
Schematic calculi for the analysis of

decision procedures
Calculs schématiques pour l’analyse de procédures de

décision

THESIS

presented and submitted on July 19, 2013

for the degree of

Doctor of philosophy at the University of Franche-Comté

(Computer Science)

by

Elena TUSHKANOVA

Composition of jury

President : Claude Marché, Senior Researcher, INRIA, Saclay, France

Director : Olga Kouchnarenko, Professor, University of Franche-Comté, Besançon, France
Alain Giorgetti, Assistant professor, University of Franche-Comté, Besançon, France
Christophe Ringeissen, Researcher, INRIA, Nancy, France

Referees : Viorica Sofronie-Stokkermans, Professor, University Koblenz-Landau, Germany
Sophie Tison, Professor, University of Lille, France

Examiner : Nicolas Peltier, Researcher, CNRS, LIG, Grenoble, France

Department of Computer Science for Complex Systems

Acknowledgments

There are many people who helped me to finish this thesis and whom I would like to
thank.

First of all I would like to thank my former supervisor Senior Lecture Yury Belov,
Computer Science Department of Yaroslavl State University, that has seen my potential
in research work from the first year of my study at Yaroslavl State University. He has
proposed my candidature to the Head of the Chair of theoretical informatics, Professor
Valery Sokolov, when Professor Olga Kouchnarenko (UFR-ST, France) has offered an
opportunity to participate in the work on probation in Inria (France) during the period
from March 2009 till August 2009. I would like to thank Professor Valery Sokolov for
choosing me for this opportunity, for his help in many administrative things in Russia,
and of course for his support.

My internship has taken place at LIFC (Laboratoire d’Informatique de l’Université de
Franche-Comté) under the supervision of Senior Scientist Claude Marché, Inria, Assistant
Professor Alain Giorgetti, University of Franche-Comté, Computer Science Department,
FEMTO-ST Institute, and Professor Olga Kouchnarenko. First I would like to thank
Alain Giorgetti for his help and guidance in my research work. He has greatly enhanced
my knowledge and comprehension of computer science. I would also like to thank Claude
Marché. He has worked with me during my internship and has guided my research during
that time. I am grateful to Olga Kouchnarenko that has proposed me a PhD post after
our joint work during internship. Many thanks for her support and help during four years
of working together.

I deeply appreciate the help of my co-director Researcher Christophe Ringeissen, Inria.
I would like to express my deepest gratitude for his excellent guidance and patience.

The implementation part of this thesis would not have been possible without the help
of the developer of narrowing in Maude, Santiago Escobar.

I would like to thank Professor Sophie Tison and Professor Viorica Sofronie-Stokkermans
for accepting to be my referees. Also I would like to thank Claude Marché and Nicolas
Peltier for accepting to be my examiners.

Additionally, I would like to thank my friends from the laboratory. They are Elizabeta
Fourneret, Oscar Carrillo, Rami Kassab, Fouad Hanna, Aydée Sanchez-Santana, Kalou
Cabrera, Adrien De Kermadec, Alois Dreyfus and Cédric Joffroy, for their continued
support and help. Also I would like to thank my russian friends from Besancon. They
are Maria Makarova, Elena Zinchenko, Valery Koroleva, Maxim Goryachev and Dmitriy
Kuzikov.

I would never have been able to finish my dissertation without support from my family:
my parents Alevtina and Alexandre Tushkanov, my brother Eugeniy, my granny Maria
Sokolova, and Samuel Laurent. Thank you all for your support and patience when I
wanted to give up.

Last but not the least, I would like to thank God, for answering my prayers, and for
giving me the strength I needed to complete this work.

i

ii

This thesis is dedicated to

my parents for their love, endless support and

encouragement, and to

my dear Samuel Laurent for his love and

giving me forces to make this work. . .

I love you!

iii

iv

Contents

Chapter 1 Introduction 1

1.1 Context . 1

1.2 Contributions . 3

1.3 Plan . 4

1.4 Publications . 5

Chapter 2 Preliminary Notions 7

2.1 Many-sorted first-order logic . 8

2.1.1 Syntax of first-order logic . 8

2.1.2 Semantics of first-order logic . 11

2.2 Examples of theories of classical datatypes 12

2.2.1 Theory of lists . 13

2.2.2 Theory of lists with length . 13

2.2.3 Theory of records . 13

2.2.4 Theory of records with increment 14

2.2.5 Theory of arrays . 14

2.3 Rewriting . 14

2.3.1 Rewrite system . 14

2.3.2 Ordering for termination of rewrite systems 15

2.4 Combinability . 19

2.4.1 Nondeterministic version of the N.-O. combination method 19

2.4.2 Deterministic version of the N.-O. combination method 21

2.5 Maude language . 22

2.5.1 Maude specifications . 22

2.5.2 Reflection, Metalevel . 26

2.5.3 Unification . 26

2.5.4 Narrowing . 27

v

Contents

2.6 Summary . 27

Chapter 3 Paramodulation Calculi 29

3.1 Paramodulation calculus . 30

3.2 Saturation-based satisfiability procedures 33

3.3 Combination of theories . 34

3.4 Paramodulation calculus for Integer Offsets 35

3.4.1 Theory of Integer Offsets . 35

3.4.2 Extending the paramodulation calculus to Integer Offsets 36

3.4.3 Combination of theories . 37

3.5 Summary . 37

Chapter 4 Schematic Paramodulation Calculus 39

4.1 Constrained clauses . 40

4.2 Ordering . 41

4.3 Schematic calculus . 43

4.4 Schematic Deletion rule . 44

4.5 Adequation result . 46

4.6 Automatic combinability . 47

4.7 Summary . 49

Chapter 5 Schematic Calculus for Integer Offsets 51

5.1 Schematic paramodulation calculus with counting operators 51

5.1.1 Schematic calculus . 52

5.1.2 Adequation result . 55

5.1.3 Application to the analysis of paramodulation 57

5.2 Automatic modular termination . 58

5.3 Summary . 59

Chapter 6 Implementation 61

6.1 Data representation . 63

6.1.1 Term . 63

6.1.2 Literals . 63

6.1.3 Clauses . 64

6.1.4 Constraints . 64

6.1.5 Constrained clauses . 65

vi

6.2 Traces . 65

6.2.1 Clause labelling . 67

6.2.2 Flattening . 68

6.3 Theories . 68

6.3.1 Signature . 68

6.3.2 Axioms . 70

6.3.3 Initial set of constrained clauses . 71

6.4 Inference rules . 71

6.4.1 Contraction rules . 72

6.4.2 States for rule application control 76

6.4.3 Superposition rule . 76

6.4.4 Reflection and Eq. Factoring rules 82

6.5 Saturation . 84

6.6 Orderings . 85

6.7 Automatic combinability . 89

6.8 Summary . 90

Chapter 7 Experimentation 91

7.1 Theory of lists without extensionality . 92

7.2 Theory of lists with extensionality . 93

7.3 Theory of records without extensionality 94

7.4 Theory of lists with length . 96

7.5 Theory of lists with integer elements . 98

7.6 Theory of records with increment . 100

7.7 Theory of possibly empty lists . 102

7.8 Theory of arrays . 105

7.9 Theory of recursive data structures . 107

7.10 Combinability . 109

7.11 Summary . 109

Chapter 8 Modular specification of generic Java methods and classes 111

8.1 Overview of Krakatoa Modeling Language (KML) 112

8.1.1 Basic standard features . 113

8.1.2 Logical specifications . 114

8.2 Specification of a sorting algorithm . 116

vii

Contents

8.2.1 Selection sort in Java . 116

8.2.2 Sorting algorithm with a KML specification 117

8.2.3 Specifying the sorting algorithm by selection with a bag 120

8.3 Generic sorting . 124

8.3.1 Generic sorting in Java . 124

8.3.2 Type parameters: the permutation property 125

8.3.3 Theory parameters: the sorting property 126

8.3.4 Theory instantiation . 126

8.3.5 Verification conditions for soundness 127

8.4 Generic hashmaps . 129

8.4.1 Specification of the Fibonacci sequence 130

8.4.2 Theories for hashable objects and hash maps 130

8.4.3 Instantiating generic hash maps . 132

8.4.4 Verification conditions for soundness 133

8.5 Summary . 134

Chapter 9 Conclusion and Perspectives 135

9.1 Conclusion . 135

9.2 Perspectives . 136

Résumé étendu 139

Bibliography 147

Résumé 155

Abstract 156

viii

List of Figures

3.1 Expansion inference rules of PC . 31
3.2 Contraction inference rules of PC . 32
3.3 Ground reduction rules for Integer Offsets 36

4.1 Expansion inference rules of SPC . 43
4.2 Contraction inference rules of SPC . 44
4.3 Schematic Deletion rules of SPC . 46

5.1 Schematic expansion rules . 52
5.2 Schematic contraction rules . 53
5.3 Ground reduction rules . 53

6.1 Intermediate states and transitions . 79

7.1 Experimental results . 109

8.1 Selection sort in Java . 117
8.2 Specification of the first property . 118
8.3 Inductive predicate Permut . 118
8.4 Predicate Swap . 118
8.5 Loop invariants . 119
8.6 Signature for bags . 120
8.7 Algebraic specification of bags . 120
8.8 Hybrid function for array content . 121
8.9 Postcondition for selectionSort and swap methods 121
8.10 Results . 122
8.11 Assertions to guide provers step by step . 123
8.12 New lemma . 123
8.13 A sample client code calling the generic sorting method 124
8.14 The usual “less-than” comparator on integers 124
8.15 The permutation predicate . 125
8.16 General theory for Comparators . 127
8.17 Specification of the Comparator interface 128
8.18 Specification of the generic sorting method 128
8.19 Annotated Integer class . 128
8.20 Theory for “less-than” comparison . 128

ix

List of Figures

8.21 Specification of the IntLtComparator class of Figure 8.14 128
8.22 Java source for Fib class . 129
8.23 Theory of hashable objects . 130
8.24 Theory of maps . 131
8.25 Specification of the HashMap class . 131
8.26 Specification of two methods in the Object class 132
8.27 Theory of equality and hashing of Integers 132
8.28 Implementation of hashable Integers . 133
8.29 Class invariant of the Fib class . 133

x

Chapter 1

Introduction

Contents

1.1 Context . 1

1.2 Contributions . 3

1.3 Plan . 4

1.4 Publications . 5

1.1 Context

Nowadays computer programs are part of our everyday life. They are embedded in medical
devices, transport, finance and banking, industry, aircraft control systems and many more
sectors. Failures can bring not only bankruptcy, loss of time, but what is the most
important loss of human lifes. Let us give few classical examples of software errors with
extreme consequences.1 In 1985-87, when a buggy software was controling the Therac-25
medical radiation therapy device, massive overdoses of radiation were administered to
patients killing at least 3 of them. In 1993 an error in the flight-control software of a
Swedish jetfighter generated massive disruption, and the plane finally crashed. A NASA
subcontractor hired for building the Mars climate orbiter used English units instead of
the metric system. As a result, the orbiter crashed almost immediately when it arrived
at Mars in 1999, dashing all the hopes of a 327 million dollars project.

Some bugs may cause only trivial problems, but for many systems, failure is not an
option. Therefore, it is of primary importance that such systems operate correctly and
reliably. There are several methods to check the software correctness. Many bugs are
discovered and eliminated through software testing. But a method like software testing
cannot prove that the system, algorithm or program does not contain any errors and
defects, and that it satisfies a certain property. Also the number of possible situations
is so large, that only a tiny number of these situations can be tested. An alternative
way of checking could be a formal verification that provides a mathematical proof that a

1From http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=all

1

Chapter 1. Introduction

program is correct with respect to a certain property. A formally verified program will
work correctly for every given input.

An approach to formal verification is deductive verification. During the last decade,
an important progress has been made in the field of deductive verification of programs.
Now each popular programming language, like Java, C# and C, has its own formal spec-
ification language. For example, Java Modeling Language [LKP07] is designed for Java
programs, Spec# [BDF+05] is designed for C# and ACSL [BFM+09] is designed for C.
In this framework, functions and methods have pre- and post-conditions written in the
specification language. If the precondition is met and the method terminates, then it
should establish the postcondition. Why [FM07] is a platform for deductive verification
of source code. From a source program annotated by specifications, it extracts verification
conditions and transmits them to theorem provers like SMT solvers (Simplify, Z3, CVC3,
Yices, Alt- Ergo, etc.) or proof assistants (Coq, Isabelle/HOL, PVS, etc.).

SMT (Satisfiability Modulo Theory) consists in deciding the satisfiability of a (ground)
first-order formula with respect to a background theory. A satisfiability procedure is a
decision procedure for the satisfiabilty problem, that is an algorithm that always termi-
nates with a "yes" answer if the input formula is satisfiable, and with a "no" answer
otherwise. In the context of this thesis, when we consider a decision procedure, we mean
a satisfiability procedure. We focus on decision procedures specified as inference systems,
which are sets of inference rules. An inference rule relates premises to a conclusion. For
example, if u = c and u′ = c, then we conclude that u = u′. Designing and implementing
these decision procedures remains a very hard task. To help the researcher with this time-
consuming task, an important approach based on rewriting has been investigated in the
last decade [ARR01, ARR03, ABRS09]. This approach allows building satisfiability pro-
cedures in a flexible way by using a general calculus for automated deduction, namely the
Paramodulation Calculus (PC) [NR01] (also called superposition calculus). In general,
a fair and exhaustive application of the rules of PC leads to a semi-decision procedure
that halts on unsatisfiable inputs (the empty clause is then generated) but may diverge
on satisfiable ones. Fortunately, it may also terminate for some theories of interest in ver-
ification, and thus it becomes a decision procedure. In [ARR01, ARR03, ABRS09] it is
shown how a paramodulation-based inference system can be used as a decision procedure
for various theories including lists, arrays, records and combinations of them.

To ensure efficiency, it is very useful to have built-in axioms in the calculus, and
so to design paramodulation calculi modulo theories. This is particularly important for
arithmetic fragments due to the ubiquity of arithmetics in applications of formal methods.
For instance, the standard paramodulation calculus has been extended in [NRR09c] in
order to take into account the axioms of the theory of Integer Offsets. New combination
methods à la Nelson-Oppen have been developed to consider unions of these theories
sharing fragments of arithmetics. This paves the way of using non-disjoint combination
methods within SMT solvers.

