
not use PTHT.

We did not use the BH and DOD potentials because they have not been
tested, so it was difficult for us to compare our results with results in the
literature.

There is also the Keating potential [65] which is suitable for phonon de-
scription but which is not accurate when the distortion of the lattice becomes
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large. Thus, this potential cannot be used in our simulations where the tem-
perature will be increased until the liquid phase.

The Tersoff potential used in this work is denoted by Tersoff-4 (T4) (see
Ref. [16]) which is the same as T3 but which is also able to take into account
multi-component systems (C-Si and Ge-Si systems with a good accuracy for
modeling SiC defects) by adding one more parameter: χ. The T3 is the T4
when χ = 1.

2.1.1 Stillinger-Weber potential

In 1985, Stillinger andWeber [66] have succeeded in the creation of a temperature-
and density-independent potential which is able to describe some properties
of silicon. It was not so obvious that such a potential-energy-function is valid
because of the presence of conduction electrons.

In order to construct their potential, they started from the most general
form of a potential-energy function φ describing the interaction between N
identical atoms. This function contains a sum of different parts which are :
the single-atom part, the two-body part, the three-body part, ...

They decided to use only the two- and the three-body parts because of
the strong directional bond which exists in silicon-diamond structure.

V = ǫA
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where v
(2)
ij is the 2-body part and v

(3)
jik the 3-body one. As the cosine of the

tetrahedral angle in the diamond structure is equal to −1
3
(see Fig. 2.3),

when each silicon atom is on a site of the perfect diamond structure, the
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109°

Figure 2.3: Tetrahedral configuration of the atoms in the diamond structure.
The value of the angle is around 109

◦

, the cosine is equal to −1
3
.

three-body part is equal to zero (see Fig. 2.4). If we analyze more in detail
this last term we can understand that it is a purely geometrical term.

The parameters for the SW potential are given in table 2.1.

Table 2.1: Stillinger-Weber parameters for silicon Ref. [66]

Parameter Value
ǫ (eV) 2.16826
A 7.049556277
B 0.6022245584

σ(Å) 2.0951
p 4
a 1.80
λ 21.0
γ 1.20

In order to check if this potential is suitable for our algorithm, we have
plotted the energy from the two-body part against the nearest-neighbor dis-
tance and the three-body part against the silicon-silicon angle in Fig. 2.4. As
we can see, when the angle of the three-body term is equal to about 109

◦

, the
energy of this term is equal to zero. When the configuration is deformed, the
energy given by the three-body increases (whatever the deformation is, i. e.
with smaller or greater angle). When the angle becomes greater than 180◦,
the energy decreases until the angle reaches the value of around 251◦, which
is equal to 360◦-109◦ [the symmetrical configuration of the first one (109◦)].
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As we can see, the configurational energy is lower for the nearest-neighbor
(NN) distance r0 ≃ 2.35Å. This distance coincides with the NN distance in

a diamond structure with a lattice parameter of 5.43Å (
√
3
4
× 5.43 ≃ 2.35Å),

namely silicon.
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Figure 2.4: Top: two-body part of the Stillinger-Weber potential; Bottom:
three-body part.

As we can see in Fig. 2.5, the configuration with the lower lattice energy is
the diamond one. Hence, when we will start our MC simulation, the diamond
structure will not be easily broken, as will be the case using a classical pair
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potential like the LJ one. Energetically, as the diamond structure has the
lowest energy, the structure is stable. Indeed, if we begin a Monte Carlo sim-
ulation without a configuration in the lowest energy state, the configuration
cannot be stabilized. The system will become quickly disordered.

Figure 2.5: Energy (in reduced unit) curve for different structures of lattice
(FCC, SC, BCC and diamond), using the SW potential for silicon (taken
from Ref. [66]).

Stephenson et al. [67] have proposed a modification of the SW potential in
order to better describe the Si(111)-(7x7) surface of silicon. Indeed, the SW
potential has been used with the (001)-(1x1), (001)-(2x1) and (111) surfaces
with a good accuracy but it fails when Stephenson et al. tried to use it for
adatoms on the Si(111)-(7x7) surface. As we will see when we try to describe
surface atoms of silicon, there are some difficulties because this potential is
fitted for bulk values. We will return to this problem later.



42 CHAPTER 2. BULK SILICON AND SILVER CRYSTALS

2.1.2 Tersoff potential

The second potential widely used for the modeling of silicon is the Tersoff
potential. This empirical potential was introduced by Tersoff in 1986 [15]
in order to increase the accuracy of some potentials introduced earlier in an
attempt to describe the Silicon. For example, the Keating potential [65] was
very suitable to describe a crystal of Silicon with a small distortion but when
the reconstructions are more drastic, the bond lengths of re-bonded atoms
are inaccurate. The Keating potential is very suitable for describing phonons
or elastic distortions.

Tersoff has built his potential because existing potentials describe well
the tetrahedral silicon but fail to describe non-tetrahedral forms in a satis-
factory manner. The Tersoff potential is not a two- and three-body potential
like the SW-potential. It has the form of a Morse pair-potential with the
bond-strength parameter depending upon local environment. The Tersoff
potential is the first one which incorporates the structural chemistry of co-
valent systems like silicon. This potential was introduced after the work of
Ferrante, Smith, and Rose who have shown the universal behavior of cal-
culated binding-energy curves for solid cohesion and chemisorption [68, 69]
by use of a three-parameters rescaling. The work of Abell on this universal
behavior assuming a Morse or Morse-type potential convinces definitively
Tersoff to built his potential using a Morse pair-potential.

As we have said before, there are four updated Tersoff potentials by Ter-
soff himself. The first version of this potential [15] that we will denote (T1),
was a first approach to build a potential able to model tetrahedral bonds
without the use of a two- and three-body potential. Indeed, Tersoff was
suspicious about the capability of a many-body type potential to describe
a wide range of bonding geometries. Stillinger and Weber themselves have
concluded, after a deeper study, that they are unable to describe the energet-
ics of all the diverse bonding geometries with a three-body potential. This
information was confirmed by the work of Biswas et al. [70].

T1 had also some problems because the energies of phonons were too high
and the diamond structure was not the most favorable structure, energeti-
cally. Indeed, T1 yields a zero-energy formation for one defect (hexagonal-
site intersticial) so the ground state of this potential cannot be the diamond
structure. As Dodson showed in Ref. [71], the problem reflects not only a
bad parametrization but also a more general problem. So, MC simulations
as well as MD simulations could not be done with T1.

Tersoff has improved his first version and has built the T2 version [62].
After this version, the potential’s expression is almost still the same, so for
the convenience of the reader, the expression of the potential is given just
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below:
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The major modification with respect to the former expression resides in
the bij term which measures the bond order. Starting from the fact that the
bond strength between an atom and its neighbors depends on the number
of neighbors (more neighbors imply less strength for each bond). Tersoff
argues that the most important variable is the coordination number of an
atom. He understood that the final atomic configuration will be obtained
by a trade-off between increasing the number of neighbors with as constraint
the minimization of the system energy.

The expression for bij comes from the observation of Tersoff that with
Morse functions in the expression 2.5, the cohesive energy is independent of
the coordination number when bij α z− 1

2
. If it is not, the previously cited

trade-off will be in favor of the most dense structure (coordination 12) or in
favor of the diatomic molecule (coordination 1).

With this new expression, Tersoff obtained good results for describing
energy of the diamond structure as the lowest energy than other structures
as shown in Fig. 2.6.

However, there are again some problems with this parametrization which
is not optimized, as Tersoff said himself. For example, as we can see in Fig.
2.6, the energy of the β − tin structure is too high (normally β − tin is
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Figure 2.6: Energy curve for different structures of lattice (FCC, SC, BCC,
diamond, β− tin and simple hexagonal), using the T2 potential (taken from
Ref. [62]).

the first structure which appears with the increase of pressure). Hence, at
high pressures this parametrization will not be useful. With this new form,
improvements have been done in the calculation of phonon dispersion curve
(no phonon data were taken into account in the fitting procedure).

Results on the elastic constants (c11, c12, c44 and ζ) were quite good,
apart from c44 which is underestimated. This underestimation may come
from a weak strength for the bond-angle, as Tersoff has analyzed in his paper.
Another improvement in the determination of the elastic constants was done
in Ref. [63] by means of a new parametrization.

Finally, the last improvement of the potential was done by Tersoff in Ref.
[16]. This new parametrization allows for consideration of multi-component
systems between Si and C atoms or between Si and Ge atoms. In this thesis
we have used the last version with the parameters given in Table2.2 :

The last (but not the least) important property when we do simulations
is the calculation speed using this potential. Indeed, as the cutoff of the
potential is relatively short, our Verlet lists are small, hence the computation
of energy and other quantities is very fast, compared to the LJ potential for
example.
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Table 2.2: Tersoff parameters for the potential given by Eqs. 2.4 to 2.9

Parameter Value
A (eV) 1830.8
B (eV) 471.18
λ (Å−1) 2.4799
µ (Å−1) 1.7322

β 1.1× 10−6

n 0.78734
c 1.0039× 105

d 16.217
h -0.59825

R (Å) 2.7
S (Å) 3.0

χ 1.0

2.1.3 Monte Carlo results

All simulations were done with a diamond structure, with at least 512 atoms
(4 lattice cells in each direction) and at most 2744 atoms (7 lattice cells in
each direction). For each temperature, we have done 45× 106MC steps. We
recall that without using a cluster of computers where simulation for each
temperature runs on an independent node of the cluster, the time required
for this simulation would be discouraging even with all the optimizations.

At the beginning of the algorithm, before the MC updating algorithm, a
systematic search of the ideal lattice parameter at 0 K is carried out. This
procedure is done for all potentials. Hence, plots of these curves for SW and
T4 potentials are shown in Fig. 2.7.

As we can see, the lattice constant found is in perfect agreement with the
experimental value (5.43Å). Furthermore, the minimum of the energy found,
is also in good agreement with the value given in the literature.

After this first step, the thermalization time begins. As this step of
the simulation depends on the system which is studied, we do not know in
advance how long it should be. So, for each temperature we have recorded
the energy curve versus MC time. This huge quantity of data is very useful
for several reasons. First of all, it allows us to estimate the number of MC
steps necessary for the thermalization of the system. We can also ensure
that no problem occurs in the runs. Indeed, some problems can appear
after several thousands of MC steps and quantities such as energy or also
interatomic distance, can be affected by mistakes or inappropriate choices of
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Figure 2.7: Energy versus lattice constant with the T4 (upper) and the SW
(lower) potentials.

atomic motion amplitudes. The systematic investigation on all the recorded
data allows us to avoid all kinds of problems. Of course, as one can imagine,
this consumes a huge quantity of computer memory. The thermalization
time depends also of the temperature. In order to ensure that we have a long
enough equilibrating time, we have systematically taken longer than required
equilibrating times for all temperatures.

As we can see in Fig. 2.8, after the melting, the number of MC steps
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necessary to begin the averaging on the energy is about 8 × 106. The equi-
librating time is the same for the two potentials. Hence, we average all the
quantities after 8 × 106 MC steps. Averages are carried out on a minimum
of 5× 106 MC steps.

The energy versus number of MC steps is plotted in Fig. 2.8 for a system
containing 1728 atoms. The curve shows a jump of the energy after several
millions of MC steps. This leap, corresponding to the latent heat, comes
for temperatures greater than 3200 K, using the T4 potential. Although
the precision in temperature is equal to 50 K, the melting temperature is
obviously too high. In Fig. 2.9, we have plotted the curve of the energy
versus temperatures, using the SW and T4 potentials.
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Figure 2.8: Energy versus MC steps below (red) and above (black) the melt-
ing temperature (using the T4 potential) for a Si supercell of 1728 particles
(diamond 6x6x6).

As we can see, the same behavior occurs in the same range of temper-
atures, ≃ 3150K ± 25K for the T4 potential and 2950K ± 50K for the
SW potential, for the two potentials. The size effect of the simulation cell
has been tested. For a 4x4x4 diamond cell (512 atoms) the melting tem-
perature is saturated, whatever the potential used. This overestimation of
the melting temperature is a well-known problem for the T4 potential (both
with MD and MC techniques). The overestimation with the SW potential
is less known. To our knowledge, there are no results using direct Monte
Carlo simulations on this subject. Stillinger and Weber have done MD sim-
ulations with their potential, using a 216-atom cubic cell with fixed volume.
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Figure 2.9: Energy versus temperature using SW (upper) and T4 (lower)
potentials for Si.

