Variability of the ocean circulation in the North-Atlantic in response to atmospheric weather regimes - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2013

Variability of the ocean circulation in the North-Atlantic in response to atmospheric weather regimes

Variabilité de la circulation océanique en Atlantique Nord en réponse aux régimes de temps atmosphériques

Nicolas Barrier

Résumé

The aim of the PhD is to investigate the impacts of the large-Scale atmospheric variability on the North- Atlantic ocean circulation. This question has already been addressed in a large number of studies, in which the atmospheric variability is decomposed into modes of variability, determined by decomposing sea-Level pressure anomalies into Empirical Orthogonal Function (EOFs). These modes of variability are the North-Atlantic Oscillation (NAO), the East-Atlantic Pattern (EAP) and the Scandinavian Pattern (SCAN). EOF decomposition assumes that the modes are orthogonal and symmetric. The latter assumption, however, has been shown to be inadequate for the NAO. Hence, a different framework is used in this study to assess the atmospheric variability, the so-Called weather regimes. These are large-Scale, recurrent and quasi-Stationary atmospheric patterns that have been shown to capture well the interannual and decadal variability of atmospheric forcing to the ocean. Furthermore, they allow to separate the spatial patterns of the positive and negative NAO phases. Hence, these weather regimes are a promising alternative to modes of variability in the study of the ocean response to atmospheric variability. Using observations and numerical models (realistic or in idealised settings), we have shown that the Atlantic Ridge (AR), NAO− and NAO+ regimes drive a fast (monthly to interannual) wind-Driven response of the subtropical and subpolar gyres (topographic Sverdrup balance) and of the meridional overturning circulation (MOC, driven by Ekman transport anomalies). At decadal timescales, the subpolar gyre strengthens for persistent NAO+ and Scandinavian Blocking (BLK) conditions via baroclinic adjustment to buoyancy fluxes and slackens for persistent AR conditions via baroclinic adjustment to wind-Stress curl anomalies. The latter mechanism also accounts for the strengthening of the subtropical gyre for persistent NAO+ conditions and its weakening for persistent AR conditions. The gyres response to persistent NAO− conditions reflects the southward shift of the gyre system (the intergyre gyre). The MOC spins-Up for persistent NAO+ and BLK conditions via increased deep water formation in the Labrador Sea, and conversely for the NAO− and AR regimes. Last, heat budget calculations in the subpolar gyre and the Nordic Seas have been performed using four global ocean hindcasts. The winter averaged heat convergence in the western subpolar gyre is positively correlated with the NAO− winter occurrences, which is due to the intergyregyre circulation, while it is negatively correlated with AR winter occurrences, because of the wind-Driven reduction of both gyres. Downward surface heat flux anomalies are negatively correlated with NAO+ occurrences, and conversely for the NAO−. In the Nordic Seas, they are positively correlated with BLK and to a lesser extent AR occurrences. Furthermore, we suggest that the heat content variability in the western subpolar gyre is the signature of the delayed response (6-Year lag) to the time-Integrated NAO+ forcing, due to the combination of the immediate (0-Lag) response of surface heat flux and the lagged (3 year lag) response of ocean heat convergence.
Le but de cette thèse est d’analyser les impacts de la variabilité atmosphérique grande échelle sur la circulation océanique. Ceci a déjà fait l’objet de nombreuses publications, dans lesquelles la variabilité atmosphérique est analysée en termes de modes de variabilité, déterminés par analyse en composantes principales (EOF en anglais) des anomalies de pression de surface. Ces modes sont l’Oscillation Nord-Atlantic (NAO), le Pattern Est-Atlantique (EAP) et le Pattern Scandinave (SCAN). La décomposition en EOF implique que les modes sont orthogonaux et symétriques. Cette dernière hypothèse a été montrée comme étant invalide pour la NAO. Par conséquent, un nouveau concept est proposé dans cette étude pour estimer la variabilité atmosphérique, celui des régimes de temps. Ces derniers sont des structures spatiales de grande échelle, récurrents et quasi-Stationnaires qui permettent de capturer la variabilité des forçages atmosphériques. De plus, ils permettent de séparer les patterns spatiaux des deux phases de la NAO. Ces régimes de temps sont donc une alternative prometteuse pour l’analyse de la variabilité océanique forcée par l’atmosphère. A partir d’observation et de modèles numériques (réalistes ou idéalisés), nous avons montré que les régimes Atlantic Ridge (AR), NAO− et NAO+ induisent une réponse rapide (échelles mensuelles à interannuelles) des gyres subtropical et subpolaire (via un mécanisme de Sverdrup topographique) et de la cellule de retournement (MOC, ajustement aux anomalies de transport d’Ekman). Aux échelles décennales, le gyre subpolaire s’intensifie lors de conditions NAO+ et BLK persistantes via un ajustement barocline aux flux de flottabilité et s’affaiblit pour AR via un ajustement barocline aux anomalies de rotationnel de vent. Ce dernier mécanisme explique aussi l’augmentation du gyre subtropical pour une NAO+ persistante et son affaiblissement pour un AR persistant. La réponse des gyres pour des conditions de NAO− persistantes est un déplacement vers le sud des gyres (l’intergyre gyre). L’intensité de la MOC est augmentée pour des conditions de NAO+ et BLK persistantes, dû à l’augmentation de la formation d’eau dense en mer du Labrador, et inversement pour NAO− et AR. Finalement, des bilans de contenu de chaleur dans la gyre subpolaire et les mers nordiques ont été effectués dans quatre modèles océaniques globaux. Les moyennes d’hiver de convergence océanique de chaleur dans la partie ouest de la gyre subpolaire sont positivement corrélées aux occurrences d’hiver de NAO−, ce qui est dû à la présence de l’intergyre, tandis que cette convergence est négativement corrélée aux occurrences d’AR, ce qui est dû à la réduction des deux gyres qui lui est associée. Les flux de chaleur vers l’océan dans la gyre subpolaire sont négativement corrélés aux occurrences d’hiver de la NAO+ et inversement pour la NAO−. Dans les mers Nordiques, ils sont positivement corrélés aux occurrences de BLK et, dans une moindre mesure, aux occurrences de AR. De plus, nous suggérons que la variabilité du contenu de chaleur dans la partie ouest du gyre subpolaire est la réponse décalée (lag de 6 ans) à l’intégration temporelle du forçage lié au régime NAO+, due à la combinaison de la réponse en phase (0-Lag) des flux de chaleur et à la réponse décalée (lag de 3 ans) de la convergence de chaleur.
Fichier principal
Vignette du fichier
2013BRES0064.pdf (12.76 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-01124247 , version 1 (06-03-2015)

Identifiants

  • HAL Id : tel-01124247 , version 1

Citer

Nicolas Barrier. Variability of the ocean circulation in the North-Atlantic in response to atmospheric weather regimes. Earth Sciences. Université de Bretagne occidentale - Brest, 2013. English. ⟨NNT : 2013BRES0064⟩. ⟨tel-01124247⟩
308 Consultations
336 Téléchargements

Partager

Gmail Facebook X LinkedIn More