Localisation dynamique et égalité des conductances de Hall pour des opérateurs de Schrödinger magnétiques aléatoires

par Amal Taarabt

Thèse de doctorat en Mathématiques - EM2C

Sous la direction de François Germinet.

Le jury était composé de Jean-Michel Combes, François Germinet, Hakim Boumaza, Horia Cornean, Vladimir Georgescu.

Les rapporteurs étaient Alain Joye, Peter Hislop.


  • Résumé

    Ce travail de thèse est consacré dans un premier temps à l'étude des propriétés spectrales de localisation dynamique pour des opérateurs de Schrödinger ainsi qu'à leur classification.Nous allons introduire trois classes de propriétés équivalentes en cherchant à établir le lien entre elles d'une façon optimale que nous illustrerons par des contre-exemples.Certaines de ces propriétés s'avèrent jouer un rôle crucial dans l'étude mathématique de plusieurs phénomènes issus de la physique, notamment la quantificationde la conductance de Hall et l'apparition des plateaux dûs aux états localisés.Nous nous intéressons ainsi dans la seconde partie, aux conductances de Hall et de bord pour des modèles désordonnés continus et en présence d'un mur électrique aussi bien que magnétique. Nous expliquons comment les murs entrent en jeu pour pouvoir définir la conductance de bord, en tenant compte de la contribution des états localisés et la régularisation que les systèmes désordonnés requièrent. Nous établissons l'égalité de ces deux conductances en dérivant l'une de l'autre, et non par quantification séparée.

  • Titre traduit

    Dynamical localization and equality of the Hall and edge conductances of magnetic Schrödinger operators


  • Résumé

    The first part of this thesis is devoted to the study of spectral properties of dynamical localization for Schr\"odinger operators and their classification.We introduce three classes of equivalent properties and investigate the relationships between them in an optimal way.Moreover, some of these properties have been shown to play a crucial role in the mathematical proof of several phenomenon of physical interestsuch as the quantization of the Hall conductance and the existence of the plateaux due to localized states.Then, we are interested in the bulk and edge Hall conductances for continuous models in the presence of magnetic and electric walls. We explain how the walls come into play in order to define the edge conductance, taking into account the contribution of localized states and the regularization that a disordered media requires. We prove the equality of these conductances by deriving one from the other, and not by separate quantization.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Cergy-Pontoise. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.