To reason on standard paramodulation calculus, a Schematic Paramodulation Calculus
(SPC) [LM02] has been studied to automatically prove termination. The advantage of
SPC is that if it halts for one given abstract input, then PC halts for all the corresponding
concrete inputs. More generally, SPC is an automated tool to check properties of PC like
termination, stable infiniteness and deduction completeness. Improvements of the first

2

1.2. Contributions

presentation of SPC have been proposed in [LT07, LRRT11]. The authors of these papers
have focused not only on automatic decidability but also on automatic combinability.

Until now no schematization of the paramodulation calculus modulo the theory of In-
teger Offsets has yet been designed. Therefore, there is an obvious need for a method to
automatically prove that an input theory admits a decision procedure based on paramod-
ulation modulo Integer Offsets.

From the context the reader can understand that this thesis addresses problems related
to the verification of software-based systems. We are mostly interested in the (safe) design
of decision procedures for satisfiability problems that are at the core of SMT solvers. We
focus on a rewriting-based approach for the design of decision procedures, which is based
on the use of paramodulation calculi. In addition, we consider a modularity problem
for a modeling language used in the Why verification platform, that extracts verification
conditions from a source program annotated by specifications, and then transmits them
to SMT solvers or proof assistants to check the program correctness. Thus, both problems
considered in this thesis are related to SMT solvers.

1.2 Contributions

The contributions in this thesis address both practical and theoretical results:

(a) The main contribution of this thesis is a rule-based system implementing a complete
many-sorted schematic paramodulation calculus for arbitrary theories. This tool is
presented in Chapter 6. It allows us to automatically check whether the paramodu-
lation calculus terminates for theories defined by arbitrary clauses and whether the
related decision procedures are combinable. The tool can also be used to check the
modular termination when a combination of either signature-disjoint theories, or
theories with non-disjoint signatures is considered. Moreover, this implementation
of schematic paramodulation provides a trace of each applied rule, which is very use-
ful to validate or invalidate saturation proofs previously described in the literature.
The correctness of this tool is validated in Chapter 7 by checking the decidability of
classical theories such as the theory of lists (with and without extensionality), the
theory of records without extensionality, the theory of possibly empty lists, the the-
ory of arrays and the theory of recursive data structures for which paramodulation
is known to terminate [ABRS09, NRR09c, LRRT11].

(b) The schematic paramodulation calculus has been improved thanks to our experi-
mentations. In fact, the schematic paramodulation calculus proposed in [LRRT11]
does not take into account the constants in the theory signature. For instance, the
signature of the theory of possibly empty lists contains a constant nil. The schematic
paramodulation calculus presented in this thesis takes these constants into account.
This point is discussed in Chapter 4.

(c) A new schematic paramodulation calculus to describe saturations modulo Integer
Offsets is presented in Chapter 5. The correctness of this calculus is validated thanks
to our tool. Our approach requires a new form of schematization to cope with

3

Chapter 1. Introduction

arithmetic expressions. The interest of schematic paramodulation relies on a corre-
spondence between a derivation using (concrete) paramodulation and a derivation
using schematic paramodulation: Roughly speaking, the set of derivations obtained
by schematic paramodulation over-approximates the set of derivations obtained by
(concrete) paramodulation. We show under which conditions the termination of
schematic paramodulation implies the termination of (concrete) paramodulation.
Again, the fact of considering Integer Offsets requires some specific proof argu-
ments. Thanks to this schematic calculus we can automatically check whether the
paramodulation calculus modulo Integer Offsets is a decision procedure for the union
of two non-disjoint theories sharing the theory of Integer Offsets.

(d) At the beginning of the PhD, we have participated to a study of modular specifica-
tion of generic Java classes and methods under the supervision of Claude Marché,
Alain Giorgetti and Olga Kouchnarenko. We have proposed extensions to the Kraka-
toa Modeling Language, a part of the Why platform for proving that a Java or C
program is a correct implementation of some specification. This work is described
in Chapter 8. The new constructs we propose for the specification of generic Java
programs are presented through two significant examples: the specification of the
generic method for sorting arrays which comes from the java.util.Arrays class
in the Java API, and the specification of the java.util.HashMap class defining a
generic hash map and its use for memoization. The key features are the introduc-
tion of parametricity both for types and for theories and an instantiation relation
between theories. We discuss soundness conditions and their verification.

1.3 Plan

After this general introduction, we present in Chapter 2 everything needed for further
reading this thesis. We define classical notions related to first-order logic and rewrite
systems. We give some examples of theories axiomatizing datatypes such as lists, records
and arrays. Then we discuss a well-known method for combining decision procedures for
disjoint theories. And finally this chapter ends with a presentation of the useful notions of
the rule-based language Maude used for the implementation of schematic paramodulation
calculi.

Chapter 3 introduces paramodulation calculus which is a refutation-complete inference
system at the core of all equational theorem provers. Then, we present a methodology
based on saturation that provides satisfiability procedures. The satisfiability problem
in the union of theories for which a satisfiability procedure of each theory is already
built thanks to paramodulation calculus is also considered in this chapter. At the end of
this chapter we present a paramodulation calculus developed for Integer Offsets, and we
discuss the combination of theories sharing the theory of Integer Offsets.

Chapter 4 presents the schematic paramodulation calculus that can be used for proving
termination of any fair paramodulation strategy and for checking whether paramodulation
calculus decides the satisfiability problem for some unions of finitely presented theories.
Since we propose some improvements of schematic paramodulation calculus, we prove

4

1.4. Publications

that a theorem stating that every clause in a saturation corresponds to a schematic clause
in a schematic saturation still holds with our improvements.

In Chapter 5 we design a new schematic paramodulation calculus to describe sat-
urations modulo Integer Offsets. We show under which conditions the termination of
schematic paramodulation implies the termination of (concrete) paramodulation. We
also study the question of automatic combinability of non-disjoint theories sharing the
theory of Integer Offsets.

Our aim is to implement the schematic paramodulation calculi so that user could
easily modify the code and to get a rule-based program which is as close as possible to
the formal specification. The Maude language is very suitable for these purposes. It is
a rule-based language that includes support for unification and narrowing, which are key
operations of the calculus of interest. And the Maude meta-level provides a flexible way to
control the application of rules and powerful search mechanisms. The implementation of
the schematic paramodulation calculi is presented in Chapter 6. It has been implemented
from scratch in Maude.

Chapter 7 reports on our experimentation results. We show that the schematic
paramodulation calculus halts for some unit theories, such as the theory of lists (with
and without extensionality) and the theory of records, for unit theories sharing Integer
Offsets, such as the theory of lists with length, the theory of lists with integer elements and
the theory of records with increment, and for some non-unit theories, such as the theory
of possibly empty lists, the theory of arrays, and the theory of recursive data structures.

Chapter 8 presents an excerpt of KML, focusing on the part of that language which
allows to specify algebraic-style data types [Mar07] and theories. It also proposes original
specifications for a sorting algorithm and discusses their automatic proof. Moreover, it
presents new specification constructs for specifying a generic Java method for sorting
arrays and a generic Java class of hashmaps.

Chapter 9 concludes and gives some perspectives to this thesis.

1.4 Publications

The results presented in this thesis have been already published in the proceedings of
workshops and international conference.

• The work presenting a rule-based system to execute a schematic paramodulation
calculus for unit unsorted theories has been published as

E. Tushkanova, A. Giorgetti, C. Ringeissen, and O. Kouchnarenko. A rule-based
framework for building superposition-based decision procedures. In F. Durán, ed-
itor, Proc. of the 9th Int. Workshop on Rewriting Logic and Its Applications
(WRLA’12), volume 7571 of Lecture Notes in Computer Science, pages 221-239.
Springer, 2012.

In the paper submitted to the Journal of Science of Computer Programming (SCP)
we go further and consider the general schematic paramodulation calculus for arbi-
trary many-sorted theories, not only its restriction to unsorted and unit ones.

5

Chapter 1. Introduction

• A presentation of the schematic paramodulation calculus for theories sharing the
theory of Integer Offsets and its application to the termination of paramodulation
will appear in the proceedings of the 24th International Conference on Rewriting
Techniques and Applications (RTA’13).

The full version of this paper has been published earlier as a research report:

E. Tushkanova, C. Ringeissen, A. Giorgetti, and O. Kouchnarenko. Automatic De-
cidability for Theories Modulo Integer Offsets. Research Report RR-8139, INRIA,
November 2012.

• The work addressing the question of modular specification of generic Java classes
and methods has been published as

A. Giorgetti, C. Marché, E. Tushkanova, and O. Kouchnarenko. Specifying generic
Java programs: two case studies. In C. Brabrand and P.-E. Moreau, editors, Proc.
of the 10th Workshop on Language Descriptions, Tools and Applications (LDTA’10),
pages 8:1-8:8, ACM, 2010.

The full version of this paper has been published earlier as a research report:

E.Tushkanova, A.Giorgetti, C. Marché, O. Kouchnarenko. Modular Specification of
Java Programs. Research Report RR-7097, INRIA, 2009.

6

Chapter 2

Preliminary Notions

Contents

2.1 Many-sorted first-order logic . 8

2.1.1 Syntax of first-order logic . 8

2.1.2 Semantics of first-order logic . 11

2.2 Examples of theories of classical datatypes 12

2.2.1 Theory of lists . 13

2.2.2 Theory of lists with length . 13

2.2.3 Theory of records . 13

2.2.4 Theory of records with increment 14

2.2.5 Theory of arrays . 14

2.3 Rewriting . 14

2.3.1 Rewrite system . 14

2.3.2 Ordering for termination of rewrite systems 15

2.4 Combinability . 19

2.4.1 Nondeterministic version of the N.-O. combination method . . 19

2.4.2 Deterministic version of the N.-O. combination method 21

2.5 Maude language . 22

2.5.1 Maude specifications . 22

2.5.2 Reflection, Metalevel . 26

2.5.3 Unification . 26

2.5.4 Narrowing . 27

2.6 Summary . 27

This chapter introduces the notions that are useful in this manuscript. We start by
presenting the syntax of first-order logic, with the notions of signature, term, atom and
formula. We continue by presenting the semantics of first-order logic, with the notions of

7

Chapter 2. Preliminary Notions

model, satisfiability and validity. Then we present some theories axiomatizing standard
datatypes. After presenting some concepts related to rewrite systems and addressing the
question of their termination, we present a well-known method for combination of theories
proposed by Nelson and Oppen. Finally, a presentation of the Maude rewriting language,
used for the implementation of schematic paramodulation calculi, with its important
features such as reflection, unification and narrowing, ends this chapter.

2.1 Many-sorted first-order logic

2.1.1 Syntax of first-order logic

This section introduces the usual first-order syntactic notions of signature, term and
formula. We find in this section, the definitions we use in the rest of this manuscript.

Definition 1 (Signature). A first-order many-sorted signature Σ consists of

• a nonempty set of sorts S,

• a countable set of function symbols ΣF whose arities are constructed using sorts that
belong to S,

• a countable set of predicate symbols ΣP whose arities are constructed using sorts
that belong to S,

A function declaration is of the form f : s1× . . .× sn → s, where f ∈ ΣF is a function
symbol, n ≥ 0 is its arity, s1, . . . , sn and s are sorts from a finite set of sorts S. The sorts
s1, . . . , sn are called the argument sorts, and s is called the value sort of f . Each sort
is interpreted over a nonempty domain. For example the function car has the following
declaration: car : lists→ elem. The only predicates are equalities on sorts, denoted =s

for each sort s ∈ S, whose type is s× s. In what follows, we simply denote them = when
there is no risk of confusion. A functional symbol with arity 0 is called a constant symbol.

In all what follows, the signature Σ denotes ΣF and the predicate =s (s ∈ S) is denoted
by = when there is no risk of confusion.

Example 1. In order to model lists, the following signature with the sorts lists and
elem can be used:

Σ = {cons : elem× lists→ lists, cdr : lists→ lists, car : lists→ elem}

Variables are also sorted and x : s means that variable x has sort s. The set Xs denotes
a set of variables of sort s generally supposed to be denumerable, and X = ∪s∈SXs is the
set of many-sorted variables. Many-sorted terms are built on many-sorted signatures and
classified according to their sorts.

Definition 2 (Term). A first-order term of sort s ∈ S

• is either a variable of sort s, or

• a constant of sort s, or

8

2.1. Many-sorted first-order logic

• has the form f(t1, ..., tn), where f ∈ ΣF is a function symbol of arity n whose profile
is s1 × . . .× sn → s, and ti is a term of sort si for i = 1, .., n.

A term is ground if it does not contain variables, i.e. the term car(x) is not ground
if x is a variable, but car(b) is ground, if b is a constant of sort lists. If t is a term
then V ar(t) denotes the set of variables occurring in t, e.g. V ar(cons(a, x)) = {x}, if x
is a variable and a is a constant. This notation extends naturally to sets of terms. A
subterm of a term t is a term that appears in t, e.g car(x) is a subterm of cons(car(x), b).
A compound term is an f -rooted term for a function symbol f of positive arity (> 0).

Definition 3 (Depth of a term). The depth of a term is defined inductively as follows:

• depth(t) = 0 if t is either a constant or a variable

• depth(f(t1, . . . , tn)) = 1 +max{depth(ti) | 1 ≤ i ≤ n}

For instance, the depth of the term cons(a, b) equals to 1, and the depth of the term
cons(car(x), b) equals to 2. A term t may be viewed as a finite labeled tree, the leaves of
which are labeled with variables or constants, and the internal nodes of which are labeled
with symbols of positive arity.

A term is flat if its depth is 0 or 1. For example, if x is a variable of sort lists and a
is a constant of sort elem then car(x) and a are two flat terms.

In order to access a subterm of a given term, it is convenient to introduce the concept
of position in a term.

Definition 4 (Position and context of a term). A position (also called occurrence) within
a term t is represented as a sequence p of positive integers describing the path from the
root of t to the root of the subterm at that position, denoted by t|p. The top position is
denoted by ε and corresponds to the empty sequence. A term u has an occurrence in t if
u = t|p for some position p in t. A context is a term with a distinguished position.

The notation t[s]|p emphasizes that the term t contains s as subterm at position p.
When the position p is clear from the context, we may simply write t[s].

Example 2. Let us consider the term cons(car(x), y).

• cons(car(x), y)|ε = cons(car(x), y)

• cons(car(x), y)|1 = car(x)

• cons(car(x), y)|2 = y

The term car(x) is the subterm of the term cons(car(x), y) at position 1 with context
cons([], y).

