Schemes and Strategies to Propagate and Analyze Uncertainties in Computational Fluid Dynamics Applications

par Gianluca Geraci

Thèse de doctorat en Mathématiques appliquées et calcul scientifique

Sous la direction de Rémi Abgrall et de Pietro Marco Congelo.

Soutenue le 05-12-2013

à Bordeaux 1 , dans le cadre de École doctorale de mathématiques et informatique (Talence, Gironde) , en partenariat avec Institut de Mathématiques de Bordeaux (laboratoire) .

Le président du jury était Bernhard Müller.

Les rapporteurs étaient Bruno Després, Didier Lucor.

  • Titre traduit

    Schémas et stratégies pour la propagation et l’analyse des incertitudes dans la simulation d’écoulements


  • Résumé

    Ce manuscrit présente des contributions aux méthodes de propagation et d’analyse d’incertitude pour des applications en Mécanique des Fluides Numérique. Dans un premier temps, deux schémas numériques innovantes sont présentées: une approche de type ”Collocation”, et une autre qui est basée sur une représentation de type ”Volumes Finis” dans l’espace stochastique. Dans les deux, l’élément clé est donné par l’introduction d’une représentation de type ”Multirésolution” dans l’espace stochastique. L’objectif est à la fois de réduire le nombre de dimensions et d’appliquer un algorithme d’adaptation de maillage qui puisse être utilisé dans l’espace couplé physique/stochastique pour des problèmes non-stationnaires. Pour finir, une stratégie d’optimisation robuste est proposée, qui est basée sur une analyse de décompositionde la variance et des moments statistiques d’ordre plus élevé. Dans ce cas, l’objectif est de traiter des problèmes avec un grand nombre d’incertitudes.


  • Résumé

    In this manuscript, three main contributions are illustrated concerning the propagation and the analysis of uncertainty for computational fluid dynamics (CFD) applications. First, two novel numerical schemes are proposed : one based on a collocation approach, and the other one based on a finite volume like representation in the stochastic space. In both the approaches, the key element is the introduction of anon-linear multiresolution representation in the stochastic space. The aim is twofold : reducing the dimensionality of the discrete solution and applying a time-dependent refinement/coarsening procedure in the combined physical/stochastic space. Finally, an innovative strategy, based on variance-based analysis, is proposed for handling problems with a moderate large number of uncertainties in the context of the robust design optimization. Aiming to make more robust this novel optimization strategies, the common ANOVA-like approach is also extended to high-order central moments (up to fourth order). The new approach is more robust, with respect to the original variance-based one, since the analysis relies on new sensitivity indexes associated to a more complete statistic description.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.