We emphasize that the NPT method is more appropriate for simulations of
melting than the NVT one. It is one of the major problem when one uses
MD simulations. In Ref. [66], the melting temperature is around 2012 K
(T ∗ = 0.08 in reduced units). In order to assign this value they take the
middle of the temperature area where an overlapping of the liquid-phase en-
ergy over the crystalline-phase energy takes place (see Fig. 3 in Ref. [66]).
This criterion is empirical. If we take the greatest temperature (before the
overlapping region) we find 2591 K (T ∗ = 0.103 ) for the melting tempera-
ture which is not so far from our value (2950K ± 50K). Later, Yoo et al.
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[72] have done MD simulations using the SW and T4 potentials. They found
melting temperatures equal to 1691K (T ∗ = 0.0672 in reduced units) with
the SW and 2584K with the T4 potential (at zero pressure). They have used
a coexistence’s method where a solid cell and a liquid cell are put in contact.
As we can see, using the same technique (MD), two melting temperatures
are found. In Ref. [2], MC simulations with T4 have been performed for
the determination of the melting temperature. They have used the voids-
nucleated method, which is imported from the MD. This method lowers the
melting temperature. If no void is used, the melting temperature is around
3047K (see Fig. 3 in Ref. [2]). This temperature is in good agreement with
our result (≃ 3150K ± 25K). We did not use the voids-nucleated method
because we think that in a MC algorithm, voids are naturally created with
the tremendous quantity of random displacements used in our runs. For the
SW potential no such voids-nucleated study exists (to our knowledge) so the
comparison is impossible. We can only say that with both MC and MD
techniques, the melting temperature of Si found with the SW potential is
lower than the melting temperature found with T4. This behavior can be
explained by a more detailed analysis of the curves shown in Fig. 2.1. In-
deed, if we compare the curves corresponding to the SW and T3 potentials,
we can see that the slope of the SW curve, on the right of the minimum of
energy, is lesser than in the case of the T3. In other words, the dilatation is
easier in the case of the SW potential than in the other case.
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Figure 2.10: Radial-distribution function for several temperatures(1300K–
3300K), using SW potential for Si.
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Agrawal et al. [2] have modified β, n and h parameters to lower the
melting temperature. The new values of these parameters are respectively
1.15 × 10−6, 0.988 and -0.74525. The three parameters are involved in the
bij term of the Tersoff potential. They have decided not to attempt to change
the parameters A, B, λ, µ and χ because the properties of the solid such
as binding energy and NN distance may be very sensitive to their modifica-
tion. They did not attempt, neither, to change R, S, c and d because the
resulting modification in the melting temperature is not appreciable while
the density and cohesive energy are strongly affected. We have applied their
modifications and tried to improve their results. It appears from this study
that their modification is the optimal one. Indeed, we have tried several set
of values for these three parameters without changing the cohesive energy
and lattice constant.The melting temperature found with their parametriza-
tion is the lowest one. The plot of the energy versus temperature with the
parametrization proposed by Agrawal et al. is shown in Fig. 2.11. As we can
see, the melting temperature is lowered to Tm = 2125K ± 25K, compared to
the 2069K obtained by Agrawal et al. in Ref. [2] for a crystal without voids.
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Figure 2.11: Energy versus temperature using the Tersoff potential, with the
parametrization proposed in Ref. [2].

This new parametrization gives a value for the density of liquid at the
melting transition equal to 2.589 ± 0.013g.cm−3, in good agreement with
experimental value 2.583g.cm−3. In this sense, the new parametrization im-
proves the T4 result which is 2.225gcm−3. The ratio δV

Vs
, where Vs is the

volume of the solid and δV the volume change, is equal to −11.8%, at
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the melting transition. This result is in good agreement with experiment
(−11.9%).

Unfortunately, the melting heat ≃ 19.3KJ.mol−1 in Ref. [2] and in
our work (see Fig. 2.11) is in poor agreement with experimental value of
(50.6KJ.mol−1). The T4 parametrization gives 44.8KJ.mol−1 (see Fig. 2.9).

Other comparisons of the T4 and the new parametrization can be found
in Ref. [2].

For the SW potential, there is no previous MC work. We have tried
to modify the original SW parametrization in order to lower the melting
temperature.

We have modified only two parameters namely ǫ and A. The idea was
to weaken the three-body part without changing the two-body part. We
have tried to find the balance between a weak three-body part in which the
diamond structure is not stable, and a strong three-body part. Of course,
the energy of the perfect diamond structure and the lattice constant are the
two constraints one wishes to satisfy. The results are shown in Fig. 2.12.

�������������		
���

���������				������ (eV)

Figure 2.12: Energy versus temperature using the SW potential with the new
parametrization.

As we can see, the melting temperature is lowered. With this new
parametrization, the diamond structure is again the lowest-energy config-
uration. It is understandable because we tune the three-body part, with-
out canceling it. As in the case of the modified T4, the melting latent
heat is in bad agreement with experiments (≃ 9.6KJ.mol−1) with this new
parametrization. We can explain this result because since we have weakened
the three-body part, the system has less energy to liberate at melting.

We did not investigate more in detail the new parametrization of the
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SW potential because as Tersoff has analyzed, a potential with a two- and
three-body parts cannot describe a wide range of bonding geometries.
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2.2 Silver

In order to study the melting transition of Ag crystal we have used two poten-
tials which are widely used namely the Gupta potential and the embedded-
atom-method potential (EAM). This study allows us to apply our algorithm
to metallic materials. In the following, we first present the two potentials
used and we will show our MC results about the melting temperature of Ag
crystal.

2.2.1 The Gupta potential

In computer simulations of metals, the Gupta potential is one of the most
used semi-empirical potentials. There are multiple reasons for this success
but the main ones are: the accuracy of its results for metals and it is easy to
implement.

The Gupta potential is derived from the Gupta’s expression of the co-
hesive energy of the bulk material and is based on the second-moment ap-
proximation of the electron density of states in the tight-binding theory. It
includes implicitly some many-body interactions.

This potential has been used for the study of structural phase-transitions
[73, 74, 75], thermodynamical properties [76], surface properties [13, 77] and
clusters [78, 79, 80] of transition metals.

The expression of the potential of an atom at the position −→r i is as
follows:

V (−→r i) = E0
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 (2.9)

where A is a constant given in eV, r0 the equilibrium NN distance in the
bulk metal, p the repulsive-interaction range and q the attractive one. rij =
‖−→r i − −→r j‖ is the distance between the atoms i and j and E0 an energy
constant given by the fit with the melting temperature of bulk Ag. The
first sum runs over a cluster of n atoms surrounding atom i, and the sum in
the square root runs over all atoms. In Eq. (2.9), the first part is a Born-
Mayer pairwise repulsion energy term and the second part is the many-body
attractive contribution.

The parameters used are reported in Table 2.3.
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Table 2.3: Gupta parameters for Silver used with Eqs. (2.9)

Parameter Value
A (eV) 0.09944
p 10.12
q 3.37
r0(Å) 2.892
En 2.52

2.2.2 Embedded Atom Method : EAM

Murray, Daw and Baskes and several authors [81, 17, 82] have proposed a
method based on density-functional theory called EAM. This potential is
semi-empirical and is useful for computing the energy of an arbitrary ar-
rangement of atoms. This technique has been widely used in the past, for
modeling several problems such as point-defect properties [17], surface relax-
ation [17, 83] (as we will see in the next chapter), surface reconstructions [84],
surface and bulk phonons [85], thermal expansion [86] and liquid structure
[87] etc.

We have used a version of the EAM potential given in Ref. [88]. This
version is the same as the original one, with an optional improvement which
allows the possibility to study binary alloys.

The parameters of the EAM potential used in this work for silver are
reported in Table 2.4.

In the EAM potential, the total potential energy is given by :

Ep =
∑

i

[

Fi (ρi) +
1

2

∑

j 6=i

φ (rij)

]

(2.10)

where φij represents the pair energy between two atoms i and j separated
by rij . Fi is the embedding energy function which represents the energy
to embed an atom into a local site with electron density ρi. The electron
density ρi has the following expression :

ρi =
∑

j 6=i

f (rij) (2.11)

with
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f (rij) =
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The embedding function have the following form:

F (ρ) =
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The pair energy expression between atoms i and j is :

φ (rij) =
A exp

[

−α
(

rij
re

− 1
)]

1 +
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Note that MC simulations using EAM yield the bulk melting temperature
at 1170K for Ag as given by Ref. [82]. In that work, Foiles et al. have
computed the Gibbs free energy of solid and liquid phases. The melting
point being the temperature where those two curves are crossing.

Table 2.4: EAM parameters for silver used with Eqs. (2.10)-(2.14).

Parameter Value Parameter Value
re 2.891814 Fn1

-0.221025
fe 1.106232 Fn2

0.541558
ρe 15.539255 Fn3

-0.967036
α 7.944536 F0 -1.75
β 4.237086 F1 0
A 0.266074 F2 0.983967
B 0.386272 F3 0.520904
κ 0.425351 η 1.149461
λ 0.850703 Fe -1.751274
Fn0

-1.729619
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2.2.3 Monte Carlo results

We have used FCC samples containing 256, 500 and 864 atoms. As we can
see in Fig. 2.13, the melting temperature is saturated for systems with more
than 500 atoms. Hence, in the following we have used samples of 500 atoms.
The number of MC steps used for the thermalization is 5× 106MC steps and
the averages were done over 30× 106MC steps.

Figure 2.13: Energy versus temperature using the Gupta potential for Ag,
for different sample sizes.

We have also tested the cutoff of the potential. For cutoff greater than 1.3
lattice constants (i.e. for a sphere containing more than the third-neighbor
distance), the melting temperature is saturated. Hence, we have used a cutoff
distance equal to 1.3 lattice constants.

In Fig. 2.14 we have plotted the curve of energy versus temperature with
the two potentials used.

As we can see, the melting temperatures (≃ 1225K±25K with the EAM
and ≃ 1195K ± 25K with the Gupta potential) are in reasonable agreement
with experiments (Tm = 1235K).

2.3 Conclusion

In this chapter, we have used the algorithm elaborated in the previous chapter
to study the phase transition in the case of bulk 3D semi-conductors (Si)
and metals (Ag). We have obtained directly from our simulations, physical
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Figure 2.14: Energy versus temperature using Gupta and EAM potentials.

quantities such as internal energy, lattice constant and radial-distribution
function as functions of temperature.

For Si, the two well-known potentials used (namely Stillinger-Weber and
Tersoff potentials) give an overestimation of the melting temperature. For the
Tersoff potential this problem is well documented in the literature. We have
seen that a modification of three parameters was already done by Agrawal
et al. in order to avoid this problem. But as we have seen, this modification
is limited, the melting temperature found is still too high. The value of the
melting heat lost it accuracy, with this new parametrization.

We have seen that, for the SW potential, modifications can be done easily.
Indeed, only two parameters in the geometrical part of the potential are
necessary (ǫ and A). As we have also seen, the general form of this potential
is not well adapted for modeling of all bonding geometries. Hence, in the
following of the thesis, when we will speak of silicene, we will not use this
potential.

Finally, we have succeeded to modeling the melting transition of Ag,
using the Gupta potential and the EAM potential. Indeed, a good agreement
between previous results (in literature), experimental results and our results
is found.

In the following chapter we will use the results concerning the bulk-3D
Ag for modeling the Ag (111) surface.
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Chapter 3

Melting and Lattice Relaxation
of (111) Surface of Silver1

3.1 Introduction

The increasing interest in nanometric devices has inevitably leads scientists
to search for a deeper understanding of surface physics.

It is well known that surface atoms of a material have a behavior different
from that of bulk atoms, mainly because of the reduced number of neighbors
and the surface geometry.

Surface effects are seen in diffusion barriers, vibrational amplitudes of
surface atoms, surface phonon frequencies and surface magnetic excitations.
All these properties depend sensitively on the first inter-layer distance namely
the inter-layer distance between layer 1 and 2.