Definition 5 (Substitution). A substitution is an application on T (ΣF , X) uniquely de-
termined by its image of variables. It is thus written out as {x1 ← t1, . . . , xn ← tn} when
there are only finitely many variables x1, . . . , xn not mapped to themselves, and xi and
ti have the same sort for i = 1, . . . , n. The application of a substitution σ to a term is
recursively defined as follows:

9

Chapter 2. Preliminary Notions

• if t is a variable xi for some i = 1, . . . , n, then σ(t) = ti,

• if t is a variable x 6= xi for all i = 1, . . . , n, then σ(t) = t,

• if t is a term f(u1, . . . , uk) with u1, . . . , uk ∈ T (ΣF , X) and f ∈ ΣF , then σ(t) =
f(σ(u1), . . . , σ(uk)).

Example 3. Applying σ = {y ← car(b)} to the term t = cons(y, x), where y is a variable
of sort elem, b is a constant of sort lists and x is a variable of sort lists, results in
the term σ(t) = cons(car(b), x).

If σ1 and σ2 are two substitutions, the composition σ1 ◦ σ2 is defined by σ1 ◦ σ2(t) =
σ2(σ1(t)).

Definition 6 (Matching). A term t matches a term t′ if there exists a substitution σ such
that σ(t) = t′.

Example 4. The term cons(X, Y) matches the term cons(car(a), cdr(b)) since

σ(cons(X, Y)) = cons(car(a), cdr(b))

using the substitution σ = {X ← car(a), Y ← cdr(b)}.

In matching the substitution is only applied to one of the terms. If the substitution is
applied to both terms, then we get unification.

Definition 7. Two terms t and t′ are unifiable iff there exists a substitution σ such that
tσ = t′σ. In this case, σ is a unifier of t and t′. A unifier σ is a most general unifier of
t and t′ if and only if for any unifier σ′ of t and t′ there exists a substitution δ such that
σ′ = σδ.

Example 5. The terms cons(car(a), Y) and cons(X, cdr(b)) are unifiable with the unifier
σ = {X ← car(a), Y ← cdr(b)}.

Definition 8 (Atom). A first-order atom is an equality s = t, where s and t are two
terms of the same sort.

A literal is an atom or the negation of an atom. A positive literal is an equality s = t

and a negative literal is a disequality s 6= t. In all that follows, ⊲⊳ stands for = or 6=.

Definition 9 (Depth of a literal). The depth of a literal s ⊲⊳ t is defined as

depth(s ⊲⊳ t) = depth(s) + depth(t).

A positive literal is flat if its depth is 0 or 1. A negative literal is flat if its depth is 0.

Definition 10 (Clause). A clause is a finite disjunction of literals l1 ∨ . . . ∨ ln, where li
is a literal for each 1 ≤ i ≤ n.

10

2.1. Many-sorted first-order logic

An example of a clause can be the following disjunction of literals: (c1 6= c2 ∨ car(v) =
e). A unit clause is a clause composed of exactly one literal. For example, (c1 = c2) is a
unit clause. A clause can be empty. In this case, it is an empty set of literals. The empty
clause is denoted by ⊥.

Definition 11 (Formula). A first-order formula satisfies the following properties:

• each atom is a formula,

• if ϕ is a formula, then ¬ϕ is a formula,

• if ϕ and ψ are two formulae and υ is a variable, then ϕ∧ ψ, ϕ∨ ψ, ∃υ.ϕ, ∀υ.ϕ are
formulae.

Definition 12 (Free variable). A free variable is a variable that is not bound by universal
(∀) or existential (∃) quantifiers. If ϕ is a formula, V ar(ϕ) denotes the set of free variables
in ϕ.

For example, ∀x.P (x, y) has x bound by a universal quantifier and y is a free variable.

Definition 13 (Quantifier-free formula). A quantifier-free formula is a formula in which
no quantifier occurs.

Definition 14 (Sentence). A Σ-sentence is a Σ-formula with no free variables.

Definition 15 (First-order theory). A first-order theory (over a finite signature) is a set
of sentences.

When T is a finitely axiomatized theory, Ax(T) denotes the set of axioms of T .

2.1.2 Semantics of first-order logic

In this section we present the semantics of first-order logic. We start by introducing the
notion of structure, then we present the relation between structures and formulae, e.g.
satisfiability and validity.

Definition 16 (Structure). Let Σ be a signature. A Σ-structure A is a pair (A, IΣ) such
that A = (As)s∈S is the domain of A and IΣ is a function that associates

• each sort s ∈ S with a nonempty domain As,

• each function symbol f ∈ ΣF of arity s1 × . . . × sn → s with a function fA :
As1 × . . .× Asn → As,

• each predicate symbol p ∈ ΣP of arity s1 × . . . × sn is mapped to a subset pA ⊆
As1 × . . .× Asn.

Definition 17 (Valuation). Let A = (A, IΣ) be a Σ-structure and X be a set of variables.
A valuation of X is an application from X to A such that any variable x of sort s is
mapped to an element in As.

11

Chapter 2. Preliminary Notions

Definition 18 (Evaluation). Let A = (A, IΣ) be a Σ-structure, X be a set of variables,
ϕ be a Σ-formula such that V ar(ϕ) ⊆ X, and α : X → A be a valuation. The evaluation
of ϕ is recursively defined as follows:

• α(f(t1, . . . , tn)) = fA(α(t1), . . . , α(tn)),

• α(p(t1, . . . , tn)) = ⊤ iff (α(t1), . . . , α(tn)) ∈ p
A,

• α(ϕ1 ∧ ϕ2) = α(ϕ1) ∧ α(ϕ2),

• α(¬ϕ) = ¬α(ϕ),

• α(∃x : ϕ) = ⊤ iff there exists a valuation α′ such that α′(ϕ) = ⊤, where α′(v) = α(v)
for any v ∈ X\{x},

• α(⊤) = ⊤.

Definition 19 (Satisfiability and validity). Let A be a Σ-structure and ϕ be a Σ-formula.
We say that

• a valuation α of V ar(ϕ) in A satisfies ϕ in A, in other words, ϕ is satisfiable in A,
written (A, α) |= ϕ, if (A, α) evaluates ϕ to ⊤, and

• A is a model of ϕ, in other words, ϕ is valid in A, written A |= ϕ, if (A, α) |= ϕ

for all the valuations α of V ar(ϕ) in A.

Definition 20. A Σ-structure A is a model of some Σ-theory T if A is a model for all
the sentences of T .

Definition 21 (Satisfiability modulo). Let T be a Σ-theory. A Σ-formula ϕ is T -
satisfiable if ϕ is satisfiable in some model of T .

Let S be a set of ground literals, then we say that S is T -satisfiable (T -unsatisfiable)
if and only if T ∪ S is satisfiable (resp. unsatisfiable). The satisfiability problem for a
theory T is the problem of determining whether any given finite set of ground literals is
T -satisfiable or not.

Definition 22 (Satisfiability procedure). A satisfiability procedure for a theory T is any
algorithm that solves the satisfiability problem for T .

Definition 23 (Validity modulo). Let T be a Σ-theory. A Σ-formula ϕ is T -valid if ϕ is
valid in all the models of T .

2.2 Examples of theories of classical datatypes

Satisfiability procedures for theories of standard datatypes are at the core of most state-
of-the-art verification tools. They are required for a wide range of verification tasks and
are fundamental for efficiency. As mentioned above, satisfiability problems have the form
T ∪S, where S is a set of ground flat literals, T is a background theory, and the goal is to

12

2.2. Examples of theories of classical datatypes

prove that T ∪S is unsatisfiable. A satisfiability procedure for a theory T is an algorithm
capable of checking whether T ∪ S is satisfiable or not, for any finite set S of ground flat
literals. We present in this section the theories that are widely used in verification. Those
are theories of classical datatypes such as lists, arrays and records.

2.2.1 Theory of lists

The many-sorted signature ΣL of the theory of lists is the set of function symbols {car :
lists→ elem, cdr : lists→ lists, cons : elem× lists→ lists}.

This theory is axiomatized by the following set of axioms Ax(L):

car(cons(X,Y)) = X

cdr(cons(X,Y)) = Y

cons(car(Y), cdr(Y)) = Y (extensionality)

where X is a universally quantified variable of sort elem and Y is a universally quantified
variable of sort lists.

2.2.2 Theory of lists with length

The many-sorted signature ΣLLI of the theory of lists with length is the set of function
symbols {car : lists → elem, cdr : lists → lists, cons : elem × lists → lists, len :
lists→ int, nil :→ lists, 0 :→ int, s : int→ int}.

This theory is axiomatized by the following set of axioms Ax(LLI):

1. Axioms for lists

a) car(cons(X, Y)) = X

b) cdr(cons(X, Y)) = Y

c) cons(X, Y) 6= nil

2. Axiom for the length

a) len(cons(X, Y)) = s(len(Y))

b) len(nil) = 0

where X is a universally quantified variable of sort elem and Y is a universally quantified
variable of sort lists.

2.2.3 Theory of records

A record is an array with a fixed enumerated set of elements. Contrary to the theory of
arrays, the theory of records can be specified by unit clauses. We consider here the theory
of records of length 3 without extensionality. It is defined by the many-sorted signature
ΣRec =

⋃3
i=1{rstorei : rec × ti → rec, rselecti : rec → ti}, and axiomatized by the

following set of axioms Ax(Rec)

rselecti(rstorei(X,Y)) = Y for i ∈ {1, 2, 3}
rselecti(rstorej(X,Y)) = rselecti(X,Y) for i, j ∈ {1, 2, 3} with i 6= j

where X is a universally quantified variable of sort rec, and Y is a universally quantified
variable of sort int.

13

Chapter 2. Preliminary Notions

2.2.4 Theory of records with increment

The many-sorted signature ΣRII of the theory of records with increment is the set of
function symbols

⋃3
i=1{rstorei : rec × int → rec, rselecti : rec → int, incr : rec →

rec, s : int→ int}.
This theory is axiomatized by the following set Ax(RII) of axioms:

rselecti(rstorei(X,Y)) = Y for i ∈ {1, 2, 3}
rselecti(rstorej(X,Y)) = rselecti(X) for i, j ∈ {1, 2, 3} with i 6= j

rselecti(incr(X)) = s(rselecti(X)) for i ∈ {1, 2, 3}

where X is a universally quantified variable of sort rec, and Y is a universally quantified
variable of sort int.

2.2.5 Theory of arrays

The many-sorted signature ΣA of the theory of arrays is the set of function symbols
{select : array× index→ elem, store : array× index× elem→ array}.

This theory is axiomatized by the following set of axioms:

select(store(V, I, E), I) = E

select(store(V, I, E), J) = select(V, J) ∨ I = J

where V is a universally quantified variable of sort array, I, J are universally quantified
variables of sort index, and E is a universally quantified variable of sort elem.

2.3 Rewriting

Since our results are based on rewriting, we introduce the classical notions of rewrite
systems. Also we present a method for proving termination of term rewriting systems
based on simplification ordering. More details on the notions described in this section
could be found in [DJ90, BN98, KK06].

2.3.1 Rewrite system

The main idea of rewriting is to impose directionality in the use of equalities.

Definition 24 (Rewrite rule). A rewrite rule is an ordered pair of terms denoted l → r

such that V ar(r) ⊆ V ar(l) . The terms l and r are respectively called the left-hand side
and the right-hand side of the rule.

A rewrite system is a (finite or infinite) set of rewrite rules. A rule is applied by
replacing an instance of the left-hand side by the same instance of its right-hand side, but
never the converse, contrary to equalities. Note that two rules are considered to be the
same if they only differ by a renaming of their variables. A rewrite system R induces a
binary relation on terms called the rewriting relation.

14

2.3. Rewriting

Definition 25. Given a rewrite system R, a term t rewrites to a term t′, which is denoted
by t→R t

′, if there exist

• a rule l → r of R,

• a position p in t,

• a substitution σ, satisfying t[s]|p = σ(l) and called a match from l to t[s]|p, where s
is a subterm of t at position p,

such that t′ = t[s← σ(r)]|p.

When t rewrites to t′ with a rule l → r and a substitution σ, it will be always assumed
that the variables of l and t are disjoint. We say that there is a rewriting step t →R t′

where t rewrites to t′ by a rule of R. A term is in normal form if it cannot be further
rewritten.

Definition 26 (Rewriting derivation). A rewriting derivation is any sequence of rewriting
steps

t1 →R t2 →R . . .

The rewriting relation →∗
R is defined on terms by t →∗

R t′ if there exists a rewriting
derivation from t to t′. If the derivation contains at least one step, it is denoted by →+

R.

Definition 27 (Termination of binary relation). A binary relation → is terminating if
there is no infinite derivation t1 → t2 → t3 →

It is terminating for a set T of elements if there is no infinite derivation with t1 ∈ T .

Definition 28 (Confluent relation). A relation → is confluent if there is an element υ
such that s→∗ υ and t→∗ υ whenever u→∗ s and u→∗ t for some elements s,t and u.

Definition 29 (Convergent rewrite system). A rewrite system R is convergent if it is
terminating and confluent.

In convergent rewrite systems all derivations lead to a unique normal form. Such
systems are used to decide equational theories. The clause obtained from a clause C by
replacing the terms occurring in C with their normal forms w.r.t. a convergent rewrite
system R is denoted C ↓R.

2.3.2 Ordering for termination of rewrite systems

One of the main problems with term rewrite systems is to detect their termination, i.e.
to determine whether there exists an infinite rewriting derivation or not. A well-known
method for proving termination has been proposed by Dershowitz [Der82]. This method
is based on recursive path orderings which are known to be simplification ones. One of
the families of recursive path orderings is based on sequences, and is named lexicographic
path orderings. This ordering is used in the side conditions of the inference rules of
paramodulation calculus.

After introducing some preliminary notions, we present the definition of lexicographic
path ordering and its lexicographic and multiset extensions.

15

Chapter 2. Preliminary Notions

Definition 30 (Binary relation). A binary relation R on a set T is:

• reflexive if ∀x ∈ T , xRx,

• antisymmetric if ∀x, y ∈ T , xRy and yRx⇒ x = y,

• transitive if ∀x, y, z ∈ T , xRy and yRz ⇒ xRz,

• a quasi-ordering if it is reflexive and transitive and in this case, (T,R) is called a
quasi-ordered set,

• an ordering if it is reflexive, antisymmetric and transitive, such an ordering is also
called a partial ordering and (T,R) is called a poset,

• a total (quasi-) ordering if it is a (quasi-) ordering and ∀x, y ∈ T , xRy or yRx.

A quasi-ordering is sometimes called a pre-ordering. The equivalence relation associ-
ated with a quasi-ordering ≥ on a set T is denoted ≈≥ and defined as the intersection of
≥ and of its symmetric relation ≤, i.e.

