Modélisation et simulation des connexions intra et inter systèmes électroniques

par Nadia Iassamen

Thèse de doctorat en STIC. Électronique, microelectronique, optique et lasers, optoelectronique microondes robotique

Sous la direction de Noël Tanguy.

Le président du jury était Bernard Flechet.

Le jury était composé de Noël Tanguy, Bernard Flechet, Francis Castanié, Rachid Malti, Pascale Cloastre.

Les rapporteurs étaient Francis Castanié, Rachid Malti.


  • Résumé

    Les progrès constants en miniaturisation des transistors et l’augmentation des fréquences des signaux utilisés sont les principales tendances dans l’évolution des circuits électroniques. Avec ces évolutions apparaissent de nombreux effets indésirables qui perturbent le comportement des systèmes électroniques et sont soupçonnés d’être responsables de la majorité des dégradations de signaux dans les systèmes en haute fréquence. Des retards de propagation indésirables sont ainsi introduits par la présence des interconnexions, et la diaphonie, phénomène dû aux couplages entre lignes d’interconnexions, peut éventuellement provoquer des commutations non désirées des transistors. La prise en compte des interconnexions, dès les premières phases de conception d'un système, est par conséquent devenue une nécessité ces dernières années. Mais la simulation temporelle d’un réseau d’interconnexions est très gourmande en temps de calcul, ce qui impacte la durée globale de conception. Le remplacement des modèles électriques, décrivant précisément les interconnexions, par des modèles plus simples est primordial pour limiter les coûts de calcul. Une méthode de réduction d'ordre des modèles peut alors être employée pour effectuer cette opération efficacement. Le modèle final doit en effet décrire assez précisément certains aspects importants du modèle original et conserver les propriétés importantes du réseau d'interconnexions. Cette démarche permettra aux concepteurs d’effectuer des simulations temporelles rapides et d’étudier les paramètres d’intégrité du signal tel que le retard, le temps de montée, le dépassement….L'objectif de cette thèse est d’établir un nouvel outil de réduction de complexité des modèles de réseaux d'interconnexions. Différentes descriptions initiales des systèmes d'interconnexions sont envisagées : modèles circuits (fonctions de transfert) ou mesures fréquentielles. L’approche développée repose sur l’utilisation des fonctions orthogonales de Müntz-Laguerre et de Kautz afin de décrire mathématiquement, de manière précise, le système d'origine. Un opérateur linéaire, lié à ces fonctions de base, est ensuite appliqué pour déterminer un modèle rationnel de moindre complexité. La technique proposée est comparée à d'autres méthodes de la littérature d’abord sur des exemples académiques. Tout le potentiel de la méthode est ensuite illustré par sa mise en œuvre sur des réseaux d'interconnexions.

  • Titre traduit

    Modeling and simulation of interconnects within and between electronic systems


  • Résumé

    The ongoing progress in transistor miniaturization and a continuous frequency increase are the main trends in the present day evolution of electronic circuits. A number of undesired effects are intrinsic to these developments and are suspected to be responsible for most of the flawed signals present in high frequency systems. Parasitic delays are thus introduced by the presence of interconnect lines and crosstalk due to coupling may lead to undesired switching events in transistor circuits. Accounting for the presence of interconnect lines, at a very early stage in the design flow has become unavoidable in recent years. However, time domain simulations of massively coupled interconnect networks may be computationally costly and have a tremendous impact on the overall duration of the design process. Replacing complex, high order circuit models by more compact surrogates is thus necessary. Model order reduction is an effective way to derive such surrogates. The final model must mimic certain aspects of the original model with sufficient accuracy and preserve the interconnect network’s most important properties. This approach enables designers to account for the undesired effects of interconnect lines such as, delays, rise-times and overshoots while maintaining the overall duration of time-domain simulations within acceptable limits. The aim of this thesis is to create a new model order reduction tool applicable to complex interconnect networks. Different initial representations were considered – circuit models (transfer functions) or frequency domain measurements. The proposed approach uses orthogonal basis functions such as Müntz-Laguerre and Kautz to build an accurate mathematical representation of the original system .A linear operator, related to these functions, is subsequently used to derive a simplified model. The technique is first compared to other approaches using examples available in literature, its full potential being demonstrated on coupled interconnect models.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Bretagne occidentale (Brest). Service commun de documentation Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.