Different kinds of surface behavior can occur according to the nature of
the material and the surface orientation. The case of metallic materials has
been well studied theoretically [89, 90, 13, 91, 92, 93, 94] and by means of
different experimental techniques [95, 96, 97].

The contraction of the lattice spacing has been experimentally observed
by Medium Energy Ion Backscattering (MEIS) [95], Low-Energy Electron
Diffraction (LEED) [96] or X-ray scattering [98]. Other methods such as
elastic He scattering and electron energy-loss spectroscopy have also been
used. From a theoretical point of view, Gupta has shown analytically that for
classical pairwise potentials (Lennard-Jones, Morse, . . . ), inter-layer distance
near the surface exhibits a dilatation. He has also shown that the Tight-
Binding-Potential (TBP) and the so-called Gupta potential (GP) lead to a
contraction of inter-layer distance at metallic surfaces.

Despite the large number of experimental and theoretical techniques used

1Published work, see Ref.[4]
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to observe this phenomenon, there exists an unsolved question on how the
contraction evolves with increasing temperature. There are two contradic-
tory answers in the literature: X-ray scattering [98] and LEED [96] as well
as molecular dynamics (MD) simulations using the Embedded Atom Method
(EAM) [94] and [99] show the surface inter-layer distance always smaller than
the bulk one at the same temperature, namely surface is contracted, whereas
MEIS experiments [95] and ab-initio density-functional theory (DFT) calcu-
lations [100] show an anomalous thermal expansion of the surface at some
temperature below the bulk melt.

Facing this long-standing unsolved question, we wanted to carry out a
Monte Carlo (MC) study in an attempt to understand further these con-
tradictory results. To our knowledge, there are no MC simulations in the
literature thus far on this subject, although some MC simulations have been
used to reproduce experimental patterns such as the surface blocking pattern
during scattering process (see Ref. [97] for the Pb (110) surface). Given the
tremendous number of numerical studies on surface problems, it is surprising
that no MC simulation has been performed so far to study the variation of
the surface inter-layer distance.

The purpose of this chapter is thus to investigate by MC simulation the
variation of the lattice spacing between the topmost layers of the (111) silver
surface with the increasing of the temperature.

In order to simulate such a behavior as accurately as possible, we have
considered potentials which describe as well as possible the material. The
EAM potential is often used in MD simulations and especially for the Ag
(111) surface [94, 99, 101]. Working with this potential allows us to compare
our results with other numerical studies using the same potential. Further-
more, the EAM potential reproduces accurately the bulk melting tempera-
ture of Ag with MC simulation [82]. On the other hand, the Gupta potential
describes well the surface and cluster behaviors [78, 102, 103, 104, 105]. The
melting temperature of bulk Ag is also well reproduced with this potential.
That was the reason why the two potentials GP and EAM have been used
for many years to simulate silver material and other metallic crystals. How-
ever, as will be seen below, the two potentials, although yielding the same
result for low-temperature surface contraction, give different results at higher
temperature for the surface contraction and the surface melting.

In Section 3.2 we will show a summary of the study of the (111) surface of
silver, both in theory and experiments. In Section 3.3 we present our results
on the (111) surface of Ag where we briefly describe our algorithm and discuss
two relevant quantities to compute. Concluding remarks are given in Section
3.4.
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3.2 Study of the (111) surface of silver: his-

toric developments

The fact that the (111) surface of silver has a contraction at room temper-
ature was well established 50 years ago. Many metals surfaces follow this
behavior. There is only a few exceptions to this rule.

In 1993, Statiris et al. experimentally studied the Ag(111) surface with
the Medium Energy Ions Scattering technique (MEIS)[95].

IONS FLUX

Figure 3.1: Schematic figure illustrating the MEIS technique (Taken from
Ref.[95]).

The principle is the following. When atoms on the first layer of the sample
are in their “bulk positions” the atoms on the second layers are visible if we
look at them from an appropriate angle. The idea of the MEIS is that when
the first layer has a displacement, the atoms on the second layer will be
hidden by the atoms of the first layer (see Fig.3.1).

Figure 3.2 shows that the first inter-layer distance (between layers 1 and 2,
1 being the outer) is contracted until ≃ 800K, and after this temperature, an
expansion can be observed. Hence with this technique, there is a contraction-
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Figure 3.2: Evolution of the inter-layer contraction with the temperature,
measured by MEIS (taken from Ref.[95]).

expansion crossover. The first inter-layer spacing is contracted by −2.5% of
the bulk inter-layer spacing at 300K, and is in expansion at 1100K(10% of
the bulk inter-layer spacing).

Inspired by this striking result, Lewis [94] performed MD calculations
using EAM potential on this surface. Figure 3.3 shows his result.

As we can see in Fig. 3.3, the first inter-layer distance is contracted
for all the temperatures (up to ≃ 1100K). Although their results are in
poor agreement with MEIS experiments (value and behavior), an excellent
agreement with calculations done by Methfessel et al. using the all-electron-
full-potential-linear-muffin-tin-orbital method[106], is found at low temper-
atures. Indeed, they found ∆12 = −1.4% for the first inter-layer distance.
Unfortunately, the comparison between the two approaches is only possible
concerning this particular point because no calculation on other inter-layer
distances were reported.

In 1997, Narasimhan et al. [107] have done the first DFT calculations
on the thermal expansion of the Ag(111). In this study, the changes in the
first inter-layer distance ∆12 as a function of temperature, were evaluated
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Figure 3.3: Evolution of the inter-layer contraction with the temperature,
computed by EAM-MD (taken from Ref.[94]).

by the minimization of the Helmholtz free energy of the system with re-
spect to ∆12. They started with the computation of the static energies and
phonon frequencies at T=0K using DFT within the local density approxima-
tion (LDA), and then extended their results to finite temperatures. In order
to do this extension, they used the quasiharmonic approximation (QHA).
In their simplified computation, the first layer moves as a whole. With this
simplification, they find good agreement between their results and the result
obtained by MEIS experiment. The anomalous expansion was attributed to
the softening of parallel vibrational modes of the surface atoms. In their
analysis, the anharmonicity of the perpendicular modes was not responsible
of the anomalous expansion.

In 1998, Narasimhan again performed a more detailed study using ab-
initio DFT, in order to clarify this problem. His results on the anomalous
thermal expansion of the Ag(111) surface are in excellent agreement with the
MEIS observations as we can see in Fig.3.4. He found a marked softening
of surface phonon modes and a large enhancements in the mean square dis-
placements of the surface atoms which could probably be responsible of this
anomalous expansion at high temperatures.

One year later in 1999, Al-Rawi et al. [99] did an EAM-MD study of
anharmonic effects on the Ag(111). Indeed, anharmonic effects are expected
to be enhanced at the surface because of the broken inversion symmetry
and the reduced local atomic coordination. Hence, they may lead to the
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Figure 3.4: Comparison between DFT calculations and MEIS observations,
for the first inter-layer distance of the (111) surface of silver (taken from
Ref.[100]).

observations obtained by MEIS experiments.
In order to monitor the anharmonic effects, they have computed the mean

square vibrational amplitude (MSVA). Effectively, the MSVA variations with
temperature are good indicators of the strength of anharmonic effects. The
expression of this last quantity is the following :

〈

u2
lα

〉

=
1

Nl

Nl
∑

i=1

〈

[riα(t)− 〈riα(0)〉]2
〉

(3.1)

where Nl is the number of atoms in layers l, iα(0)〉 is the equilibrium position
of atom i in layer l and 〈...〉 is a time-average and α can be x,y or z, the
Cartesian components.

Their results of MSVA versus temperature show that the z-component
(perpendicular to the plane) is larger than the other components. However,
they found an increase in the x-component of the MSVA (in the first-three
considered layers) at around 1100K. They attributed this increase to a dis-
ordering of the surface due to vacancy-adatom pair creation.

Nevertheless, the enhancement of anharmonic effects on the Ag(111) sur-
face is not strong enough to give rise to the crossover from the contraction
toward the expansion, as we can see in Fig.3.5. The contraction at 300K is
equal to 1.35% which is not in good agreement with 2.5% given by MEIS
experiments. Furthermore, in their study, they pointed out that the DFT
calculation given in [107] did not include the full dynamical behavior of the
system. They have also demonstrated that failing to include the full dynam-
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Figure 3.5: First inter-layer distance of the (111) surface of silver relative to
the bulk (taken from Ref.[99]).

ics can give erroneous results on the thermal behavior of the surface.

In 1999, Xie et al.[108] reported on DFT computations using a more com-
plete description of the dynamics but still within the QHA. They reproduced
the anomalous thermal expansion observed in previous DFT calculations
[107], but in a more moderate way. They found that the top-layer relaxation
of Ag(111) changes from an inward contraction (−0.8%) to an outward ex-
pansion (+6.3%) as the temperature increases from T = 50K to T = 1150K.

In 2000, Soares et al. have studied the Ag(111), using Low-Energy Elec-
tron Diffraction (LEED) experiments over temperature between 128K-723K.
Their results are shown in Fig.3.6 (left).

Their results exhibit a contraction at low temperatures and an expansion
at high temperatures. The main problem in their analysis is that they used
a temperature-independent bulk inter-layer spacing. Then, the expansion
observed arises at a temperature (≃ 370K) lower than in the case of MEIS.
This crossover temperature increases at ≃ 700K if we plot the evolution of
the bulk inter-layer spacing with the temperature (see Fig.3.6 on the right).

LEED and MEIS are also in disagreement with each other about the
value of the contraction of ∆12 at low temperatures. Indeed, MEIS shows
a contraction equal to 2.5% of the bulk inter-layer spacing at 300K, while
LEED leads to a contraction equal to 0.5%.

For the first inter-layer spacing, the two experimental techniques cited
above are thus in agreement qualitatively but not quantitatively. For the
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Expansion (700K)

Figure 3.6: The first three inter-layer spacings of the (111) surface of silver.
The original bulk line is shown with black dashed line and the modified bulk
line with red dashed line (taken from Ref.[96]).

other interior inter-layer spacings, LEED gives a contraction at low temper-
atures for ∆23, while MEIS gives an expansion. For ∆34, MEIS and LEED
experiments are in a quite good agreement (qualitatively) at low tempera-
tures.

Finally, in 2001, Botez et al. have measured the thermal expansion of
the Ag(111) surface by X-ray scattering. They have used synchrotron X-ray
diffraction for temperatures between 300 and 1100K. They have found that
∆12 is essentially bulk-like at low temperatures (within the error margin).
These results are very questionable given the fact that a large quantity of
works shows a contraction at low temperatures.

Given this existing controversy, and in the lack of MC simulations on the
subject, we decided to study this fascinating problem.

3.3 Monte Carlo Results

Before showing the results that we have obtained, we start with a presen-
tation of two important quantities that we have computed namely the ge-
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ometrical structure factor and the Ø6 parameter. We then describe some
modifications that we have made in the algorithm in order to take into ac-
count the surface of the sample. Finally we show our MC results.

3.3.1 Computed quantities

Geometrical Structure Factor

When the temperature increases, we can see, in radial-distribution function,
that the peaks corresponding to the second-nearest-neighbor distance and
the following neighbor peaks are broadened (almost disappeared) while the
short ordering remains stable as seen by the sharp peak of first-nearest-
neighbor distance. Note that the loss of the long-range-order is the loss
of translational order, while the short-range-order is an orientational order.
When temperature increases further, the short-range-order is lost just before
the melting.

The geometrical structure factor is an useful tool to monitor the loss of the
long-range-order at the surface of a sample containing one kind of atoms. It
is based on the diffraction of an incident beam of particles (electron, photons
X ...) by a crystal. This phenomenon was discovered in 1913, by W. H. and
W. L. Bragg, when they observed the presence of some intense peaks in the
diffraction pattern of crystalline structures using X-ray. This phenomenon is
due to the interference of reflecting waves by crystal atoms. This behavior
was not observable with liquids or all disordered phase.

As we know, when the wave-length λ (typically in the same range of the
inter-layer distance), and the incident angle have certain values, the interfer-
ence can occur and we can see a diffraction pattern with some intense peaks
namely the Bragg peaks. The well-known equivalent criterions of Bragg and
von Laue give us a condition to have realize a diffraction [46].