∀x, y ∈ T, x ≈≥ y ⇔ x ≥ y and y ≥ x.

The associated strict ordering > is defined by:

t > t′ if t ≥ t′ and t 6≈≥ t
′.

Definition 31 (Well-founded ordering). A quasi-ordered set (T,≥) is well-founded if there
exists no infinite decreasing sequence t1 > t2 > . . . of elements of T .

Definition 32 (Reduction ordering). An ordering > is a reduction ordering if it is a well-
founded ordering closed under context and substitution, that is such that for any context
C[_] and any substitution σ, if t > s then C[t] > C[s] and σ(t) > σ(s).

Definition 33 (Simplification ordering). An ordering > on terms is a simplification
ordering if it is

• stable (by instantiation), i.e. l > r implies σ(l) > σ(r) for every substitution σ,

• monotonic, i.e. l > r implies t[l]p > t[r]p for every term t and position p, and

• has the subterm property, i.e. it contains the subterm ordering: if r is a strict
subterm of l, then l > r.

Simplification orderings are well-founded for finite signatures and could be built from a
well-founded ordering on the set ΣF of function symbols, called a precedence and denoted
by >F .

The lexicographic path ordering (LPO) has been defined by an inference system
in [DJ90].

Definition 34 (Lexicographic path ordering). Given a precedence >F on function sym-
bols, the lexicographic path ordering >lpo is defined as follows:

16

2.3. Rewriting

LPO1
(s1, . . . , sn) >

lex
lpo (t1, . . . , tm) f(s1, . . . , sn) >lpo t1, . . . , tm
f(s1, . . . , sn) >lpo f(t1, . . . , tm)

LPO2
f >F g f(s1, . . . , sn) >lpo t1, . . . , tm

f(s1, . . . , sn) >lpo g(t1, . . . , tm)

LPO3
uk >lpo t

f(u1, . . . , uk, . . . , up) >lpo t

LPO4
f(u1, . . . , uk, . . . , up) >lpo uk

where f and g are two functional symbols, n ≥ 0 and m ≥ 0 are two non-negative integers,
p ≥ 1 is a positive integer, and s1, . . . , sn, t1, . . . , tm, u1, . . . , up, t are terms. We write
s >lpo t1, . . . , tm when s >lpo tk for k = 1, . . . ,m.

The ordering >lex
lpo denotes the lexicographic extension of >lpo which is defined by the

following inference system:

(1)
(s1, . . . , sn) >lex

lpo ()

(2)
s1 >lpo t1

(s1, . . . , sn) >lex
lpo (t1, . . . , tm)

(3)
s1 = t1 (s2, . . . , sn) >

lex
lpo (t2, . . . , tm)

(s1, . . . , sn) >lex
lpo (t1, . . . , tm)

where n ≥ 1 and m ≥ 1 are two positive integers, and s1, . . . , sn, t1, . . . , tm are terms.

An ordering on terms is extended to literals by using its multiset extension on literals
viewed as multisets of terms. Actually, a multiset (a bag) is a generalization of the notion
of set in which elements are allowed to appear more than once without order.

Example 6. In the multiset [a, b, b] the element b appears twice, while the set would be
{a, b}.

Any positive literal l = r (resp. negative literal l 6= r) is viewed as a bag [l, r] (resp.
[l, l, r, r]).

Definition 35 (Multiset extension). The multiset extension >bag is defined by the follow-
ing inference system:

(1)
[] =bag []

(2)
[s1, . . . , sn] =bag [t1, . . . , tn] s = t

[s1, . . . , sn, s] =bag [t1, . . . , tn, t]

(3)
[s1, . . . , sm] ≥bag [t1, . . . , tn] s > u1, . . . , uk

[s1, . . . , sm, s] >bag [t1, . . . , tn, u1, . . . , uk]

17

Chapter 2. Preliminary Notions

where = stands for syntactic equality, m ≥ 0, n ≥ 0, s > u1, . . . , uk holds either if k = 0
or if s > ui for all 1 ≤ i ≤ k, and ≥bag is the union of the equivalence relation =bag and
the partial ordering >bag.

If > is well-founded than its multiset extension >bag is well-founded on finite multiset.
Let us first consider the equality relation =bag. Two bags are equal when they contain

the same elements with the same multiplicity. The former definition decomposes this
condition in two cases:

• Either both bags are empty,

• or some element s from the first bag is equal to an element t in the second one,
and their subbags [s1, . . . , sn] and [t1, . . . , tn] obtained by removal of s (= t) are also
equal.

Example 7. The bag [2, 3, 3, 4] and the bag [4, 3, 1, 3] are the same.

One bag is bigger than another one (by >bag) if there is an element s in the first bag
that is greater than each element in some subbag [u1, . . . , uk] from the second bag, and
the remaining subbag [s1, . . . , sn] from the first bag is bigger or equal to the remaining
subbag [t1, . . . , tn] from the second bag.

Example 8. Let us consider the following examples:

• [2, 3, 4] >bag [], since the second bag is empty.

• [2, 2, 3, 4] >bag [2, 4], since s represented as 3 (resp. 2) is greater than u1, . . . , uk
with k = 0 and the remaining subbag [2, 4] and [2, 4] are equal.

• [3, 5] >bag [3, 4, 4, 1], since 5 is greater than each element in the subbag [4, 4, 1], and
the remaining subbags [3] and [3] are equal.

• [3, 3, 4, 5] >bag [3, 2, 2, 2, 4, 5], since 3 is greater than each element in the subbag
[2, 2, 2], and the remaining subbags [3, 4, 5] and [3, 4, 5] are equal.

Since the ordering on terms is performed by the lexicographic path ordering, then the
ordering on literals is performed by the multiset extension of LPO.

LPO is a reduction ordering for systems having fixed-arity function symbols if the
condition that non-constant symbols are greater than constants is satisfied. In 1980 it has
been shown [KL80] that LPO is a simplification ordering. LPO is total on ground terms.

18

2.4. Combinability

2.4 Combinability

An important question in automated reasoning is whether two decision procedures for
two theories T1 and T2 can be combined into a single decision procedure for T1 and T2.

The most popular method for combining decision procedures for disjoint theories has
been proposed by Nelson and Oppen in 1979 [NO79]. This combination method al-
lows deciding the satisfiability of a conjunction φ of ground literals in the union of two
signature-disjoint theories T1 and T2 such that a Ti-satisfiability procedure is available,
for i = 1, 2.

The following notion is used to show the correctness of the Nelson-Oppen method.

Definition 36 (Stably infinite/finite theory). A Σ-theory T is stably infinite (resp. stably
finite) if every quantifier-free formula ϕ is T -satisfiable if and only if it is satisfied by a
T -interpretation A whose domain A is infinite (resp. finite).

This method is correct whenever the following restrictions are satisfied by the theories
T1 and T2:

• T1 and T2 are two signature-disjoint theories, and

• T1 and T2 are both stably infinite theories.

The theory of lists (Section 2.2.1) and the theory of arrays (Section 2.2.5) are stably
infinite theories.

In fact there are two versions of the Nelson-Oppen method: a nondeterministic one and
a deterministic one. Let us present the nondeterministic version on the example, where
T1 is the theory of lists (Section 2.2.1) and T2 is the theory of arrays (Section 2.2.5), and
the deterministic one on the example, where T1 is the theory of lists and T2 is the theory
of records (Section 2.2.3). Here, all the theories are unsorted, i.e. their sorts are ignored.

2.4.1 Nondeterministic version of the N.-O. combination method

The nondeterministic version of the Nelson-Oppen combination method is consists of two
steps:

1. Purification. This step consists in term flattening and converting φ into a conjunc-
tion φ1 ∪ φ2, where φi contains only Σi-literals. The flattening is done by replacing
each subterm t of a term by a fresh variable X and adding the equality X = t to φ.
When no term can be flatten, φ is converted into a conjunction φ1 ∪ φ2.

We consider the following conjunction φ of literals:

car(x1) = x3 ∧ car(x2) = x4 ∧ x1 = x2 ∧ select(x5, car(x1)) 6= select(x5, x4)

The function symbol car (resp. select) comes from the theory of lists (resp. of
arrays).

19

Chapter 2. Preliminary Notions

Let us now apply the purification to the conjunction of literals φ. Firstly, we flatten
the term select(x5, car(x1)) by replacing the subterm car(x1) by a fresh variable y1.
We obtain the new conjunction

car(x1) = x3,

car(x2) = x4,

x1 = x2,

select(x5, y1) 6= select(x5, x4),
y1 = car(x1)

Then, we flatten the disequality by replacing the right-hand side (resp. left-hand
side) term of the disequality by a fresh variable y2 (resp. y3), and obtain

car(x1) = x3,

car(x2) = x4,

x1 = x2,

y2 6= y3,

y1 = car(x1),
y2 = select(x5, y1),
y3 = select(x5, x4)

Since no more terms can be flattened, we obtain the conjunction of literals for each
theory:

φ1 =

car(x1) = x3,

car(x2) = x4,

x1 = x2,

y1 = car(x1)

(2.1)
φ2 =

y2 6= y3,

y2 = select(x5, y1),
y3 = select(x5, x4)

(2.2)

2. Check. In this step we use all the ways of identifying/differentiating the shared vari-
ables. For that purpose, we consider the equivalence relations on shared variables.

Our example contains two shared variables {x4, y1}, and therefore there are only
two possible equivalence relations:

• if x4 and y1 are not equivalent, then we consider the shared disequality x4 6= y1,
and check whether φ1 ∧ x4 6= y1 is T1-satisfiable. From three first equalities
of ϕ1 we get x3 = x4. From the first equality and the last one of ϕ1 we get
y1 = x3. From x3 = x4 and y1 = x3 we can conclude that y1 = x4. Thus we
obtain a contradiction. Therefore, φ1 ∧ x4 6= y1 is T1-unsatisfiable.

• if x4 and y1 are equivalent, then we consider the shared equality x4 = y1, and
check whether φ2 ∧ x4 = y1 is T2-satisfiable. If y1 = y4, then y2 = y3, that
contradicts the equality y2 6= y3. Therefore, φ2 ∧ x4 = y1 is T2-unsatisfiable.

Thus, in all cases we cannot have simultaneously the T1-satisfiability and the T2-
satisfiability. Therefore, we conclude that φ is (T1 ∪ T2)-unsatisfiable.

20

2.4. Combinability

Due to the fact that a number of equivalence relations of a set grows exponentially in
the number of elements of the set, it is not effective to use the nondeterministic version of
this method in the implementation. In the following section, we describe the deterministic
version of the Nelson-Oppen method.

2.4.2 Deterministic version of the N.-O. combination method

In this version the considered theories should be not only stable-infinite (see Definition 36),
but also convex.

Definition 37 (Convex theory, [MZ02]). A Σ-theory T is convex if for every conjunction
φ of Σ-literals and for every disjunction

∨n

i=1 xi = yi,

T ∪ φ �
∨n

i=1 xi = yi iff T ∪ φ � xj = yj from some j ∈ {1, .., n}.

The theory of lists (Section 2.2.1) and the theory of records (Section 2.2.3) are convex
theories, while the theory of arrays (Section 2.2.5) is a non-convex one [MZ02], since in this
theory, the conjunction {select(store(a, i, e), j) = x, select(a, j) = y} entails a disjunction
x = e ∨ x = y but does not entail neither x = e nor x = y.

In this method the enumeration of all possible equivalence relations among shared
variables is replaced with propagation. The propagation lasts until the unsatisfiability is
returned or no more equalities can be propagated.

Let us consider the following conjunction φ of literals:

car(x1) = x3 ∧ car(x2) = x4 ∧ x1 = x2 ∧ rselect1(car(x1)) 6= rselect1(x4)

The function symbol car (resp. rselect1) comes from the theory of lists (resp. of
records).

After purification φ1 and φ2 are as follows:

φ1 =

car(x1) = x3,

car(x2) = x4,

x1 = x2,

y1 = car(x1)

(2.3)
φ2 =

y2 6= y3,

y2 = rselect1(y1),
y3 = rselect1(x4)

(2.4)

The next step is propagation. Thus, φ1 propagates y1 = x4, and since this literal does not
exist in φ2, we add it to φ2:

φ1 =

car(x1) = x3,

car(x2) = x4,

x1 = x2,

y1 = car(x1)

(2.5) φ2 =

y2 6= y3,

y2 = rselect1(y1),
y3 = rselect1(x4)
y1 = x4

(2.6)

21

Chapter 2. Preliminary Notions

Then, φ2 ∪ {y1 = x4} is T2-unsatisfiable, since there is a contradiction in φ2. Therefore,
we can conclude that φ is (T1 ∪ T2)-unsatisfiable.

The Nelson-Oppen combination method requires a way to compute the entailed ele-
mentary equalities between shared variables. By default, we can proceed by refutation:
an elementary equality x = y is entailed by ϕ modulo T if ϕ ∧ x 6= y is T -unsatisfiable.
This is not efficient since we have to guess all possible elementary equalities and to call the
T -satisfiability procedure for each of them. Another solution is to consider a satisfiability
procedure which is able to deduce automatically all the elementary equalities entailed by
a T -satisfiable formula ϕ. The paramodulation calculus (presented in Chapter 3) is an
interesting candidate to build deduction-complete satisfiability procedures, by collecting
all equalities between shared variables occurring in the saturation.

Definition 38 ([TRRK10]). Let T be a convex theory and φ be a T -satisfiable set of liter-
als. A set of elementary equalities (equalities between variables) E is deduction complete
(for φ modulo T) if

∀x, y ∈ V ar(φ), T � φ⇒ x = y iff E � x = y

A deduction complete T -satisfiability procedure is a T -satisfiable procedure, such that if
φ is T -satisfiable, then it returns false, otherwise it returns true{E} where E is deduction
complete for φ modulo T .

2.5 Maude language

Maude [CDE+03] is a rule-based language. Maude’s basic programming statements are
equations and rules. Its semantics is based on rewriting logic where terms are reduced by
applying rewrite rules. Maude has many important features such as reflection, pattern-
matching, unification and narrowing. Reflection is a very desirable property of a compu-
tational system, because a reflective system can access its own meta-level and this way
can be much more powerful, flexible and adaptable than a non-reflective one. Maude’s
language design and implementation make systematic use of the fact that rewriting logic is
reflective [CM96b, CM96a]. Narrowing [CDE+09] is a generalization of term rewriting that
allows free variables in terms (as in logic programming) and replaces pattern-matching
by unification in order to (non-deterministically) instantiate and reduce a term. The nar-
rowing feature is provided in an extension of Maude named Full Maude. All the notions
described below are extracted from [CDE+03].

2.5.1 Maude specifications

In Maude the basic units of specification and programming are called modules. A module
consists of syntax declarations, providing an appropriate language to describe the system
under study, and of statements asserting properties of this system. There are two kinds
of modules: functional module and system module.

22

2.5. Maude language

Functional module A functional module is an equational theory with initial algebra
semantics that specifies one or more data types and operations. It has the following
syntax:

fmod MODULE-NAME is

declarations

endfm

Declarations include the importation of other functional modules discussed below,
and sort, subsort, and operator declarations. Types are declared with the sort keyword
followed by an identifier (the sort name).

sort SortName .

A period at the end of the sort declaration, as for the other types of declarations, is
crucial. Multiple sorts may be declared using the sorts keyword:

sorts SortName1 ... SortNameN .

Sorts can be partially ordered via a subsort relation. Subsort inclusions are declared
using the keyword subsort. The declaration

subsort SortName1 < SortName2 .

states that the first sort SortName1 is a subsort of the second one SortName2.
Functions are declared by op declarations

op OpName : SortName1 ... SortNameN -> SortName [OperatorAttributes] .

where SortName1, . . . , SortNameN and SortName are sorts. If the argument list is empty,
then the operator is called a constant of sort SortName. A function can be declared in
prefix or mixfix form. If the operator is in mixfix form, then n underscores (’_’) indicate
the place where arguments of the n sorts must be placed in expressions formed with this
operator. For example, the binary operator

op _ plus _ : Nat Nat -> Nat .

is in mixfix form.
Function declarations may include attributes that provide additional information ab-

out the operator: semantic, syntactic, pragmatic, etc. For example, Maude supports
the following equational attributes: assoc (associativity), comm (commutativity), idem
(idempotency), and memo. The last one allows to memoize the results of equational
simplification (the canonical forms) in the memoization table for this operator. Whenever
the Maude interpreter encounters a subterm whose top operator has the memo attribute,
it looks to see if its canonical form is already stored. If so, that result is used; otherwise,
equational simplification proceeds according to the operator’s strategy.

A functional module can contain equations and variable declarations. Variables can be
declared on-the-fly in Maude with syntax consisting of an identifier (the variable name), a
colon, and another identifier (its sort). For example, N:SortName. It can also be declared
in a module using the keyword var, for example, var N : SortName .

Equations may be either unconditional or conditional:

23

Chapter 2. Preliminary Notions

eq Term1 = Term2 .

ceq Term1 = Term2 if cond .

A condition (cond) can be either a single ordinary equation t = t′ or a single matching
equation t := t′, or a conjunction of these equations by using the binary conjunction
connective /\ which is assumed to be associative. An example of a matching equation as
a condition of conditional equation can be the following operator

sorts List Elem .

vars L L’ : List .

var E : Elem .

op car : List -> Elem

ceq car(L) = E if cons(E,L’) := L .

that defines the function car that extracts the first element of a list. The matching
equation cons(E,L’) := L expresses that L, used in the left-hand side of the equation,
has to be of the form cons(E,L’), thus connecting the first element of L to E, which is
used in the right-hand side of the equation.

Equational specifications are required to be terminating and confluent. It is terminat-
ing if its set of equations does not lead to infinite computation during reduction of terms.
It is confluent if the reduction of a term always yields to the same result, no matter in
which order, and where in the term, the equations are applied.

System module A system module is a rewrite theory. A rewrite theory has sorts,
operators, and can have also types of statements such as equations and rules, all of which
can be conditional. Therefore, any rewrite theory has an underlying equational theory,
containing the equations plus the rules. In system modules, each step of rewriting is a
step of replacement of equals by equals, until we find a fully evaluated value.

A system module is declared with the keywords mod ... endm. It can contain not
only any elements of a functional module but also unconditional and conditional rewrite
rules of the form:

rl [label] : Term1 => Term2 .

crl [label] : Term1 => Term2 if cond .

As in conditional equations, the condition (cond) can consist of a single statement, or
can be a conjunction formed with the associative connective /\.

Unlike equational specifications, rewrite specifications can be nonterminating and non-
confluent, however, the equational part of a rewrite specification is still required to be
terminating and confluent.

Module importation In Maude we can import other predefined modules with three
existing modes: protecting, extending or including (the shorter versions are pr, ex
and inc).

Importing a module M into M ′ in protecting mode means that no junk and no con-
fusion are added to M when we include it in M ′. The idea of extending mode is to allow
junk, but to rule out confusion. Finally, in including mode there can be junk and/or
confusion.

24

2.5. Maude language

Parameterized programming Parameterized modules, theories and views are the
basic building blocks of parameterized programming [BG79, DGS93]. A parameterized
module is a module with one or more parameters, each of which is expressed by means of
one theory, that is, modules can be parameterized by one or more theories. A theory de-
fines the interface of a parameterized module, that is, the structure and properties required
of an actual parameter. The instantiation of the formal parameters of a parameterized
module with actual parameter modules or theories requires a view, mapping entities from
the formal interface theory to the corresponding entities in the actual parameter module.

Theories declare the syntactic and semantic properties to be satisfied by the actual
parameter modules used in an instantiation. As for modules, Maude supports two dif-
ferent types of theories: functional theories and system theories. Functional theories are
declared with the keywords fth ... endfth, and system theories with the keywords
th ... endth. Both of them can have sorts, subsort relationships, operators, variables,
membership axioms, and equations, and can import other theories or modules. System
theories can also have rules.

For instance, TRIV is the functional theory that consists of a single sort Elt.

fth TRIV is

sort Elt .

endfth

This theory is very often used in the definition of data structures, such as lists, sets,
trees, etc. It is common to define a module, say LIST, SET, TREE, etc., parameterized by
the TRIV theory. The theory TRIV is predefined in Maude, together with several useful
views from TRIV to other predefined modules and theories.

A module can be parameterized by one or more theories. For example, a simple
parameterized module

fmod SET{X :: TRIV} is ... endfm

forms sets of models of the trivial parameter theory TRIV.
Views are used in Maude to specify how a particular target module or theory is claimed

to satisfy a source theory. In the definition of a view we have to indicate its name, the
source theory, the target module or theory, and the mapping of each sort and operator in
the source theory.

view ViewName from Source to Target is

Mappings

endv

For example, the mapping of a sort in the source theory to a sort in the target module
or theory is expressed with the following syntax

sort Identifier to Identifier .

Some basic parameterized data types are predefined in the file prelude.maude, e.g.
SET{X :: TRIV}, LIST{X :: TRIV}, etc. The file prelude.maude contains many views
out of TRIV. For example, the predefined view Int in Maude

25

Chapter 2. Preliminary Notions

view Int from TRIV to INT is

sort Elt to Int .

endv

shows how the module INT, where the sort Int for integers and arithmetic operators are
defined, satisfies the theory TRIV.

A parameterized module is instantiated with views. For example, we can define a
module providing a set of integers as follows

fmod INT-SET is

pr SET{Int} .

...

endfm

where Int is a name of the predefined view.

2.5.2 Reflection, Metalevel

Reflection is a very important and powerful feature of rewriting logic. Thanks to this
feature Maude programs can be meta-represented as a data that can be manipulated by
appropriate functions [CMP07].

The key functionality of a metalevel theory with several descent functions has been
implemented in Maude in a functional module named META-LEVEL, by using Maude’s
own interpreter. This module includes the modules META-TERM, where Maude terms are
meta-represented as elements of a data type Term of terms, META-MODULE, where Maude
modules are meta-represented as terms in a data type Module of modules, and META-VIEW,
where Maude views are meta-represented as terms in a data type View of views. In the
META-LEVEL, the operations upModule, upTerm and downTerm allow moving from the
concrete to the abstract (meta) level. The processes of rewriting a term in a system
module using Maude’s rewrite and frewrite commands are meta-represented by built-
in functions metaRewrite and metaFrewrite. The process of matching two terms at the
top is metare-presented by the built-in function metaMatch. The process of matching a
pattern to any subterm of a term is reified by the built-in function metaXmatch. The
process of searching for a term satisfying some conditions starting at an initial term is
meta-represented by built-in function metaSearch.

2.5.3 Unification

Unification is a fundamental deductive mechanism used in many automated deduction
tasks. In the context of Maude, unification can be very useful to reason not only about
equational theories, but also about rewrite theories. In Maude unification is reflected in
the META-LEVEL module by the descent function metaUnify.

26

2.6. Summary

2.5.4 Narrowing

Narrowing generalizes term rewriting by allowing free variables in terms, and by perform-
ing unification instead of matching in order to (non-deterministically) reduce a term. At
each rewriting step one must choose which subterm of the subject term and which rule of
the specification are going to be considered.

In a rewriting step and a narrowing step we use a rewrite rule l → r to rewrite t at a
position p in t. The difference between both it that narrowing unifies the left-hand side
l and the chosen subject term t |p before actually performing the rewriting step. Also,
narrowing is usually restricted to non-variable positions of t, whereas rewriting does not
require such a restriction.

Full Maude provides a narrowing-based search command that is meta-represented by
the built-in function metaSearch.

More details about Maude, Maude features and Maude tools could be found at http:
//maude.cs.uiuc.edu/.

2.6 Summary

This subsequent chapters build upon the basic notions presented in the present chapter.
For the notion of first-order theory, central in this thesis, we have introduced the pre-
liminary notions of first-order logic, signature, term, clause, structure, satisfiability and
validity. We have shown some examples of theories of classical datatypes, such as lists,
arrays and records, for which paramodulation is known to terminate. Since we consider
the rewriting-based approach to build satisfiability procedures, we have introduced in
this chapter the classical notion of term rewrite system. Moreover, we have introduced a
method for proving termination of rewrite system based on simplification ordering. We
have also studied the method of combinability of two satisfiability procedures proposed by
Nelson and Oppen. Finally, the Maude language has been introduced to help understand-
ing our implementation of schematic paramodulation calculi presented in Chapter 6.

27

Chapter 2. Preliminary Notions

28

Chapter 3

Paramodulation Calculi

Contents

3.1 Paramodulation calculus . 30

3.2 Saturation-based satisfiability procedures 33

3.3 Combination of theories . 34

3.4 Paramodulation calculus for Integer Offsets 35

3.4.1 Theory of Integer Offsets . 35

3.4.2 Extending the paramodulation calculus to Integer Offsets . . . 36

3.4.3 Combination of theories . 37

3.5 Summary . 37

Until 1969 the resolution method [Rob65] (which can prove that a first-order formula
is not satisfiable) has been used, when reasoning on equalities. In this case we can use
the resolution calculus by specifying the axioms of the theory of equality (reflexivity,
symmetry, transivity, congruence) as clauses, but this is completely inefficient. In fact,
the resolution generates too many unnecessary new clauses. To overcome this problem,
Robinson and Wos [RW69] explored another possibility: they designed a new dedicated
calculus, called Paramodulation. The aim of paramodulation is to integrate in the calculus
the theory of equality. Therefore, the paramodulation calculus is a dedicated calculus for
first order logic with equality. Since that time many improvements of the original version
of paramodulation have been proposed [Bra75, Pet83, HR91]. These improvements were
crucial in order to have an efficient paramodulation-based theorem-prover. Another im-
portant refinement was the use of orderings [Pet83, BG90, Rus91]. Orderings have been
used to control the selection of the literals and subterms in them to be unified. In 1995
the authors of [BGLS95] have defined a framework for paramodulation (basic paramod-
ulation) which depends on a reduction ordering and a selection function. Independently
Nieuwenhuis and Rubio [NR92] have developed an inference system for completion and
for refutational theorem proving based on basic superposition and have proved complete-
ness in the context of deletion rules such as subsumption and simplification. In 2001
Nieuwenhuis and Rubio [NR01] have presented a consolidation of all the previous works
in the handbook of automated reasoning.

29

Chapter 3. Paramodulation Calculi

Then, Armando, Ranise and Rusinowich [ARR01, ARR03] have worked on a general
and flexible approach to derive satisfiability procedures by paramodulation. In fact, satis-
fiability procedures modulo background theories of classical data structures such as lists,
arrays and records are at the core of many state-of-the-art verification tools. The design,
the proof of correction and the implementation of such satisfiability procedures is a very
complex task. One of the main difficulties consists in proving their correctness. Moreover,
the implementation of each procedure is done in an ad hoc way, with no intention to reuse
the code. To overcome this problem, the authors of [ARR01] proposed a uniform approach
based on saturation to build satisfiability procedures and to prove their correctness. The
proof of correctness is reduced to the proof of the termination of a fair and exhaustive
application of the rules of Paramodulation Calculus PC [NR01] (also called superposition
calculus). This calculus is presented in Section 3.1. An approach for building decision
procedures by saturation is discussed in Section 3.2. The termination of paramodulation
on several theories, such as the theory of records, the theory of lists, etc. has been proved
in [ABRS09].

However, most of the verification problems involve different theories for which the
approach based on saturation may not apply. Therefore, there is an obvious need to build
a satisfiability procedure for the union of theories by reusing and combining existing
satisfiability procedures for component theories.

The authors of [ARR03] have shown how to combine the satisfiability procedures
obtained thanks to PC for the theory of arrays and the theory of lists à la Shostak.
A general modularity theorem has been proposed in [ABRS05]. This theorem states
sufficient conditions for PC to terminate on satisfiability problems of a union of theories,
if it terminates on the satisfiability problems of each theory taken separately. This theorem
is discussed in Section 3.3.

The authors of [NRR09c] have presented a new technique to combine satisfiability
procedures for theories that model data structures (the theory of lists and the theory
of records) and that share the theory of Integer Offsets. Contrary to the Nelson-Oppen
approach (Section 2.4), this approach considers non-disjoint theories. In [NRR09c] it is
shown how to apply a paramodulation calculus to build satisfiability procedures that can
be plugged into the non-disjoint combination framework. This technique is presented in
Section 3.4. The authors of [RS11] have discussed a question of modular termination of
theories sharing Integer Offsets. The main theorem is presented in Section 3.4.3.

3.1 Paramodulation calculus

Let us consider a theory T axiomatized by a set Ax(T) of finitely many axioms and a set
S composed of ground flat literals. To decide whether S is satisfiable in T , the rules of
paramodulation calculus are applied in an exhaustive way to the set Ax(T) ∪ S. If the
empty clause is derived, then S is unsatisfiable in T . Otherwise, it is satisfiable in T .
The correctness of these procedures is guaranteed by the correctness of the rules of the
paramodulation calculus.