The structure factor is based on the von Laue formulation2 of the inter-
ference principle applied to the topmost layers of the surface. It gives us
information on the intensity of the diffracted beam; In the ideal case of per-
fect scattering, the value is 1 when we have constructive interferences and 0
in the case of destructive interferences.

With MC simulations, it is possible to compute this structure factor by
choosing an appropriate reciprocal lattice vector corresponding to the struc-
ture studied3. In our case, the Ag(111) surface, the wave-vector is given

by the following expression:
−→
K = 2π

(

1;−
√
3; 0

)

. Given this vector, the
computation of the structure factor is given by the following formula :

2This formulation uses explicitly the reciprocal lattice.
3Details of the determination of the reciprocal lattice vector are given in Appendix A.
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where
−→
dj is the position vector of an atom in the layer, Nl the number of

atoms in a layer. The angular brackets < ... > indicate thermal average
taken over MC run time.

The geometrical structure factor of the Ag(111) is shown in Fig. 3.7.
When the sample contains different kinds of atoms, we have to consider the
atomic shape factor but in this work only mono atomic systems have been
tested.

The O6 parameter

When melting occurs, orientational order is lost; this cannot be seen in ra-
dial distribution function or in the geometrical structure factor. When the
temperature increases, the second-nearest-neighbor distance and the greater
ones are not well defined; then the corresponding peaks of the radial distri-
bution function disappear. Only the first peak corresponding to the first-
nearest-neighbor distance is still present in the liquid state. Because the
short-range-order is a orientational order, we have to introduce a parameter
which allow us to measure the orientation of the different cells constituted
by an atom and its nearest neighbors.

The Ø6 (hexatic) parameter is computed as follows:

O6 =

∣

∣

∣

∑

jk Wjke
i6Θjk

∣

∣

∣

∑

jk Wjk

(3.3)

with

Wjk = e−
(zj−zk)

2

2δ2 (3.4)

where the sum runs over the nearest neighbor pairs and Θjk is the angle
which the j−k bond, when projected on the xy plane, forms with the x axis.
The δ parameter is taken as one-half the average inter-layer spacing. The
weighting function, Wjk, allows us to differentiate the ”non coplanar” and
the ”coplanar” neighbors. With a coplanar neighbor, the weighting function
takes a maximum value. This parameter has been used by several authors
[99]. We have decided to use this one, in order to easily compare our results
with existing results in the literature. As a remark, this is not the only way
to monitor a molten layer; we also have the intralayer pair correlations which
loses their crystalline shell structure and the monitoring of the energy of the
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atoms in the layer which is larger in a molten layer than the energy of the
atoms in a bulk crystalline plane.

We have calculated the spatial average of O6 taken over all atoms of the
surface layer and then its thermal average over MC run time. We plot the
averaged O6 parameter and the S ~K structure factor versus temperature in
Fig. 3.7.
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Figure 3.7: Structure factor S ~K (green) and O6 order parameter (red) of the
first layer versus temperature for the EAM potential.

3.3.2 Model and algorithm

In this surface problem we have used xy in-plane periodic boundary condi-
tions (xy-PBC). A picture of the system with the xy-PBC is shown in Fig.
3.8.

The number of moving layers is adjustable in order to monitor if our
result depend on this parameter. The other layers of atoms are fixed. Their
presence allows us to simulate the bulk condition below the surface. We have
taken a number of fixed layers corresponding to a depth equal to 1.5 times
the cutoff distance of the Verlet lists. Indeed, it is very important to take a
sufficient number of fixed layers in order to fill correctly the Verlet lists of
the moving atoms in the inner layers. Though these deep atoms are fixed,
their positions depend on the simulation temperature, they are taken from
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3 moving layers

4 fixed layers

Figure 3.8: Ag(111) surface with xy-periodic boundary conditions. Atoms in
the inner rectangular area belong the system while the atoms on the rectan-
gular belt are images from the xy-PBC.

the results of bulk Ag obtained in the previous chapter. With this technique,
we favor a fast convergence to equilibrium. In order to illustrate this idea,
we show in Fig.3.9 the instantaneous energy E and the structure factor S as
functions of number of MC steps. As seen, after less than a few thousands
of MC steps these quantities reach stabilized values.

Note that by using the correct value of the lattice constant at each tem-
perature for interior layers far from the surface, we take into account temper-
ature effects although we neglect local fluctuations in those far layers. The
effect of such an approximation has been tested by varying the number of
moving layers (see below).

Of course, before using this value for the lattice constant we have com-
pared our results with existing experimental ones. The comparison is shown
in Fig. 3.10. Using the least square approximation, we obtain the lin-
ear thermal expansion dnn(Å) = αLT + 2.87053, with the coefficient αL =
6.27617× 10−5.

The atoms of the surface layers are then moved one by one, each in a
random direction with a random distance from its current position: the new
position of each atom is accepted or not according to the Metropolis updating
criterion. For the surface relaxation, we only compute Unew − Uold. It is an
NPT ensemble but not with a constant V (volume) because of the open space
next to the surface: the surface can contract or expand in the z-direction

We have studied a system of 256 atoms per layer in which atoms in the
first three layers are allowed to relax at each MC step. From the fourth layer
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Figure 3.9: Energy at 200K(upper) and structure factor at 300K (lower)
versus MC steps, for the first layer of the system. Short-time regions are
enlarged for detail.

inward, the atoms dilate uniformly with temperature using the computed
bulk values. For comparison, we have also considered a system of 100 atoms
per layer. In addition, in the case of 256 atoms per layer, we have considered
2, 3, 4 and 5 moving layers. As we will see in the following, the thermal
relaxation of the first moving layers is not significantly different for these
two surface sizes, and the topmost inter-layer spacing varies very little from 3
moving layers. Therefore, except otherwise stated, we show the results for 256
surface atoms and 3 moving layers in the following. Usually, our simulations
are carried out over 10 million MC steps per atoms. We discarded the first
five million for equilibrating although we see above that the equilibrating
time is much shorter. We have averaged physical quantities over the last five
millions of MC steps to have good statistics.
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Figure 3.10: Thermal expansion by MC simulation for both potentials. Ex-
perimental data by X-ray diffraction measurements from Ref. [109] are shown
by green circles, and the least square linear fit by the red line.

3.3.3 Results

Surface melting

The first step is the monitoring of the surface stability versus temperature.
Of course, our calculations have been carried out for temperatures below the
bulk melting temperature (Tm) because we use the temperature-dependent
bulk lattice spacing below Tm shown in Fig. 3.10 for bulk atoms. Note
however that very close to Tm, the thermal coefficient changes its behavior:
it increases rapidly with T in a nonlinear manner. We have therefore heated
the system from the ground state to temperatures between 200 K and 1200
K, just below Tm, with a step of 50 K.

The mean displacement amplitude allows us to establish the validity do-
main of temperatures. This quantity is computed as follows: at each MC
step, we compute a spatial average of all separation distances between atoms
with their ground-state node positions and then we compute its thermal
average through MC steps. As we can see in Fig. 3.11, with the Gupta
potential, after 1000 K the atoms undergo a sudden jump indicating a phase
change: the surface becomes disordered (melted) between 1000 K and 1050
K. A study is needed to determine the precise surface melting temperature
but this is not the goal of this thesis.

For the EAM potential, we have obtained a result different from that of
MD simulation : the surface melting temperature takes place at about 700
K, while MD simulation finds it at 1100 K [99]. In order to see clearly this



3.3. MONTE CARLO RESULTS 73

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

EAM 

Gupta

o

d (A)

T (K)

Figure 3.11: Mean displacement amplitude (in Å) between atoms and their
perfect ground state positions computed with Gupta and EAM potentials.

surface melting, we have computed the structure factor and the O6 parameter
for the topmost layers, with the EAM potential. Results are shown in Fig.3.7.

We observe that the long-range and short-range orders are lost at the
same temperature: the melting of the surface occurs at around 700 K where
both order parameters change their curvature.

Let us compare the MD and MC methods for the same potential EAM.
The MD simulation is quite different with the MC simulation : the most

remarkable difference resides in the fact that MD uses periodic atom con-
figurations. This yields a “superheating” which overestimates the melting
temperature [2] in various materials such as in Refs. [110, 38, 111, 112, 36].

In order to reduce the melting temperature, these authors have suggested
to introduce artificially void defects into the system to initiate the melting.
Note that the determination of the melting temperature by MD is rather
imprecise: for Ni, Ref. [82] gives Tm = 1740 K obtained by MC simulation,
but the authors could not determine it with precision by the MD method (see
their discussion on p. 5913 of Ref. [82]): it is estimated to be between 1600K
and 1800K. For Ag, they did not calculate Tm with MD. To our knowledge,
the bulk melting temperature for Ag by MD method was not available in the
literature.

As said above, the MD overestimates the ordering by using ordered con-
figurations, unlike the MC which leaves the atoms to take random positions
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even at temperatures far below Tm. This may explain why with EAM, the
MD gives surface melting at 1100 K (see Ref. [99]) while the MC gives it at
700 K.

Now, let us compare the results from two potentials obtained by the same
method (i. e. MC). As seen in Fig. 2.14 of chapter 2, the EAM yields a
higher energy, the temperature then destroys more easily the surface ordering.
Due to a lower energy, surface atoms in the Gupta case are more strongly
attached to the interior part, so we need a much higher temperature to make
the surface melt.

We believe that the high “thermal stability” of surface atoms is the reason
why the Gupta potential was suitable for the study of clusters of very few
number of atoms: they survive in a solid state at finite temperature unlike
clusters calculated with the Lennard-Jones potential [78].

For both potentials, a contraction of the lattice spacing between two
topmost layers occurs but its temperature dependence is different in the two
cases, as will be shown below.

Surface contraction

In order to see the variation of the inter-layer distance at the surface, we
have plotted in Fig. 3.12 the z-position distribution obtained for the two
potentials EAM and GP. As we can see, when the temperature increases, the
three peaks which represent the z coordinates of the three moving layers, are
shifted to the left, indicating a contraction toward the bulk. Note that the
two potentials lead to the same behavior.

In these two z-axis distribution functions, we can see that at a given T ,
the deviation of the topmost layer from its perfect position is largest. This
deviation becomes smaller for the next two layers and it should disappear at
a few layers from the surface. This observation justifies our approximation
to let only the three topmost layers to relax. Previous theoretical results and
experimental data also give support to our hypothesis.

In order to examine closely the inter-layer contraction, we have plot-
ted in Fig. 3.13 the inter-layer distance ∆12 between layers 1 and 2, at
different temperatures. This quantity is determined by averaging over the
corresponding peaks during MC simulation time. We only focus our atten-
tion on ∆12 since for this quantity there is a general agreement between
experiments and between experiments and theories. For inner layers, there
is no such agreement between experiments and theories, and even between
experiments, depending on the technique used: LEED [96], MEIS [95], . . .

Let us comment the results shown in Fig. 3.13. Several remarks are in
order:
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Figure 3.12: z-position distribution at different temperatures calculated with
EAM and Gupta potentials. The surface at its non-relaxed position corre-
sponds to z=0.

i. At low temperatures, for both potentials, ∆12 has a contraction of about
2.5% at 300 K, compared to a contraction of 0.5% with MD simulations
using EAM potential [94, 99]. Experimental contraction of 2.5% was
observed in Ref. [95].
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Figure 3.13: Inter-layer ∆12 computed with Gupta and EAM potentials.
Dashed line represents the bulk inter-layer spacing.

ii. The distance ∆12 increases with increasing temperature: in the case of
EAM potential, ∆12 crosses the bulk limit at ≃ 900 K, indicating
a surface expansion, in agreement with experimental results in Ref.
[95]. This “expansion“ was not found by MD simulations with EAM
potential (see Refs. [94] and [99]) up to 1100 K and in LEED [96]. A
surface expansion was observed in an ab-initio DFT calculation [100].

iii. As we can see in Fig. 3.13, MC results with GP do not show the above-
mentioned anomalous expansion up to 1190 K slightly above the surface
melting temperature observed above with this potential. We will give
below an explanation about this point, at least from our MC results.