The paramodulation calculus is a refutation-complete inference system for general
first-order equational logic [NR01]. It means that any fair application of the rules to

30

3.1. Paramodulation calculus

an unsatisfiable set of clauses will derive the empty clause. Fairness means that if some
inference is possible it will be performed at some step unless one of the parent clauses
gets simplified, subsumed, or deleted.

In general this calculus provides a semi-decision procedure that halts on unsatisfiable
input, but may not terminate on satisfiable ones. However, it also terminates on sat-
isfiable inputs for some theories axiomatizing standard datatypes such as lists, arrays,
etc. Therefore, the paramodulation calculus provides a decision procedure for the theory
of interest if one can show that it terminates on every input made of the finitely many
axioms and any set of ground literals.

A fundamental feature of PC is the use of a simplification ordering < to control the
application of some rules by orienting equalities. This ordering is total on ground terms.
We use a lexicographic path ordering presented in Section 2.3.2.

The inference system PC consists of the rules in Figures 3.1 and 3.2. Clauses are
presented here under the form of disjunctions as in [LM02]. They could also be presented
under the form of implications as in [ARR03, LRRT11].

Superposition
C ∨ l[u′] ⊲⊳ r D ∨ u = t

σ(C ∨D ∨ l[t] ⊲⊳ r)

if σ(u) 6≤ σ(t), σ(l[u′]) 6≤ σ(r), l[u′] ⊲⊳ r and u = t are selected in
their clauses.

Reflection
C ∨ u 6= u′

σ(C)

if u 6= u′ is selected in its clause.

Eq. Factoring C ∨ u = t ∨ u′ = t′

σ(C ∨ t 6= t′ ∨ u = t)

if σ(u) 6≤ σ(t), u = t is selected in its clause, σ(t) 6≤ σ(t′) and
σ(u′) 6≤ σ(t′).

Above, σ is the most general unifier of u and u′ and C and D are clauses.
In the Superposition rule, u′ is not a variable.

Figure 3.1: Expansion inference rules of PC

The expansion rules (Figure 3.1) aim at generating new (deduced) clauses. These
rules use a selection function sel such that for each clause C, sel(C) contains a negative
literal in C or all maximal literals in C with respect to <. For brevity left and right
paramodulation rules are grouped into a single rule, called Superposition, that uses an
equality to perform a replacement of equal by equal into a literal. The Superposition rule
is applied between two selected literals by using terms that are maximal in their literals
with respect to <. The Reflection and Eq. Factoring rules generate a new clause from
the instantiation of an existing one. Reflection removes a selected disequality in a clause

31

Chapter 3. Paramodulation Calculi

Subsumption
S ∪ {C,C ′}
S ∪ {C}

if for some substitution σ, σ(C) ⊆ C ′.

Simplification
S ∪ {C[l′], l = r}
S ∪ {C[σ(r)], l = r}

if l′ = σ(l), σ(l) > σ(r), and C[l′] > (σ(l) = σ(r))

Tautology
S ∪ {C ∨ t = t}

S

Above, C and C ′ are clauses and S is a set of clauses.

Figure 3.2: Contraction inference rules of PC

when its two sides can be unified. When the clause is unit, it generates the empty clause.
Eq. Factoring factorizes two equalities when their left-hand sides can be unified.

The contraction rules (Figure 3.2) aim at simplifying the set of clauses. Using Sub-
sumption, a clause is removed when it is an instance of another one. Simplification rewrites
a literal into a simpler one by using an equality that can be considered as a rewrite rule.
Trivial equalities are removed by Tautology.

Definition 39 (Redundancy). Let I be an inference system. We say that

• a clause C is redundant with respect to I and with respect to a set S of clauses if
either C ∈ S, or S can be obtained from S ∪ {C} by a sequence of applications of
the contraction rules from I.

• an inference is redundant with respect to a set of clauses S if its conclusion is
redundant with respect to I and with respect to S.

Definition 40 (Saturation). A set of clauses S is saturated with respect to an inference
system I if every inference from I with a premise in S is redundant with respect to S.

A saturation of a set of clauses S by PC is the final set of clauses generated by a fair
derivation from S using rules in PC with higher priority given to the contraction rules. If
the saturation terminates for the union of Ax(T) and S, for any S, then it is a decision
procedure for T : if the final set of clauses contains the empty clause then the input set of
literals is unsatisfiable, otherwise, it is satisfiable.

The notion of fair derivation is made precise by the following definitions:

Definition 41 (Derivation). A derivation is a sequence S0, S1, . . . , Si, . . . of sets of clauses
where each Si+1 is obtained from Si by applying an inference to add a clause (by expansion
rules) or to delete a clause (by contraction rules).

32

3.2. Saturation-based satisfiability procedures

A derivation is characterized by its limit, defined as the set of persistent clauses S∞ =
⋃

j≥0

⋂

i>j Si, that is, the union for each j ≥ 0 of the set of clauses occurring in all future
steps starting from Sj.

For the Simplification rule, one can remark that its application corresponds to two
steps in the derivation: the first step adds a new literal, whilst the second one deletes a
literal.

Definition 42 (Fair derivation). A derivation S0, S1, ..., Si, ... is fair if for every inference
with premises in the limit, there is some j ≥ 0 such that the inference is redundant with
respect to Sj.

The set of persistent literals obtained by a fair derivation is called the saturation of
the derivation.

Theorem 1 ([NR01]). If S0, S1, . . . is a fair derivation with respect to PC, then its limit
S∞ is saturated with respect to PC, and S0 is unsatisfiable if and only if Sj is the empty
clause for some j. Moreover, if S0, S1, . . . , Sn is a fair derivation then Sn is saturated and
logically equivalent to S0.

3.2 Saturation-based satisfiability procedures

Let T be a theory axiomatized by a set Ax(T) of finitely many axioms. The methodology
based on saturation proposed in [ARR01] consists of two steps:

1. flattening all the input literals (by introducing “fresh” constants),

2. choosing an order and proving the termination. Termination means that one have
to ensure that the saturation of axioms with an arbitrary set of ground flat literals
generates only finitely many clauses. Termination may depend on simple properties
of the ordering >: an ordering that satisfies them is called T -good.

Example 9 (Flattening). Let us consider two examples:

• positive literal f(f(f(a))) = b. To flatten this literal, we introduce the new constant
c1 that represent f(a). Thus, we get a conjunction {f(f(c1)) = b, c1 = f(a)}.
Then, we introduce another constant c2 that represents f(c1). Thus the conjunction
becomes {f(c2) = b, c1 = f(a), c2 = f(c1)}. Thus the literal f(f(f(a))) = b can be
represented by the conjunction of literals {f(c2) = b, c2 = f(c1), c1 = f(a)}.

• negative literal f(g(a)) 6= f(b). Similarly to the previous example, we replace the
subterm g(a) of the term f(g(a)) by a new constant c1. Thus we get the conjunction
{f(c1) 6= f(b), c1 = g(a)}. Then we flatten both sides of the disequality by introduc-
ing two new constants c2 and c3. Thus the literal f(g(a)) 6= f(b) can be represented
by the conjunction of literals {c2 6= c3, c2 = f(c1), c3 = f(b), c1 = g(a)}.

33

Chapter 3. Paramodulation Calculi

The flattening augments the size of the input set of literals S to O(n), where n is the
number of subterms in S.

Example 10 (T -good ordering for L). An ordering > for the theory of lists is T -good if

• t > c for all ground compound terms t and all constants c

• l > e for all constants l of sort lists and constants e of sort elem.

Therefore, if T is a theory for which this methodology applies, then a T -satisfiability
procedure can be constructed by flattening the input literals and then applying the rules of
paramodulation calculus with a suitable order. If the final set contains the empty clause,
then the T -satisfiability procedure returns unsatisfiable, otherwise it returns satisfiable.

In all that follows, we suppose that the set of literals for which we want to decide
satisfiability is only composed of ground flat literals.

For some theories the paramodulation is known to terminate, and therefore, to be a
satisfiability procedure. For example:

1. the theory of lists à la Shostak (Section 2.2.1)

Theorem 2 ([ARR03]). PC is a polynomial satisfiability procedure for L.

2. the theory of arrays (Section 2.2.5)

Theorem 3 ([ARR03]). PC is an exponential satisfiability procedure for A.

3. the theory of records (Section 2.2.3)

Theorem 4 ([ABRS09]). PC is a polynomial satisfiability procedure for R.

4. the theory of possibly empty lists (Section 4.4)

Theorem 5 ([ABRS09]). PC is an exponential satisfiability procedure for PEL.

3.3 Combination of theories

The combination of the theory of lists and the theory of arrays is considered in [ARR03].
It is shown that PC terminates when considering the union of axioms Ax(L) ∪ Ax(A).
More generally, the question is whether the rewrite-based approach is well-suited to design
satisfiability procedures for a combination of theories. When satisfiability procedures are
built for theories T1, . . . , Tn thanks to PC, the problem is to show that PC also decides the
satisfiability problem in the union of theories T =

⋃n

i=1 Ti. In [ABRS05, ABRS09] three
sufficient conditions are established in order to show that PC terminates on T -satisfiability
problems if it terminates on Ti-satisfiability problems for all i, 1 ≤ i ≤ n:

34

3.4. Paramodulation calculus for Integer Offsets

1. The ordering is T -good, where T =
⋃n

i=1 Ti, which means that for all i, 1 ≤ i ≤ n,
the ordering is Ti-good.

2. There is no across-theories inferences, since a variable can superpose with any non-
variable subterm. To identify the clauses generating these undesirable inferences,
the concept of variable-active clause has been introduced.

Definition 43 (Variable-active clause). A clause C is variable-active with respect
to an ordering > if C contains a maximal (with respect to >) literal of the form
X = t, where X is a variable not occurring in V ar(t).

3. The signatures of theories do not share functional symbols. Sharing of constant
symbols is allowed. Therefore, the only inference across theories are paramodula-
tions from constants to constants, that are finitely many, since there are finitely
many constants.

Theorem 6 (Theorem 5, [ABRS05]). Let T1, . . . , Tn be signature-disjoint theories, and
let T =

⋃n

i=1 Ti. Assume that for all i, 1 ≤ i ≤ n, Si is a set of ground flat Ti-literals.
If for all i, 1 ≤ i ≤ n, PC terminates on Ax(Ti) ∪ Si with a saturation containing no
variable-active clause, then PC terminates on Ax(T) ∪ S1 ∪ . . . ∪ Sn, and therefore is a
satisfiability procedure for T .

To ensure efficiency, it is very useful to have built-in axioms in the calculus, and
so to design paramodulation calculi modulo theories. This is particularly important for
arithmetic fragments due to the ubiquity of arithmetics in applications of formal methods.
For instance, paramodulation calculus has been developed for Integer Offsets [NRR09c].
This point is discussed in the next section.

3.4 Paramodulation calculus for Integer Offsets

The paramodulation calculus for theories sharing Integer Offsets has been presented
in [NRR09c]. The authors of this paper considered only unitary clauses, i.e. clauses com-
posed of at most one literal. Therefore, they considered the unitary version of paramod-
ulation calculus PC. They adapt this calculus to the theory of Integer Offsets, so that it
can serve as a basis for the design of decision procedures for Integer Offsets extensions.

3.4.1 Theory of Integer Offsets

The theory of Integer Offsets TI is axiomatized by the following set Ax(I) of axioms:

(s0) ∀X. s(X) 6= 0

(inj) ∀X,Y. s(X) = s(Y)⇒ X = Y

(acy) ∀X. X 6= s
n(X) for all n ≥ 1

over the signature ΣI := {0 : int, s : int → int}. The second axiom specifies that
the successor function s is injective. The third axiom is in fact an axiom scheme, which
specifies that this function is acyclic.

35

Chapter 3. Paramodulation Calculi

3.4.2 Extending the paramodulation calculus to Integer Offsets

The unitary paramodulation calculus for theories sharing Integer Offsets UPCI consists
of the unitary version of the rules of paramodulation calculus PC: the expansion rules
(Figure 3.1), the contraction rules (Figure 3.2), plus the additional reduction rules corre-
sponding to the axioms of the theory of Integer Offsets (Figure 3.3).

R1
S ∪ {s(u) = s(v)}

S ∪ {u = v}
if u and v are ground terms.

R2
S ∪ {s(u) = t, s(v) = t}
S ∪ {s(v) = t, u = v}

if u, v and t are ground terms, s(u) > t, s(v) > t and u > v.

C1
S ∪ {s(t) = 0}

S ∪ {s(t) = 0,⊥}
if t is a ground term.

C2
S ∪ {sn(t) = t}

S ∪ {sn(t) = t,⊥}
if t is a ground term and n ≥ 1.

Figure 3.3: Ground reduction rules for Integer Offsets

The authors of [NRR09c] adapt the notion of derivation to the paramodulation calculus
for theories sharing Integer Offsets as follows:

Definition 44 (Derivation). A derivation (δ) with respect to UPCI is a (finite or infinite)
sequence of sets of literals S1, S2, S3, . . . , Si, . . . such that, for every i, it happens that:

• Si+1 is obtained from Si adding a literal obtained by the application of one of the
rules in Figures 3.1, 3.2 and 3.3 to some literals in Si;

• Si+1 is obtained from Si removing a literal according to one of the rules in Figure
3.2 or to the rule R1 or R2.

Note that the application of Simplification, R1 and R2 involve two steps in the deriva-
tion: in the first step a new literal is added, and in the second one a literal is deleted.

The refutation completeness of UPCI is also studied in [NRR09c]. It is assumed that
the ordering considered when performing any application of UPCI is TI − good.

Definition 45 (TI − good ordering). An ordering < is TI − good if < is a simplification
ordering which is total on ground terms, such that

1. 0 is minimal, and

36

3.5. Summary

2. for any non s-rooted terms t1 and t2, sn1(t1) > sn2(t2) iff either t1 = t2 and n1 is
bigger than n2, or t1 > t2.

Theorem 7 ([NRR09c]). Let T be a Σ-theory presented as a finite set of unit clauses
such that Σ ⊇ ΣI , and assume to put an ordering over terms that is TI − good. UPCI
induces a decision procedure for the satisfiability problem with respect to T ∪TI if, for any
set G of ground literals:

• the saturation of Ax(T) ∪G w.r.t. UPCI is finite,

• the saturation of Ax(T) ∪ G w.r.t. UPCI does not contain non-ground equalities
whose maximal term is s-rooted.