As said above, the contraction of the first inter-layer distance ∆12 has
been observed by both MEIS and LEED at low temperatures. For ∆23 ,
the distance between the second and third layers, these two methods are not
in agreement: at low T, MEIS finds a little expansion of ∆23 while LEED
finds a contraction. Here, our computations are in agreement with the LEED
results.

Let us discuss now the controversial point on the anomalous expansion of
∆12, namely the transition from contraction to expansion when ∆12 crosses
the bulk line (see Fig. 3.13). As said earlier, this has been experimentally
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observed by MEIS at about 750 K [95]. We have found this with our sim-
ulations using EAM potential at ≃ 900 K. Our expansion is about 5% at
1150 K, with respect to the bulk value. Let us comment on the MEIS results
[95]: i) a change of behavior is observed at 670 K very similar to ours, ii) an
expansion of the inter-layer spacing is observed below Tm in agreement with
ours (see our Fig. 3.13), and iii) surface vibration amplitudes spectacularly
increase (see Fig. 4 of Ref. [95]). This last point was attributed by the au-
thors as anharmonic effects. We believe that such a sharp change of surface
vibration amplitudes, according to the Lindemann’s criterion, is a signature
of a transition to a two-dimensional liquid layer. Our results on the order
parameters shown in Fig. 3.7 supports this interpretation.

The disagreement between our MC result and MD result using the same
potential EAM resides not only in the difference in surface melting tempera-
tures (ours is 700 K, the MD one is 1100 K) but also in the existence of the
anomalous expansion. In addition, our MC simulation finds the contraction
of the surface inter-layer spacing of ≃ 2.5% at low T while the MD simu-
lation finds a contraction of 0.5% [99]. Note that we find a bulk melting
temperature of ≃ 1200 K by MC simulation. To our knowledge, the bulk
melting temperature calculated by the MD method is not available in the
literature.

For GP, we do not observe the anomalous expansion up to 1190 K as
shown in Fig. 3.13. So the existence or not of an anomalous expansion
depends on the potential at least with our MC results. Let us explain this
as follows:

i. With the EAM potential: The surface melts at a temperature much lower
than that of the anomalous expansion. As we can see in Fig. 3.13, at
around 700 K, the melting of the first layer causes the apparition of a
little peak but ∆12 is still smaller than the bulk inter-layer distance.
The fact that the anomalous expansion does not occur at the melting
temperature of the first layer means that the melted surface is in a
”two-dimensional” liquid state in the temperature region between 700
K and 900 K. This liquid surface layer is “detached“ from the remaining
crystal only at temperatures higher than 900 K. More accurate experi-
ments of surface melting are desirable to allow a better understanding
of this point.

ii. With the GP: Since the surface melts at ≃ 1000–1050 K (see Fig. 3.11),
if there is an anomalous expansion, this should happen at a higher
temperature. Given the fact that with EAM, our MC result indicates
the anomalous expansion occurring 200 K above the surface melting
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temperature, the same scenario with the GP cannot be possible because
the bulk system melts already at ≃ 1200 − 1235 K.

To close this section, let us summarize here that (i) the surface melting
occurs below the bulk one, but the distance to the bulk melting temperature
depends on the potential: the EAM and Gupta potentials give the same bulk
melting temperature but different surface melting temperatures and (ii) an
anomalous dilatation of surface is possible only at a temperature much higher
than the surface melting temperature.

As mentioned above, all shown results were obtained with 256 surface
atoms and 3 moving layers. The surface-size effect is very small between 100
and 256 atoms as shown in Fig. 3.14. The effect of the number of surface
moving layers is also very small from 3, as seen in the same figure. This is
the reason why most of our simulations were performed with 256 atoms and
3 moving layers.
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Figure 3.14: Upper: surface relaxation for two surface sizes 100 and 256
atoms. Lower: surface relaxation for 2,3,4 and 5 moving layers in the case of
256 surface atoms. From 3 layers, the results are not strongly affected.



80 CHAPTER 3. STUDY OF THE AG(111) SURFACE

3.4 Conclusion

In this chapter we have studied the (111) surface of silver. After a summary
of historic developments on the subject, presenting different theoretical and
experimental approaches which have been used during the last 50 years,
we have studied the behavior of the first inter-layer distances between the
topmost layers of the sample with increasing temperature, which has not
been well studied before. In order to shed some light on this problem we
have performed MC simulations for the first time on this subject with both
EAM and Gupta potentials. Our results show two different surface melting
temperatures for the (111) surface of a silver sample for these potentials in
spite of the fact that they yield both the same bulk melting temperature
(≃ 1200 K). The EAM potential yields a surface melting at ≃ 700 K and the
Gupta potential shows a surface melting at ≃ 1000 − 1050 K close to the
bulk melting.

However, both potentials show a contraction of the topmost inter-layer
distance at low temperatures, in good agreement with experiments and the-
ories. Our results of the temperature-dependence of the inter-layer contrac-
tion indicate a strong potential-dependence: the variation of the contraction
with increasing temperature shows a difference of the two potentials. Using
the EAM potential, our MC simulations show an anomalous thermal expan-
sion, namely the distance between the topmost layers is larger than that
between two adjacent bulk layers. This can be explained by the fact that
the anomalous thermal expansion occurs only at a temperature much higher
than the surface melting temperature: the already-disordered surface layer
is loosely attached to the crystal. This surface ”dilatation” is in agreement
with ab-initio DFT calculations [100] and MEIS experiments [95], although
as discussed above, it was not clear if the surface in MEIS experiments was
in solid or liquid state.

On the other hand, using the Gupta potential, our results show that
the surface inter-layer distance varies with the temperature but it is always
smaller than the bulk distance at least up to temperatures close to the bulk
melting. We attribute the non-observation of a surface dilatation in this case
to the fact that surface melting occurs too close to the bulk melting. The
existence of surface dilatation has been observed in MEIS experiments [95]
but not in LEED experiments [96] and in X-ray scattering [98]. We think that
this difference comes in part from the difference of surface flatness, surface
cleanness (contaminated or not) and experimental conditions.

We hope that experimentalists can resolve this important question on
anomalous high-temperature behavior of the Ag (111) surface. Experiments
to determine the melting temperature of the Ag (111) surface are also needed
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in order to choose the most suitable potential for modeling Ag surface and
Ag bulk crystal.
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Chapter 4

Thermal Behavior of
Stand-alone Silicene Sheet1

4.1 Introduction: Historic developments

Silicene is a quasi-two-dimensional honeycomb lattice of Si atoms. It is the Si
counterpart of the well-known two-dimensional honeycomb Carbon material
called “graphene”. Due to this similarity and due to the high similar potential
in application devices, we will first recall main properties of graphene and
then those of silicene, before showing our results on the latter.

4.1.1 Graphene

As we know, graphene properties were theoretically predicted in 1947 by
Wallace [114] who was studying the structure of electronic energy bands and
Brillouin zones of the Graphite using the tight binding approximation. In his
calculations, Wallace treated the graphite as independent honeycomb lattices
because of the great distance between the planes of carbon atoms (3.37Å)
in comparison with the small distance between atoms in the hexagonal cells
(1.42Å). With this approximation, he has given the value for the effective
mass of the conductivity electrons which is meff. =

1
18

of the electron mass,
and the value of the resistivity of one layer of graphite ρ ≃ 5×10−5ohm−cm.

At that time, many scientists were sceptical about the existence of a C-
based 2D material with honeycomb lattice. Over a period of several years, it
was believed that free-standing 2D crystals could not exist because thermal
fluctuations supposedly displaced the atoms with the same magnitude as
the nearest-neighbor distance, destroying the crystalline structure at finite
temperatures. Furthermore, for a long time, experimental growth of thin

1Submitted work, see [113]
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films was limited to a certain thickness much larger than one monolayer.
Hence, the possibility to produce a 2D material was quite inconceivable.

In 2004, graphene was finally isolated by Geim and Novoselov for which
they obtained the Nobel prize of physics in 2010. In Ref. [115], a few
multilayer films of graphene (1,2 or 3 layers) have been produced with a
remarkably high quality. Since then, graphene has drawn the attention of the
whole scientific community. This material is found to be metallic and stable
under ambient conditions. Geim et al. have shown that it exhibits a strong
ambipolar field effect which can be induced by applying an external voltage.
Depending on the applied voltage, the concentrations of holes and electrons
are modified, hence, the conductivity of the material changes. Furthermore,
the huge concentrations of electrons and holes (up to ≃ 1013per cm2) and
the measured room-temperature mobilities (up to≃ 10000 cm2.V −1.s−1) are
really attractive for potential devices applications. Figure 4.1 illustrates this
behavior.

As we can see in Fig. 4.1, the resistivity has a peak because of the
substitution of one type of carrier by another one. On the left of the peak,
the system is a hole-conductor and in the right it is an electron conductor.

In Ref. [116] also reported was the determination of the carrier mobili-
ties from field-effect and magneto-resistance measurements. They obtained
mobilities µ in the range of 3000 to 10000 cm2.V −1.s−1. These mobilities
are practically independent of the temperature and they are only limited by
the scattering on defects. Such high mobility values are in agreement with
high µ observed in intercalated graphite [115] and in carbon nanotubes. De-
spite this agreement, these high values are surprising because of the small
distance between the interface and the 2D gas. Furthermore, graphene of-
fers huge sustainable currents(108A/cm2), so applications in nanotechnology
devices such as transistors are very promising.

Novoselov et al. have succeeded in the preparation of graphene using
the micro-mechanical cleavage [117, 118]. In Ref. [118] it was reported
that the charge carriers in graphene mimic relativistic particles. The elec-
tron transport was suggested to be governed by Dirac’s relativistic equa-
tion. The charge carriers then have behaviors which are characteristic of
two-dimensional Dirac fermions, namely the high conductivity of graphene
and the half-integer quantization of Hall conductance occurs.

One of the most remarkable properties of graphene is that electrons at
the Fermi level have an effective mass equal to zero. It is the only physical
system where fermions of zero mass can be found. Of course this property is
of great interest for fundamental physics.

Other remarkable properties are the high thermal conductivity and the
strong mechanical resistivity (over 100 times greater than the resistivity of a



4.1. INTRODUCTION: HISTORIC DEVELOPMENTS 85

Figure 4.1: Field effect in a few-layer graphene. (A) Dependence of resistiv-
ity ρ on gate voltage Vg for different T=5 (top), 70 and 300K (bottom). (B)
Change in the film conductivity obtained by inverting the 70K curve (dots).
(C) Hall coefficient RH versus Vg (T=5K).(D) Temperature dependence of
carrier concentration with respect to the thickness of the film (open circles
for film in (A), squares for a thicker film and solid circles for a multilayer
graphene of ≃ 5nm. Red curve in B, C and D are the dependence calculated
by the authors from their model of 2D semi-metal (taken from Ref. [115]).

hypothetical iron film of the same dimension). Graphene is also supposed to
be a good material for spin transport due to a small spin-orbit interaction.

Unfortunately, the graphene is really expensive to produce in a mas-
sive way and the actual Si-based technology implies some difficulties to use
graphene in the present electronic industry.
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4.1.2 Silicene

As we have seen in [117], it is shown that other 2D-materials can be obtained
using the micro-mechanical cleavage. The idea of a 2D material based on Si,
did not take a long time to emerge in the scientific community. Indeed, one
natural question that the scientific community has asked is the following :
does the other group-IV elements in the periodic table (namely Si and Ge)
have a stable 2D honeycomb structure?

This question was asked before the first synthesis of isolated graphene,
as we can see in Ref. [119]. Takeda and Shiraishi did a theoretical study of
Si and Ge analogs of graphite using first-principles total-energy calculations.
In Ref. [119] it was theoretically proved that Si-based honeycomb structures
prefer to form the corrugated stage (see Fig.4.2).

Buckling

Figure 4.2: Illustration of a buckled honeycomb lattice. Top-view (upper)
and side-view (lower) of the honeycomb 2D-lattice
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As we know, the honeycomb lattice is formed by two inverted triangular
lattices (see the upper part of Fig. 4.2). The corrugated form is a honeycomb
lattice formed by two triangular sub-lattices which are not in the same plane
(see the lower part of Fig. 4.2).

In 2009, Cahangirov et al. studied two- and one- dimensional honey-
comb structure of Si and Ge by first-principle calculations of structure opti-
mization, phonon modes and ab-initio finite temperature molecular dynamics
within density functional theory (DFT)[120]. Here, one-dimensional honey-
comb lattices are wires composed by a few number of hexagons in width.
They have shown that the Si- and Ge- honeycomb structures can be stable
if they are buckled. Indeed as we can see in Fig.4.3, the planar honeycomb
structure seems to be unstable for the two materials.

Figure 4.3: Binding energy versus hexagonal lattice constant of 2D Si and
Ge calculated by LDA using PAW potential (dark) and ultrasoft pseudopo-
tentials (dashed green). (PL : planar ; HB : high buckled : LB : low buckled)
(taken from Ref. [120]).

The study of the phonon curves of the planar structure (see left part
of Fig. 4.4) shows phonon modes which have imaginary frequencies in the
Brillouin zone (BZ). At the minimum energy of the planar structure of Si,
optical and acoustical branches hybridize. Furthermore, the (ZO) optical
branch have imaginary frequencies along the Γ−K direction of the BZ and
it is merged into acoustical frequencies. After analysis of the high-bucked
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(HB) structure, the structure appears unstable. It does not corresponds to
a real local minima of the binding energy curve.

For the low-bucked (LB) honeycomb structure, the analysis of the phonon
dispersion curves (see right part of Fig. 4.4) shows that the LB structure
is the most stable. Indeed, the separation between the acoustical and the
optical branches is well defined and all branches have positive frequencies.
A linear behavior can be seen for two acoustical branches when k tends to
0. Near the Γ point, a quadratic dispersion can be seen for two acousti-
cal branches, given the quick decrease of the force constants related to the
transverse motion of atoms.

The value of the buckling computed by Cahangirov et al. is ∆LB = 0.44Å
and the value of the nearest neighbor distance is 2.25 Å which is about
4% smaller than in the 3D diamond structure. This value of the nearest
neighbor distance is confirmed by the optimization of the lattice parameter
using LDA and the generalized gradient approximation (GGA) [121]. The
LB structure of Si corresponds to local minima on the Born-Oppenheimer
surface [122].

They have also computed the electronic band structures and correspond-
ing density of states of LB Si (see Fig. 2 of Ref. [120]). It was shown that
similarly to graphene, π and π∗ bands of LB Si are semi-metallic as they are
crossing at K and K

′

at the Fermi level. They also evaluated the Fermi
velocity and they have found ≃ 106m.s−1 which is close to that calculated
for graphene using the tight-binding band.

The linear dispersion of the band energy at the K point of the BZ seems
to be insensitive to the low buckling. Indeed, in the calculations done by
Lebègue et al. [121], the honeycomb lattice is supposed to be flat (graphene-
like) and they have found a linear dispersion like it was found in Ref. [120]
with a buckled structure. This result was also shown in Ref. [120] (Fig.
2), where energy band structure of Si in honeycomb lattice was compared
between the HB, PL (planar) and LB honeycomb structures.

Finally they have considered zigzag and armchair nanoribbons of several
sizes. They have observed that a ribbon of width n = 7 (where the width is
the number of Si atoms in a continuous chain between two edges), preserves
their LB honeycomb structure upon structure relaxation (for both zigzag and
armchair). On the edge the buckling is weaker than in the inside.

Similarly to graphene nanoribbons, the band gap EG shows an oscillatory
behavior with the ribbon width n [see Fig.3 (c) and (d) of Ref. [120]].

Another study of the armchair nanoribbons of Si and Ge can be found in
[123].

A molecular-dynamics study of silicene nanoribbons can be found in [124].
In this study, classical MD simulations using an atomistic many-body poten-
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Figure 4.4: Phonon dispersion curves obtained by force-constant (black) and
linear response theory (dashed green) (taken from Ref. [120]).

tial function at low and room temperatures has been done, with finite and
infinite lengths for the ribbons. The main result of this paper is the tubular
structures that can occur at room temperature for the silicene nanoribbons
with finite length. The many-body potential used in this work is the combi-
nation of a LJ potential for the two-body part and a three-body part given
by the Axilrod-Teller function. As we have seen in Section 2.1.1, a multi-
body potential function cannot describe a wide range of bonding geometries.
Hence, the utilization of such a potential in the case of silicene can be ques-
tionable.

Experimentally, a first step was taken in 2004 when Leandri et al. syn-
thesized Si nanowires on Ag(111) surface, under Ultra High Vacuum (UHV)
conditions. STM images of these Si nanowires are shown in Fig. 4.5. The
lengths of the wires observed are well beyond 100 nm (after mild annealing)
and their width is always the same, around 16Å. As we can see in Fig. 4.5
(left), there are also dots but after a long annealing they disappear, being
incorporated in the nanowires. Before this study, only a few experiments
concerned the deposition of Si on metals. One can mention the experiment
with copper substrate where short atomic Si chains were grown on top of a
surface alloy between Si and Cu atoms [126]. Before this, several experiments
several experiments were based on the deposition of a metal on a semicon-
ductor like Au on Si, for example. Si and Cu have tendency to form alloy, as
it can be seen in the phase diagram of this system. Ag and Si do not have
this tendency. Si/Ag system prefers a phase separation. This may explain
why Si nanoribbons can be formed on Ag substrate. The deposition of Si



90 CHAPTER 4. SILICENE : THERMAL BEHAVIOR

Figure 4.5: Si nanowires before (a) and after (b) annealing at 230◦C (taken
from Ref. [125]).

on Cu(110) shows alloy clusters. At that time, the atomic structure of the
nanowires was not known.

The internal structure of the Si nanoribbons has also been elucidated
[127] by Aufray et al. in 2010. By the use of high resolution STM, the silicon
hexagons in honeycomb arrangement have been seen (see Fig. 4.6). In that
paper, the authors have also used ab-initio DFT calculations. The starting
configuration used was taken from STM images and they let it relax on the
surface. They found good agreement with STM images. They have also
shown that regardless of the starting configuration, Si atoms tend to form a
honeycomb structure on top of the silver sample. The computed Si-Si nearest
neighbor distance, after full atomic relaxation, is equal to 2.24Å. The DFT
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calculations also show an asymmetric corrugation in the charge density pro-
file, in good agreement with STM profiles. They also found an arched struc-
ture of the Si nanoribbons which is probably due to the penetration of the
edge atoms of the ribbon in the silver substrate. The calculated width of the
ribbons is also in good agreement with the observation (≃ 1.51nm without
counting the van der Waals radii of the Si atoms). Finally they have reported
that silver substrate is altered by the presence of the Si nanoribbons.

Figure 4.6: High resolution STM image of a Si nanoribbons (taken from Ref.
[127]).

After this study, the Si nanoribbons are called “silicene nanoribbons”.

In 2010, a study of the electronic signature of the silicene nanoribbons(Si-
NRs), deposited on the Ag(110) surface, was done by De Padova et al. using
angle resolved photoemission [128].

As we know, the linear dispersion of the energy band near the Fermi level
is important because it is the condition to have the charge carriers with a
particle with a zero effective mass (due to the curvature of the dispersion
curve). This linear dispersion which forms a cone (namely the Dirac cone),
is found in graphene. The aim of the study given by De Padova et al. is
to see if this behavior, leading to relativistic particles, can be observed in
silicene nanoribbons. Figure 4.7 shows what they have found.
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Figure 4.7: a) Energy distribution curves for bare Ag(110) and for Si-NRs ;
b) Band dispersion for the Si-NRs vs. kx (along the Si-NRs) at ky = 0.7Å−1 ;
c) vs. ky (perpendicular to the Si-NRs) at kx = 0.35Å−1. The photon energy
used was hν = 78eV (taken from Ref. [128]).

In Fig. 4.7, the Ag sp band can be clearly seen. The narrow width of the
Si-NRs implies a lateral confinement which is responsible for the additional
S1, S2 , S3 and S4 peaks (see Fig. 4.7). The dispersionless band behavior
along ky confirmed the 1D character of these states (S1, S2, S3 and S4).

The most remarkable result is the quasi linear dispersion of the silicon
bands near the X̄ point of the Ag surface of Brillouin zone (kx = ±1.09Å−1).
The photoemission data for kx near X̄ , with ky integrated from 0.55 to
0.70Å−1 (see Fig. 4.8), shows a gap below the Fermi level between the π
and the π∗ branches of the Dirac cones. The authors think that this behavior
is due to the interaction with the substrate. Indeed, as they have analyzed,
this can be a consequence of the arched structure of the Si-NRs, provoked by
the Ag(110) surface. This behavior has already been observed with graphene
grown on different surfaces.
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Figure 4.8: (left) Projection of the π and π∗ cones around the Dirac points
; (right) Integrated signal for ky between 0.55 to 0.7Å−1, along the Si-NRs
(taken from Ref. [128]).

The question which is asked is the following: can we grow free-standing
silicene nanoribbons? The question is still open.

The next step was to synthesize a silicene sheet. A silicene sheet was
grown on the Ag(111) surface (see Fig. 4.9), by Lalmi et al. in 2010 [129].
As we can see in Fig. 4.9b), the silicene sheet is buckled as it is theoretically
proved, in order to be stable. The two height of the peaks concern the two
triangular lattice in the buckled honeycomb lattice.

In 2012, Jamgotchian et al. performed a careful study of LEED patterns
and STM images obtained after the deposition of one silicene sheet on the
Ag(111) surface, at different temperatures in the range 150-300◦C [130]. They
have studied the effect of the substrate temperature on the growth of silicene
because of the stringent condition on this last one, evoked by Lalmi et al. in
[129].

In this range of temperature they have found three superstructures of
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Figure 4.9: a) STM image of the filled-state with atomic resolution. One can
clearly see the honeycomb structure ; b) Line profile of Si atoms along the
direction indicated by the green line drawn in a) (taken from Ref. [129]).

silicene, namely the (4×4), (2
√
3×2

√
3)R30◦ and

√
13×

√
13)R13.9◦ LEED

patterns. These three superstructures are, in fact, a quasi-identical sil-
icene layer with different rotations relative to the Ag(111) surface. With
this analysis, the authors have also predicted other structures (namely the
(
√
7 ×

√
7)R19.1◦ and (

√
21 ×

√
21)R19.1◦), which have not yet been ob-

served.

The role played by temperature on the formation of these structures seems
to be difficult to understand. Although the (2

√
3× 2

√
3)R30◦ is synthesized

at a temperature higher than that for the (4× 4), if the (4× 4) is annealed
it is not transformed into the (2

√
3× 2

√
3)R30◦ structure.

Another study of silicene structure on silver surfaces ( Ag(100), Ag(110)
and Ag(111) ) has been done by Enriquez et al. in Ref. [131]. It was
shown that silicene sheet growth was possible only on Ag(111) surface. On
other surfaces, the silicene growth resulted in nanoribbons. The authors have
shown that the silicene sheet can have different buckling values according to
the superstructure formed. The maximum value of the buckling is 1.5Å, for
one of the two (2

√
3× 2

√
3)R30◦ superstructures. In this configuration, the

nearest neighbor distance between two Si atoms is equal to 2.51Å which is
quite larger than the Si-Si distance in diamond structure.

The next step is to find a way to synthesize a stand-alone silicene sheet.
This problem is still open. Hoping that this structure is possible to be synthe-
sized, and because of the remarkable thermal properties of its carbon coun-
terpart, namely stand-alone graphene which can be experimentally grown,
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we have decided to study the thermal behavior of a stand-alone silicene sheet.
This is described in the following section.

4.2 Model and Monte Carlo method

As we have seen in section 2.1, the Tersoff potential is a well-known potential
for Si-based structures. As we have seen, using this potential, the melting
temperature of the bulk diamond crystal of Si is over-estimated but it allows
us to describe bonding geometries more accurately than the Stillinger-Weber
potential. Hence, for the modeling of silicene, we have decided to use the
Tersoff potential.

We report here the results of a study of the thermal behavior of a stand-
alone silicene sheet using the MC method. As we have seen, this method is
appropriate when one wants to study the thermal behavior of a material.