The authors of [NRR09c] have shown that UPCI terminates for some theories sharing
Integer Offsets, such that the theory of lists with length, the theory of lists over integer
elements and the theory of records with increment.

3.4.3 Combination of theories

The combination of theories extending TI is addressed in [RS11]. As for the disjoint case
(see Theorem 6), it is important to forbid variable-active clauses in the saturation.

Theorem 8 ([RS11]). Let T1, . . . , Tn be theories sharing only the function symbols of
TI . and let T =

⋃n

i=1 Ti. Assume that for all i, 1 ≤ i ≤ n, Si is a set of ground flat
Ti-literals. Assume that for all i, 1 ≤ i ≤ n, UPCI terminates on Ax(Ti) ∪ Si with a
saturation containing (1) no non-ground equality with a maximal s-rooted term, and (2)
no variable-active clause. Then, UPCI terminates on Ax(T)∪S1∪ . . .∪Sn, and therefore
is a satisfiability procedure for T ∪ TI .

In Theorem 8, the conditions on the form of saturations correspond to the definition
of safe saturations introduced in [RS11].

3.5 Summary

In this chapter we have presented the paramodulation calculus. We have introduced the
expansion and contraction rules of PC and have described each of its rule. We have also
introduced such notions as redundancy, saturation, derivation and fairness, which are the
key notions of paramodulation calculus. We have presented the approach for deriving
decision procedures based on saturation [ARR01].

The question of having built-in axioms in the calculus has been addressed as well. We
have shown how the authors of [NRR09c] designed the paramodulation calculus developed
for Integer Offsets. This is particularly important since arithmetics are used ubiquitously
in applications of formal methods.

Moreover, we have discussed the combination problem of both signature-disjoint the-
ories and theories with non-disjoint signature. As one could notice this problem is easily
solved thanks to the paramodulation calculus.

37

Chapter 3. Paramodulation Calculi

38

Chapter 4

Schematic Paramodulation Calculus

Contents

4.1 Constrained clauses . 40

4.2 Ordering . 41

4.3 Schematic calculus . 43

4.4 Schematic Deletion rule . 44

4.5 Adequation result . 46

4.6 Automatic combinability . 47

4.7 Summary . 49

A classical termination proof of some theory by paramodulation calculus consists in
considering the finitely many cases of inputs made of the (finitely many) axioms and any
set of ground flat literals. This proof can be done by hand, by analysing the finitely many
forms of clauses generated by saturation, but the process is tedious and error-prone.

To simplify this process, a Schematic Paramodulation Calculus has been developed
in [LM02] to build the schematic form of the saturations. It can be seen as an abstrac-
tion of the paramodulation calculus: If it halts on one given abstract input, then the
paramodulation calculus halts for all the corresponding concrete inputs. The input of
schematic paramodulation calculus consists of axioms of the background theory T and
the schematic representation of an arbitrary set of ground flat literals in T . Thus, thanks
to the schematic paramodulation calculus we can check the decidability of the satisfiabil-
ity problem for T . Also, as explained in [LM02], this calculus gives us an upper bound
on the number of clauses generated by the paramodulation calculus.

The schematic paramodulation does not only allow checking the decidability of the
satisfiability problem for a theory, but it also determines the modular termination. If
paramodulation calculus decides the satisfiability problem of two theories separately, and
if saturations of considered theories satisfy the condition presented in Section 4.6, then
it also decides the satisfiability problem of their union [LRRT11]. Therefore, schematic
paramodulation is a fundamental tool to check important properties related to decidability
and combinability [LRRT11].

39

Chapter 4. Schematic Paramodulation Calculus

The schematic paramodulation calculus is almost identical to the concrete paramod-
ulation calculus, except that clauses are constrained. Such clauses contain constrained
variables: these variables can be replaced only by constants. In this chapter, before pre-
senting schematic paramodulation calculus, we introduce useful notions such as constraint,
constrained clause, constrained variable, constrained instance, etc. Then, we present a
lexicographic path ordering used in the side-conditions of the rules of this calculus. This
ordering is different from the one introduced in Section 2.3.2 since schematic paramodu-
lation calculus uses constrained variables. After that, we present the expansion and the
contraction rules of the calculus. We show that any concrete saturation computed by con-
crete paramodulation can be viewed as an instance of an abstract saturation by schematic
paramodulation. Finally, we consider an approach for building satisfiability procedures
for unions of theories.

4.1 Constrained clauses

This section introduces the notions of constraint, constrained clause, constrained variable
and elementary instance.

Definition 46 (Atomic constraint, Constraint). An atomic constraint is of the form
const(t), where t is a term. A constraint is a conjunction of atomic constraints.

Definition 47 (Constrained clause). A constrained clause is of the form C‖ϕ, where C
is a clause and ϕ is a constraint.

Definition 48 (Constrained variable). A variable x is constrained in a constrained clause
C‖ϕ if ϕ contains const(x); otherwise it is unconstrained.

In fact, a constrained variable is a schematization of constants. It can only be in-
stantiated by a constant. An unconstrained variable is a universally quantified variable
that can be instantiated by any term. For sake of brevity, const(x1, . . . , xn) denotes the
conjunction const(x1) ∧ · · · ∧ const(xn).

Definition 49 (Constraint satisfaction). The atomic constraint const(t) is true iff t is
a constant. A constraint is true if all its atomic constraints are true. A substitution
σ satisfies a constraint ϕ if σ(ϕ) is true. A constraint is satisfiable if there exists a
substitution σ satisfying it.

Consequently, the atomic constraint const(t) is unsatisfiable if t is a term of depth 1 or
more, i.e., when t contains a non-constant function symbol. When a constraint contains
a true atomic constraint, we assume that this true atomic constraint is automatically
removed from the constraint.

Definition 50 (Constraint instance). A constraint instance of the constrained clause C‖ϕ
is any clause of the form σ(C) where σ is a substitution satisfying ϕ.

For example, if a is a constant then the clause f(a) = X is a constraint instance of
the constrained clause f(x) = X‖const(x), where x is a constrained variable and X is

40

4.2. Ordering

an unconstrained variable. A constrained clause is used to schematize the set of all its
constraint instances.

The notion of constraint instance is extended to constrained clauses by the following
definition.

Definition 51 (Elementary instance). Let C‖ϕ and C ′‖ϕ′ be two constrained clauses. We
say that C ′‖ϕ′ is an elementary instance of C‖ϕ if there exists a substitution σ replacing
some constrained variables of C‖ϕ with constrained variables or constants of C ′‖ϕ′ such
that C ′ = σ(C) and ϕ′ = σ(ϕ).

For instance, the clause f(x) = nil ∨ y = g(z)‖const(x, y, z) is an elementary instance
of the clause f(a) = b ∨ c = g(d)‖const(a, b, c, d), because the substitution σ = {a ←
x, b← nil, c← y, d← z} satisfies all the conditions in Definition 51.

Notice that our notion of constraint is less general and thus more precise than the
one in [LRRT11], where an atomic constraint is some t ≤ t′. Our atomic constraint
const(t) corresponds to t ≤ cT in [LRRT11], where cT represents the biggest constant
with respect to ≤. Since the ordering ≤ is extended to open terms, there may exist
unground substitutions σ such that σ(t ≤ t′) is true. By contrast, our constraints are
satisfiable iff they are satisfiable by a ground substitution that replaces all their variables
with constants.

4.2 Ordering

In the classical definition of LPO (Definition 34), variables are not considered because
they are not comparable. Here, constrained clauses contain constrained variables that
can be replaced with constants of the same sort. Two constrained variables of different
sorts are comparable. In fact, each constrained variable is instantiated with a constant
of the appropriate sort. Therefore, when comparing two constrained variables, two corre-
sponding constants are compared by using the precedence order >F that is composed of
functional symbols and at least one constant per sort.

Example 11. The precedence order for the theory of lists with length presented in Sec-
tion 2.2.2 is the following: cons < cdr < car < nil < e < len < 0 < s, where nil is a
constant of sort lists, e is a constant of sort elem and 0 is a constant of sort int. As
mentioned above, to compare two constrained variables, for example, one of them is of sort
lists, and another one is of sort elem, we compare their corresponding constants. In our
example the corresponding constant of the constrained variable of sort lists is nil, and the
corresponding constant of the constrained variable of sort elem is e. From the precedence
it is known that the constants of sort lists are greater than the constants of sort elem.
Therefore, the constrained variable of sort lists is greater than the constrained variable
of sort elem.

We adapt the classical definition of LPO in order to take into account constrained
variables. We use the following definition when considering schematic paramodulation
calculus. The standard definition of lexicographic path ordering (Definition 34) is used
when considering (concrete) paramodulation calculus.

41

Chapter 4. Schematic Paramodulation Calculus

Definition 52 (Lexicographic path ordering with constrained variables). Given
a precedence >F on function symbols, the lexicographic path ordering >lpo is defined
as follows:

(1)
(s1, . . . , sn) >

lex
lpo (t1, . . . , tm) f(s1, . . . , sn) >lpo t1, . . . , tm

f(s1, . . . , sn) >lpo f(t1, . . . , tm)

(2)
f >F g f(s1, . . . , sn) >lpo t1, . . . , tm

f(s1, . . . , sn) >lpo g(t1, . . . , tm)

(3)
f >F csort(v)

f(s1, . . . , sn) >lpo v

(4)
csort(v) >F g v >lpo t1, . . . , tm

v >lpo g(t1, . . . , tm)

(5)
sort(vc1) 6= sort(vc2) csort(vc1) >F csort(vc2)

vc1 >lpo vc2

(6)
uk >lpo t

f(u1, . . . , uk, . . . , up) >lpo t

(7)
f(u1, . . . , uk, . . . , up) >lpo uk

where f and g are two functional symbols, n ≥ 0 and m ≥ 0 are two non-negative
integers, p ≥ 1 is a positive integer, and s1, . . . , sn, t1, . . . , tm, u1, . . . , up, t are terms,
vc1 and vc2 are two terms of depth 0 (i.e. constrained variables or constants). We write
s >lpo t1, . . . , tm when s >lpo tk for k = 1, . . . ,m.

The expression sort(t), where t is a constrained variable or constant, denotes the sort
of the given term. We denote by csort(t) the constant itself if t is a constant or the constant
that represents the given constrained variable t: the sort of this constant is the same as
the sort of the given constrained variable. Let us consider again the precedence given in
Example 11. In this precedence the constant nil represents constrained variables of sort
lists, the constant e represents constrained variables of sort elem, and the constant 0

represents constrained variables of sort int.
The rules (1), (6), and (7) respectively correspond to the rules LPO1, LPO3 and LPO4

in Definition 34. All the possible cases of the rule LPO2 are considered in (2)–(5).
The rule (2) compares two compound terms with different root symbols. The term

f(s1, . . . , sn) is greater than the term g(t1, . . . , tm) if the root symbol f of the first term
precedes the root symbol g of the second one, and the first term f(s1, . . . , sn) is greater
than each subterm of the second one.

The rule (3) sets that a compound term f(s1, . . . , sn) is greater than a constrained
variable v if its root symbol f precedes a constant csort(v) corresponding to the constrained
variable v.

The rule (4) compares a constrained variable and a compound term. We say that
v >lpo g(t1, . . . , tm) if a constant representing v precedes the root symbol g, and if v is
greater than each subtems of the given compound term.

42

4.3. Schematic calculus

The rule (5) establishes that one constrained variable is greater than another one if
they are of different sorts, and if the constant representing the first constrained variable
precedes the constant representing the second one.

When the signature of a given theory is unsorted, the constrained variables are not
comparable.

4.3 Schematic calculus

SPC consists of the rules in Figs. 4.1 and 4.2. With respect to [LRRT11], we have slightly
adapted the subsumption rule so that the instantiation is not only a renaming but can also
be a substitution instantiating constrained variables by constrained variables or constants.
For example, the constrained clause x 6= nil ‖ const(x) where nil is a constant is subsumed
by the constrained clause a 6= b ‖ const(a, b). This allows us to have a more compact
form of saturations for all the considered theories in Chapter 7.

Superposition
C ∨ l[u′] ⊲⊳ r‖ϕ D ∨ u = t‖ψ

σ(C ∨D ∨ l[t] ⊲⊳ r‖ϕ ∧ ψ)

if σ(u) 6≤ σ(t), σ(l[u′]) 6≤ σ(r), l[u′] ⊲⊳ r and u = t are selected in
their clauses.

Reflection
C ∨ u 6= u′‖ϕ
σ(C‖ϕ)

if u 6= u′ is selected in its clause

Eq. Factoring
C ∨ u = t ∨ u′ = t′‖ϕ
σ(C ∨ t 6= t′ ∨ u = t‖ϕ)

if σ(u) 6≤ σ(t), u = t is selected in its clause, σ(t) 6≤ σ(t′) and
σ(u′) 6≤ σ(t′).

Above, σ is the most general unifier of u and u′ and C and D are clauses. In the
Superposition rule, u′ is not a unconstrained variable.

Figure 4.1: Expansion inference rules of SPC

For a given theory T with signature Σ, let

G0 = {⊥, x = y ‖ const(x, y), x 6= y ‖ const(x, y)}
∪
⋃

f∈Σ{f(x1, . . . , xn) = x0 ‖ const(x0, x1, . . . , xn)}

43

Chapter 4. Schematic Paramodulation Calculus

Subsumption
S ∪ {C‖ϕ,C ′‖ϕ′}

S ∪ {C‖ϕ}

if a) C ∈ Ax(T), ϕ is empty and for some substitution σ, C ′ =
σ(C); or b) C ′ = σ(C) and ϕ′ = σ(ϕ), where σ is a renaming or
a mapping from constrained variables to constrained variables or
constants

Simplification
S ∪ {C[l′]‖ϕ, l = r}
S ∪ {C[σ(r)]‖ϕ, l = r}

if i) l = r ∈ Ax(T), ii) l′ = σ(l), iii) σ(l) > σ(r), and C[l′] >
(σ(l) = σ(r))

Tautology
S ∪ {C ∨ t = t‖ϕ}

S

Deletion
S ∪ {C‖ϕ}

S
if ϕ is unsatisfiable

Above, C‖ϕ and C ′‖ϕ′ are constrained clauses and
S is a set of constrained clauses.