The algorithm that we have used is a modified version of the algorithm
described in section 1.3. In this modified algorithm, the periodic boundary
conditions are applied only in the xy-plane. In our simulations, we consider
a system of 968 atoms. The algorithm is split into two main parts: the
construction of the honeycomb lattice with the minimization of the lattice
energy at 0 Kelvin, and in the second part, the MC algorithm using the
Metropolis updating criterion [132]. For testing purposes, we have built
three different 2D planar lattices of silicon, namely honeycomb, square and
triangular structures, and we have computed the energy per atom in this
three different configurations. The results are shown in Fig. 4.10.
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Figure 4.10: Energy vs. NN distance for 3 different lattices. (left): Using
the parameters given by Tersoff in Ref. [16]; (right): Using the parameters
given by Agrawal in Ref. [2] .

As we can see, the honeycomb lattice is more stable than the two others
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at the nearest-neighbor (NN) distance r = 2.31Å in agreement with experi-
ments, using both the original set of parameters given by Tersoff [16] and the
ARK parameters [2] : the energy has a minimum for the honeycomb lattice at
that NN distance. For larger NN distances, the ARK parameters give an en-
ergy minimum for the square lattice at r = 2.42Å, but this distance does not
correspond to the NN distance between Si atoms in the silicon crystal. We
think that the ARK parameters lowers the energy with a high NN distance
because at this distance and with this parameters, the competition between
the two-body an the three-body parts allows an increase the number of NN
neighbors . As a recall, for the honeycomb the coordination number is 3 NN
, for the square lattice it’s 4 and for the triangular it’s 6. As the rigidity of
the structure is lower than with the original parameters, we can understand
that the honeycomb lattice can be deformed in a square lattice.So, at T = 0,
we can say that both potentials give the same energy E0 = 7.7eV and the
same NN distance 2.31Å.

Furthermore, calculations based on DFT [120] found that a buckling in
the honeycomb structure of 0.4Å stabilizes silicene. As we have seen earlier,
the buckled configuration is the stacking of two inverted triangular planes at
a small z distance. In order to check this suggestion with our potential, we
have introduced a parameter d which is the distance between two triangular
planes and we have computed the energy per atom as a function of d. The
potential used in the present study gives the planar structure (d = 0) as the
energetically favorable structure (see Fig. 4.11).

In order to reproduce the buckling found by more accurate calculations,
one needs to re-fit all the parameters of the potential with the addition of
one (such as d) or more parameters; this is out of the scope of the present
study and will be tackled in futures work.

For each MC step (MCS) we move all the atoms and we relax the size of
the system. The magnitudes of the atomic displacements and the variation
of the system size are determined so as to obtain an acceptation rate of about
50%. This collective updating is different from the single-atom updating al-
gorithm which is not at all efficient for melting studies. Our algorithm allows
a variation ratio of the volume; so the volume can make fluctuations (dilata-
tion and contraction) around its equilibrium during the simulation time. An
important fact is that the volume variation is controlled by the Metropolis
algorithm, like atom positions. For each simulation, we made approximately
3.107 MC steps per atom. Such long runs allow the observation of the sta-
bility of the system and to overcome the very long relaxation time near the
melting. At each MC step, after updating atom positions and relaxing the
system volume, we compute the following transition probability :
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Figure 4.11: Energy curve versus buckling (d), using the Tersoff parameters
given in Ref.[16]. The same behavior can be obtained with the parameters
given in [2].

W = P (Snew − Sold) + (Unew − Uold) +N.kB.T.ln

(

Snew

Sold

)

(4.1)

where P is the pressure (0 in our case), Snew and Sold are respectively the
new system surface and the old one, Unew denotes the energy of the system
after trial updating, Uold the old energy, kB the Boltzmann constant and T
the temperature (in Kelvin unit).

As usual, a trivial move is accepted if a random number ξ between 0 and

1 is lesser than e
− W

kB.T . Otherwise, the system returns to its previous state
with old atoms positions and old surface size. As said above, we tune the
magnitude of displacements and volume variations so as to have an accepta-
tion rate around 50%.

4.3 Results

For 2D systems with short-range isotropic interaction, it is known that long-
range order does not survive at finite temperatures [9, 6]. Melting transition
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at finite temperatures predicted by the Lindemann’s criterion is for 3D crys-
tals [5].

For the present 2D silicene, the potential is not isotropic because it sta-
bilizes the Si diamond structure at very high temperature. As it turns out,
this potential stabilizes also the honeycomb structure, as seen below.

The stability of a silicene sheet can be observed by the energy versus
temperature curve, the radial distribution function, snapshots of the system,
the angular distribution function or the structure factor. We will show these
quantities below.

In all our simulations, we started with a perfect lattice at 0 K and we
increase the temperature to the interested temperature range.

In order to have more independent data and also to have faster computa-
tion, for each temperature we compute physical quantities of the system on
an independent node of a CPU cluster. As an example, we show in Fig. 4.12
the mean energy against temperature where each data point was computed
by a node.
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Figure 4.12: Energy versus temperature of a silicene sheet using Tersoff pa-
rameters given in Ref. [16].

4.3.1 Results using the original Tersoff parameters

At high T (see Fig. 4.12), we observe a first-order transition with a large
latent heat. This transition is the melting of the sheet. Note that the melting
temperature is very close to the simulated melting temperature of a 3D silicon
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crystal ( 3600 K) using the same potential. We calculate the structure factor
S−→
K

(see section 3.3.1 for the definition). This ”order parameter” allows us
to monitor the long-range order. We show in Fig. 4.13 the structure factor
versus T . As seen, the long-range order is lost at T ≃ 3600 K, namely at
the temperature where the energy has a large discontinuity.
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Figure 4.13: Structure factor versus temperature using Tersoff parameters
given in Ref. [16].

We show in Fig. 4.14, the angle distribution function at various temper-
atures. The pronounced peak for T < 3500K undergoes a discontinuous fall
at T ≃ 3600K. Furthermore, the angle distribution function does not show
the appearance of any peak different from that at 120◦. This shows the high
stability of the honeycomb structure up to melting.

The radial distribution functions confirm the transition. When the tem-
perature increases, the radial distribution function (Fig. 4.15) jumps from
a state where we can distinguish the peaks corresponding to ordered posi-
tions up to far neighbors to a state where only the peak of nearest-neighbors
remains. The long-range order is lost.

In order to see how the number of nearest-neighbors evolves and indi-
rectly how the density is modified, we have computed the integrated radial
distribution shown in Fig. 4.16.

As we can see, this number decreases from 3 of the perfect crystal to
2. The latter density corresponds to a wire structure of Si in 3D space (see
Fig. 4.17). This behavior has been observed in the study of the melting of
graphene [133].
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Figure 4.14: Angular distribution function at different temperatures (from
1000K to 4500K), using Tersoff parameters given in Ref. [16].
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Figure 4.15: Radial distribution function at several temperatures (from
1000K to 4500K), using Tersoff parameters given in Ref. [16].

4.3.2 Results using the ARK parameters

Let us recall that the experimental value of the bulk melting temperature
Tm(exp) is about 1700K. The Tersoff parameters yield Tm(Tersoff) = 3600K
while the ARK parameters used for the bulk Si crystal gives Tm(ARK) =
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Figure 4.16: Integrated radial distribution function at several temperatures
(from 1000K to 4500K), using Tersoff parameters given in Ref. [16].

Figure 4.17: Picture of the system at high T (T = 3800K), using Tersoff
parameters given in Ref. [16], corresponding to the wire structure.

2200K. So, the ARK parameters give a melting temperature closer to the
experimental value. In the case of a stand-alone sheet, the original Tersoff
parameters, as shown above, give a very high melting temperature, almost
identical to that of the bulk 3D case, namely Tm = 3600K. Let us show now
the melting temperature of a stand-alone sheet obtained by using the ARK
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parameters. We show the structure factor in Fig. 4.18.
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Figure 4.18: Structure factor versus temperature, using ARK parameters
given in Ref. [2].

The long-range order is lost at Tm = 1750K, lower than that of the ARK
bulk value, and less than a half of that obtained by using the original Tersoff
parameters. Furthermore, the angular distribution function (see chapter 3)
shows the apparition of two peaks at 60◦ and 90◦ at the same time a decrease
of the peak at 120◦. The honeycomb structure is thus strongly deformed to
give rise to a 3D structure. For comparison, we show in Fig. 4.19 the angle
distribution of the 3D hexagonal lattice.

This result confirms that the transition of the sheet to a 3D film of silicon
is a structure where angles of 60◦ and 90◦ are proliferated. In Fig. 4.20 we
show some snapshots of the system at low and high T where we see the 2D
structure before the transition and a 3D one at high T .

The radial distribution and the integrated radial distribution shown in
Fig. 4.21 indicate an abrupt transition with a jump of the number of nearest
neighbors from 3 at low T to 4.6 at high T . Two groups of curves, describing
the two different behaviors (before and after transition) can be clearly seen
in the lower part of Fig. 4.21.

This means that the silicon sheet is reorganized in a 3D structure which
is more dense than the previous 2D one. The density jump in the inte-
grated radial distribution is in agreement with the visual observation shown
in Fig. 4.20. Hence, with the modification of only 3 parameters, the ARK
parametrization of the Tersoff potential leads to a completely different be-
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Figure 4.19: Angular distribution function for several temperatures around
the melting temperature. The angular distribution function of a perfect
hexagonal 3D structure is shown for comparison (using ARK parameters
given in Ref. [2]).

A film of about 3 monolayers of 

thickness

Figure 4.20: Instantaneous snapshots of the system shown by side views: the
2D structure below the transition (left) becomes a 3D one (right) above the
transition temperature (using ARK parameters given in Ref. [2]).

havior of the silicene structure.
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ARK parameters given in Ref. [2]).
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4.3.3 Discussion

We have studied the behavior of an infinite stand-alone silicene sheet. We
have shown that the 2D honeycomb structure is stable up to high tem-
peratures with the Tersoff potential. However, the temperature range of
the silicene stability depends strongly on the parameters of that potential.
The original Tersoff parameters give a too-high melting temperature while
those proposed by Agrawal, Raff and Komanduri yield a melting temperature
which is a half lower and much closer to 3D Si melting temperature.

For both sets of parameters, the Tersoff potential gives rise to a silicene
sheet without buckling. The flatness is stable with increasing temperature.
Note that a very small buckling has been experimentally observed in the
silicon deposition onto Ag(111) substrate maintained during the growth at
250◦C [131] as well as in a theoretical DFT study [120]. There may be
several reasons to explain the difference between these works and ours. The
first reason can be the limitation of the potential. As we know, the Tersoff
potential was initially fitted to reproduce bulk properties such as cohesive
energy, lattice parameter of the diamond structure, bulk modulus etc. The
fact that this potential stabilizes the honeycomb structure is an interesting
result. Indeed, the first aim of Tersoff when he decided to built his potential,
was to describe the maximum of bonding geometries. We can say in that
spirit that the honeycomb geometry is also well described by this potential.
The second reason comes from experiments where silicene is for the time
being always deposited on a substrate. Scientists agreed with the fact that
the substrate plays a major role in the formation and in the buckling of
silicene. Of course, theoretical calculations based on DFT show that silicene
is necessarily buckled but as we have seen, depending on the temperature and
then on the superstructure observed, the silicene sheet never has the same
buckling value. Furthermore, some superstructures which have never been
observed (but predicted [130] such as (

√

(7) ×
√

(7))R19.1◦ and (
√

(21) ×
√

(21))R19.1◦) can be without buckling. The question remains unsolved.

Finally, we note that the original Tersoff parameters make the system
melt into a liquid of wires while the ARK ones make the system melt into
a 3D uniform liquid. In view of the fact that the ARK parameters give a
melting temperature closer to the experimental one, we believe that they also
describe better the melting of the silicene sheet but thorough experimental
investigations must be conducted before a clear conclusion can be drawn on
this point.

Note that the stability of a stand-alone sheet of silicene at high temper-
atures, however, is not yet tested in experiments in spite of the fact that it
is experimentally proved that silicene on Ag (111) surface is stable at room
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temperature.

4.4 Conclusion

In this chapter, we explored silicene, a new 2D Si material of honeycomb
lattice, similar to graphene, its carbon counterpart. We have reviewed the
state of the knowledge on silicene. As we have seen, silicene seems to be
promising for electronic applications because of its properties similar to those
of graphene. This new material is believed to be a more easily adaptable
material in the current Si-based technology than graphene for new electronic
devices.

We have seen that the thermal behavior of this new material has not been
studied. This has motivated the study presented in this chapter: the thermal
stability of a stand-alone silicene sheet using the Monte Carlo method with
the Tersoff and ARK sets of parameters for the Tersoff potential. Theoreti-
cally, the existence and the stability of stand-alone silicene sheet and silicene
nanoribbons have been demonstrated within DFT [120]. The main differ-
ence between silicene and graphene is that the latter is completely flat while
silicene needs a small buckling to be theoretically stable. Experimentally,
this buckling is confirmed in observations made until now. Regarding to the
substrate temperature, we have seen that different superstructures composed
of the same silicene sheet can be observed [130, 131]. These superstructures
give different buckling values. Hence, the substrate temperature seems to
have a major role for this characteristic. The silver (111) surface seems to be
the best surface for the growth of a silicene sheet. Now, the question is: Is
there any other substrate for the growth of silicene sheet? This question is
still open and has attracted the attention of several researchers. If we find a
new substrate, we will be able to understand more thoroughly the buckling
of the silicene sheet.

For the moment, a stand-alone silicene sheet has never been synthesized,
contrary to the case of graphene where such a sheet has been obtained. As
we have seen, electronic properties of silicene nanoribbons are affected by the
substrate, so if we want to use this promising material in devices, we must
find a way to synthesize a stand-alone silicene (nanoribbons or sheets).

Our study of the behavior of a free-standing sheet of silicene presented
in this chapter shows that the Tersoff potential [16] is able to stabilize a
free-standing silicene sheet up to high temperatures (comparable to bulk 3D
Si crystals). This characteristic has never been reported before for silicene.
This potential has already been used in the case of the thermal stability of
carbon nanotubes [134], using MD simulations but never with MC technique
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applied to silicene. In Ref. [134] the authors artificially introduced Stone-
Wales defects to reduce the melting temperature. As we have seen earlier,
such a practice is needed in MD simulations to eliminate the superheating
phenomenon.

The fact that the honeycomb structure of silicene corresponds to the
lowest energy configuration, is also remarkable. Indeed, the Tersoff potential
is initially fitted to reproduce bulk properties. The ability of this potential for
modeling silicium atoms in a 2D honeycomb lattice was not a priori obvious.

The Tersoff potential yields a flat sheet of silicene. This result is not
in agreement with experiments performed with silicene on substrate. The
comparison of the silicene structure in the two situations may not be appro-
priate. Furthermore, our result of the flat structure is also not in agreement
with previous theoretical DFT approaches. But again here, the potential
and approximations used in these calculations and the limitation of the Ter-
soff potential used in our MC simulations make the comparison doubtful.
Nevertheless, we hope that our result will allow a better understanding of
the mechanisms responsible of the buckling if it really exists in the stan-
dalone silicene. Furthermore, as the buckling can be small (depending on
the superstructure obtained [131]), we suppose that the global behavior of
a freestanding silicene sheet against temperatures will be not changed. It is
already the case for some electronic properties (linear dispersion in buckled
nanoribbons) as we have seen above.

Finally, we have also observed that ARK parameters (initially proposed
by Agrawal et al. to lower the melting temperature of diamond crystal of
silicon) provoke a completely different behavior at high T (see Fig.4.10 for
example). In order to determine the parametrization which better describes
silicene, we have to wait experiments which study the thermal behavior of
silicene (supported or unsupported by substrates). For the moment, such
experiments have not been realized.
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General Conclusion

In this thesis we have studied the thermal behavior of different materials,
using Monte Carlo simulations. Our investigations have been carried out on
rare-gas crystals, a semiconductor (Si) and a metal (Ag) in different situations
and dimensions.

After the presentation of our algorithm, we have applied it to rare gas
using the most popular potential, namely the Lennard Jones potential. Com-
paring our results with the existing ones, we have proposed a modification of
the parameters of this potential to fit better the simulated melting tempera-
ture with the experimental one. As we have said, the overestimated melting
temperature found with the original Bernardes parameters may come from
the fitting procedure used by Bernardes which was based on the gaseous
state at low temperatures. As we can easily understand, good parameters
must yield results valid for the whole range of temperature. Hence, we have
proposed parameters which are valid for a range of temperatures comprising
the melting transition. Another important point is the following. The voids-
nucleated method which is used in Molecular Dynamics is not necessary in
Monte Carlo simulations. Indeed, with Molecular Dynamic simulations, the
defects have to be created artificially while with Monte Carlo simulations,
defects are naturally created with random displacements of atoms during a
huge number of Monte Carlo steps.

We have also applied our algorithm to the 3D Si diamond lattice using
the Stillinger Weber and the Tersoff potentials. The melting temperatures
given by these two potentials are also overestimated. This behavior is well
known for the Tersoff potential. This study of 3D bulk Si was a first step
toward the modeling of 2D silicene, a Si counterpart of graphene.

We have next studied the 3D silver FCC lattice. Here, EAM and Gupta
potentials were introduced and the same simulated melting temperature
found with the two potentials are in good agreement with the experimen-
tal one. This last result allows us to study the Ag(111) surface which is
an important surface for the growth of silicene structures. The modification
of the algorithm in order to study a semi-infinite material (with a surface)
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was presented. We found low-temperature contractions of the inter-layer
distances between the topmost layers of the sample in agreement with the-
oretical and experimental results. Concerning the controversy about the
variation of the contraction with increasing temperature, we have found two
different results depending on the potential used. For the Gupta potential,
the inter-layer distances stay contracted until the bulk melting temperature
(absence of surface melting). For the EAM, an anomalous thermal expan-
sion is observed at a temperature well below the bulk melting but above the
surface melting observed only in the case of EAM potential.

Finally, we have studied the thermal behavior of a new promising ma-
terial, namely silicene. We have used the Tersoff potential with a new con-
figuration for Si atoms: the honeycomb structure. As we have seen, the
Tersoff potential is able to describe and to stabilize this structure until very
high temperatures. No such a study has previously been reported in the
literature.

The results obtained in this doctorate work can be extended in several
ways. Some of them are already in progress.

The first work which is in progress is the modeling of silicene sheet on the
silver (111) surface. As we have seen, our algorithm which has treated the
Ag(111) surface is ready and the algorithm which describes the silicene sheet
is ready too. Now we are searching for a potential function which is able to
correctly describe the interaction between the sheet and the substrate.

We want also to study free-standing silicene armchair and zigzag nanorib-
bons. This work has also begun with infinite silicene nanoribbons (as we have
seen the ratio between the width and the length of this configuration allow
this modelization) using the periodic boundary condition in one direction.

Another direction of our coming research is to include our results in the
framework of the spin transport. The study of spins transport by Monte
Carlo simulation, has been done in a previous algorithm of our team. How-
ever, in this first transport algorithm, the spins of the lattice are attached to
their corresponding node. The spin states are updated according to the cho-
sen spin model, but they are unable to have displacements. Hence, traveling
spins of the current see fixed lattice spins, so that only magnetic scattering
is taken into account in the spin resistivity, but not scattering of phonons.
When the temperature increases, it will be interesting to test the influence of
atoms displacements on the results already obtained. Adding such a phonon
scattering will allow us to get results of spin resistivity even closer to the
experimental reality. This study has already begun where we are studying
Ising spin transport in a graphene sheet.

Finally, in collaboration with the Dr. Han Yilong of the Hong Kong
University of Science and Technology, we have submitted a Hubert Curien
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project for the study of thermal behavior of colloidal crystals for 2014-2015.
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Appendix A

Computation of
−→
K for the

Structure Factor

A.1 Ag(111) surface

It is clear that the triangular lattice of the (111) surface of a face-centered-
cubic lattice of silver atoms is a Bravais lattice. To compute the geometrical
structure factor, it is useful to consider the triangular lattice like a lattice
with motifs.

Indeed, the geometrical structure factor is based on the interferences
of the diffusing centers on a lattice with motifs. In Fig. A.1 we repre-
sent classical cartesian base vectors and another set of base vectors, namely

B
′

(−→
U x′ ;

−→
U y′ ;

−→
U z′

)

. This last set of vectors clearly show the considered

triangular lattice.

Uz
Uz'

Figure A.1: Triangular lattice with two bases. The motif atoms are darker
than the other atoms.

Following the notations introduced in Fig. A.1 for the different kinds of

bases, the motif atoms, that we denote
−→
d 0,

−→
d 1 and

−→
d 3 , has the following
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coordinates :

−→
d 0 =





0
0
0





B′

−→
d 1 =





1
3
1
3

0





B′

−→
d 2 =





2
3
2
3

0





B′

Because it is easy to compute the coordinates of the vector of the re-
ciprocal space in a base which is orthonormal, we convert and show all the

coordinates in the classical cartesian base B

(−→
U x;

−→
U y;

−→
U z

)

.

In the cartesian system we have :

−→
U x′ =





3
2

−
√
3
2

0





B

−→
U y′ =





3
2√
3
2

0





B

−→
U z′ =





0
0
1





B

Using the definition of the reciprocal lattice vectors [11] :

−→
b 1 = 2π





1
3

−
√
3
3

0





B

−→
b 2 = 2π





1
3√
3
3

0





B

−→
b 3 = 2π





0
0
1





B

The vector
−→
K must be a vector of the reciprocal space. Hence, there exist

(n1, n2, n3) ∈ Z
3 such as :

−→
K =





1
3
(n1 + n2)√

3
3
(n2 − n1)
n3





B

In our case, the structure factor is given by :

S−→
K
= 1 + e

−→
K.

−→
d 1 + e

−→
K.

−→
d 2

with,

−→
K.

−→
d 1 = 2π

(

n1 + n2

3

) −→
K.

−→
d 2 = 4π

(

n1 + n2

3

)

The structure factor is hence maximum if : n1 + n2 = 3 l, l ∈ Z

A possible choice is : (n1;n2) = (1; 2)
Finally,
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−→
K = 2π





1

−
√
3

0





B

A.2 Silicene

As we know, it is possible to talk about a reciprocal lattice if we have a
Bravais lattice in the direct space. In the case of silicene, the honeycomb
structure is not a Bravais lattice. Indeed, like we can see in Fig. A.2, the
environment of the two atoms is not exactly the same; The environment
of the atoms A is the rotation of 180◦ of the environment of the atoms
B. Despite this remark, it is possible to see the honeycomb lattice like a
triangular Bravais lattice with motifs (see Fig. A.2).

Figure A.2: Honeycomb lattice with two different bases. The motif atoms
are darker than the other atoms.

Let B

(−→
U 1;

−→
U 2;

−→
U 3

)

be the cartesian base. Let B
′

(−→
U x′ ;

−→
U y′ ;

−→
U z′

)

be

the other base.
In B, the coordinates of the vectors of B

′ are the following :

−→
V 1 =





1
3

−1
3

0





B

−→
V 2 =





2
3
2
3

0





B

−→
V 3 =





0
0
1





B
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The coordinates of the motifs in B are :

−→
d 0 =





1
2√
3
6

0





B

−→
d 1 =





1
1√
3

0





B

Furthermore, the reciprocal lattice vectors are :

−→
b 1 = 2π





1

−
√
3
3

0





B

−→
b 2 = 2π





0

2
√
3
3

0





B

−→
b 3 = 2π





0
0
1





B

As
−→
K is a reciprocal vector lattice, we can decompose it into B

∗
(−→
b 1;

−→
b 2;

−→
b 3

)

.

There exist (n1;n2;n3) ∈ Z such as :
−→
K = n1

−→
b 1 + n2

−→
b 2 + n3

−→
b 3.

The computation of the scalar product between
−→
K and the different motif

vectors are the following :

−→
K.

−→
d 0 = 2π

(

n1 + n2

3

) −→
K.

−→
d 1 = 2π

(

2
n1 + n2

3

)

Finally, in order to have an intensity which is maximum, we have to take
n1 + n2 as a multiple of 3.

The expression of the coordinates of
−→
K in the case of silicene is :

−→
K = 2π





1√
3
0





B
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