Figure 4.2: Contraction inference rules of SPC

where n ≥ 1. This set schematizes any set of ground flat equalities and disequalities built
over Σ, along with the empty clause. The procedure for checking termination of any fair
paramodulation strategy is based on Schematic Saturation, which consists in executing
SPC on Ax(T) ∪G0. If SPC halts on Ax(T) ∪G0, then PC halts on Ax(T) ∪ S, for any
arbitrary set S of ground flat literals. This property will be proved in Sect. 4.5. A key
ingredient is the Schematic Deletion rule defined in the next section.

4.4 Schematic Deletion rule

The schematic saturation may generate longer and longer clauses (containing new con-
strained variables) from clauses containing unconstrained variables and therefore diverge.
To illustrate this fact let us consider two examples, namely the theory of arrays and the
theory of possibly empty lists.

44

4.4. Schematic Deletion rule

The theory of arrays is axiomatized by the following set Ax(A) of axioms:

select(store(A, I, E), I) = E

select(store(A, I, E), J) = select(A, J) ∨ I = J

For every set S of ground flat literals, any saturation of Ax(A) ∪ S is finite [ABRS09],
while schematic saturation diverges [LRRT11]. In fact, it generates the clause

select(x, I) = select(y, I) ∨ z = I ‖ const(x, y, z)

whose superposition with a renamed copy of itself generates a clause of a new form

select(x, I) = select(y, I) ∨ z = I ∨ w = I ‖ const(x, y, z, w)

This process continues to generate longer and longer clauses so that the schematic
saturation does not terminate.

The theory of possibly empty lists (PEL for short) is axiomatized by the following set
Ax(PEL) of axioms:

car(cons(X,Y)) = X

cdr(cons(X,Y)) = Y

cons(X,Y) 6= nil

cons(car(Y), cdr(Y)) = Y ∨ Y = nil

car(nil) = nil

cdr(nil) = nil

The schematic saturation generates the clause

cons(x, cdr(y)) = z ∨ z = nil ‖ const(x, y, z)

whose superposition with a renamed copy of itself generates a clause

z = z′ ∨ z = nil ∨ z′ = nil ‖ const(z, z′)

This process goes on to generate longer and longer clauses so that the schematic
saturation diverges as well.

A Schematic Deletion rule has been designed [LRRT11] to cope with this problem.
We adapt this rule to take into account the constants in the theory signature, such as
the constant nil for the theory of possibly empty lists. The new version of the Schematic
Deletion rule is composed of the two rules in Figure 4.3. The idea behind these rules is
to delete:

1. disjunctions of two or more equalities and disequalities between two constrained
variables or between a constrained variable and a constant (e.g. z = z′ ∨ z =
nil ∨ z′ = nil ‖ const(z, z′)), and

2. constrained clauses composed of an elementary instance D ∨ l‖ϕ of some other
constrained clause and literals li which are not maximal in D∨ l and are elementary
instances of l‖ϕ (e.g. select(x, I) = select(y, I) ∨ z = I ∨ w = I ‖ const(x, y, z, w)).

In the first case the clause is deleted because its (dis)equalities may superpose with them-
selves to generate infinitely many disjunctions of (dis)equalities between constrained vari-
ables or between a constrained variable and a constant. In the second case the clause is
deleted because superposition between this clause and itself may generate infinitely many
new clauses of the same kind.

45

Chapter 4. Schematic Paramodulation Calculus

Sch. Deletion1
S ∪ {C‖ϕ}

S

if C‖ϕ is a non-unit clause containing only equalities or disequali-
ties between constrained variables or between a constrained variable
and a constant.

Sch. Deletion2
S ∪ {D′‖ϕ′} ∪ {D ∨ l ∨ l1 ∨ . . . ∨ ln‖ϕ}

S ∪ {D′‖ϕ′}

if n ≥ 0, D ∨ l‖ϕ is an elementary instance of the clause D′‖ϕ′,
and li‖ϕ is an elementary instance of l‖ϕ, where l is a non-maximal
literal in D ∨ l, for i = 1, . . . , n

Figure 4.3: Schematic Deletion rules of SPC

4.5 Adequation result

Let us now present the result stating that every clause in a saturation corresponds to
a schematic clause in a schematic saturation. This result was initially proved for the
schematic calculus considered in [LRRT11]. The same result holds for the schematic
calculus SPC considered here.

Theorem 9 (Correspondence between PC and SPC). Let T be a theory axiomatized by
a finite set Ax(T) of clauses, which is saturated with respect to PC. Let GT

∞ be the set of
all clauses in a saturation of Ax(T) ∪ G0 by SPC. Then for every set S of ground flat
ΣT -literals, every clause in a saturation Ax(T) ∪ S by PC is a clause of the form

C ∨ l1 ∨ . . . ∨ ln (*)

where

• n ≥ 0, and

• C is a constraint instance of some clause C ′ in GT
∞, and

• li is

– either a constraint instance of some non-maximal literal in C ′, or else

– a constraint instance of some maximal (dis)equality between constrained vari-
ables in C ′, or else

– a non-maximal (dis)equality between constants.

Proof. The proof in [LRRT11] can be replayed in the same way. The proof is by induction
on the length of derivations of PC. The base case is obvious. For the inductive case, we
need to show all the three facts:

46

4.6. Automatic combinability

1. Each clause added in the process of saturation of Ax(T) ∪ S by PC is of the form
(*). This is true because we use the same expansion rules as in [LRRT11].

2. If a constrained clause C‖ϕ is deleted by Subsumption or by Tautology Deletion

from (or simplified by Simplification in) the saturation of Ax(T)∪G0 by SPC, then
all clauses containing a constraint instance of C‖ϕ will also be deleted from (or
simplified in) the saturation of Ax(T) ∪ S by PC. Compared to [LRRT11], only
Subsumption has slightly changed, and this new contraction rule still satisfies this
fact.

3. If a constrained clause C‖ϕ is deleted by Schematic Deletion from the saturation of
Ax(T) ∪ G0 by SPC, then all constraint instances of this constrained clause C‖ϕ
are of the form (*). Let us consider the two cases of the new Schematic Deletion.
In the first case, the fact that l1 ∨ . . . ∨ ln‖ϕ is a non-unit clause containing only
equalities or disequalities between terms of depth 0 means that it is a schematiza-
tion of disjunctions of (dis)equalities between constants. It is easy to see that any
disjunction of (dis)equalities between constants is of the form (*). In the second
case, the fact that D∨ l‖ϕ is an elementary instance of some clause D′‖ϕ′, and li‖ϕ
is an elementary instance of some non-maximal literal l‖ϕ in D ∨ l means that any
constraint instance of D ∨ l ∨ l1 ∨ . . . ∨ ln‖ϕ is of the form (*).

4.6 Automatic combinability

In Section 3.1 we have seen that Paramodulation Calculus provides a satisfiability pro-
cedure for some theories of classical datatypes such as lists, arrays and records. The
proof of correctness is reduced to the proof of the termination of the saturation of an
arbitrary set of ground flat literals and axioms of the considered theory. We have also
seen that the satisfiability procedures for stably infinite theories are combinable by using
the Nelson-Oppen method presented in Section 2.4.

In Section 3.3 a rewriting-based approach is used to combine signature-disjoint the-
ories. This approach addresses an interesting modularity problem: if PC halts for both
theory T1 and theory T2, can one conclude that PC halts for T1∪T2? In this case, the only
problem that can prevent the termination of PC for the union of the two theories comes
from inferences across theories, since a variable can superpose with any non-variable
subterm. To circumvent this problem and ensure modular termination, it is sufficient
to exclude inferences on variables across theories. To identify the clauses generating
these undesirable inferences, the concept of variable-active clause has been introduced
in [ABRS05].

Definition 53 (Combinable Theory). The theory T axiomatized by a finite set Ax(T) of
axioms is said combinable with PC if for every set S of ground flat literals, any saturation
of Ax(T) ∪ S by PC is finite and does not contain any variable-active clauses.

47

Chapter 4. Schematic Paramodulation Calculus

In this section we show that SPC can check whether PC decides some unions of finitely
presented theories.

In [LRRT11] the notion of variable-active clause has been extended to a constrained
clause.

Definition 54 (Variable-active Clause). A constrained clause is variable-active with re-
spect to > if one of its constraint instances is variable-active with respect to >.

The correspondence between SPC and PC provides us a way to automatically check
that a theory T is combinable with PC.

Lemma 1 ([LRRT11]). A theory T is combinable with PC if any saturation of Ax(T)∪G0

by SPC is finite and does not contain any variable-active clauses.

The checking whether a clause is variable-active or not can be done syntactically. As
described in Section 6.7, we detect whether the saturation contains a maximal literal
X = t where the variable X does not occur in t or not.

Theorem 10 ([LRRT11]). Let T1 and T2 be two signature-disjoint theories, which are
already saturated with respect to PC. If T1 and T2 are combinable with PC, then PC is a
satisfiable procedure for T1 ∪ T2.

The notion of variable-active clause also allows us to determine properties of theories
such as stable infiniteness (Definition 36) and deduction completeness (Definition 38) that
we do not address in this thesis. If we want to show that a theory T is stable infinite, we
have to show that a set S of ground flat literals is satisfiable in an infinite model of T .
So, if we are able to show that the saturation of some set of literals does not contain an
equality of the form X = t, where X is a variable that does not appear in t, then we have
a syntactic criterion for determination of stably infiniteness.

Theorem 11 (Automatic stable infiniteness, [LRRT11]). Let T be a theory axiomatized
by a finite set Ax(T) of clauses which is saturated with respect to PC. Let G∞ be the set
of all clauses generated in a finite saturation of Ax(T) ∪ G0 by SPC. If G∞ does not
contain variable-active clauses, then T is stable infinite.

For the deduction completeness we have to show that the theory T axiomatized by a
finite set Ax(T) of Horn clauses is saturated with respect to PC, and that the saturated
set obtained by SPC does not contain variable-active clauses.

Theorem 12 (Automatic deduction completeness, [LRRT11]). Let T be a theory axiom-
atized by a finite set Ax(T) of Horn clauses which is saturated with respect to PC. Let
G∞ be the set of all clauses generated in a finite saturation of Ax(T)∪GT

0 by SPC. If G∞

does not contain variable-active clauses, then PC is a deduction complete T -satisfiability
procedure with respect to elementary equalities.

For non-Horn theories the situation is more complicated since some inferences on
non-unit ground elementary clauses may be blocked because of the ordering used in
PC [LRRT11]. In order to obtain deduction completeness, Tran [Tra07] proposes to

48

4.7. Summary

use a splitting rule presented in [RV01]. This rule allows to activate every possible in-
ference among elementary clauses and therefore to derive sufficiently many disjunctions
of ground elementary equalities. The idea of this rule is to split any clause of the form
A ∨ B into two clauses A ∨ p and B ∨ ¬p, where p is a new propositional variable and
A,B do not share any variables. Thanks to this rule, any ground elementary clause can
be split into clauses containing exactly one (dis)equality and possibly new propositional
variables. In this case an ordering such that p is the smallest one is considered. It allows
to activate every inference on ground elementary (dis)equalities. Therefore, as soon as the
set of clauses is saturated, we can compute a complete set of ground elementary clauses
by eliminating all new propositional variables introduced by splitting.

Example 12 ([LRRT11]). Let S be the following set of clauses

i 6= i′

select(a′, i′) = e′

store(a, i, e) = a′

select(a, i′) = e′

A saturation S ′ of Ax(A) ∪ S yields Ax(A) ∪ S and the following clauses

e′ = e ∨ i = i′

select(a, i′) = e′

select(a, i′) = e ∨ i = i′

select(a, J) = select(a′, J) ∨ J = i

It is easy to see that {i 6= i′, e′ = e ∨ i = i′} implies e′ = e, and hence we have that S ′

entails e′ = e. But the set {e′ = e ∨ i = i′} of ground elementary clauses of S ′ does not
entail e′ = e if we consider an ordering > such that e′ > e > i > i′. But by using the
splitting rule, the clause e′ = e ∨ i = i′ would be split into e′ = e ∨ p and i = i′ ∨ ¬p.
Superposition between i = i′ ∨ ¬p and i 6= i′ generates i′ 6= i′ ∨ ¬p to which Reflection
applies and generates ¬p. Then the proposition variable p can be eliminated by resolving
e′ = e ∨ p and ¬p to derive e′ = e.

More details about deduction completeness for non-Horn theories can be found in [Tra07].

4.7 Summary

In this chapter we have presented the schematic paramodulation calculus developed by
Lynch and Morawska [LM02] and extended in [LRRT11]. We have slightly adapted two
rules:

• the Subsumption rule so that the instantiation is not only a renaming but can also
be a substitution instantiating constrained variables by constrained variables or
constants,

• the Schematic Deletion rule in order to take into account the constants in the theory
signature.

49

Chapter 4. Schematic Paramodulation Calculus

Due to these changes we have shown that every clause in a saturation corresponds to a
schematic clause in a schematic saturation.

We have also described an approach for automatic combinability based on variable-
active clauses. The notion of variable-active clause is very useful not only for modular
combinability, but also for proving properties such as stably infiniteness and deduction
completeness.

50

Chapter 5

Schematic Calculus for Integer Offsets

Contents

5.1 Schematic paramodulation calculus with counting operators . 51

5.1.1 Schematic calculus . 52

5.1.2 Adequation result . 55

5.1.3 Application to the analysis of paramodulation 57

5.2 Automatic modular termination 58

5.3 Summary . 59

In this chapter, we introduce theoretical underpinnings that allows us to automatically
analyse saturations computed by the paramodulation calculus modulo Integer Offsets.
To this aim, we design a new schematic paramodulation calculus to describe saturations
modulo Integer Offsets. Our approach requires a new form of schematization to cope
with arithmetic expressions. Since paramodulation calculus for Integer Offsets presented
in Section 3.4 considers only unitary clauses, the schematisation of this calculus will also.
We show under which conditions the termination of schematic paramodulation implies the
termination of (concrete) paramodulation. Again, the fact of considering Integer Offsets
requires some specific proof arguments. In Chapter 7 we illustrate our contribution on the
examples of theories considered in [NRR09c] – the theory of lists with length, the theory
of lists with integer elements, and the theory of records with increment. Moreover, in this
chapter we address the question of automatic modular termination for union of theories
sharing function symbols of theory of Integer Offsets.

5.1 Schematic paramodulation calculus with counting

operators

This section introduces a new schematic calculus taking into account the axioms of the the-
ory of Integer Offsets within a framework based on schematic paramodulation [LRRT11,

51

Chapter 5. Schematic Calculus for Integer Offsets

TGRK12]. The theory of Integer Offsets allows us to build arithmetic expressions of the
form sn(t) for n > 0. The idea investigated here is to represent all terms of this form in
a unique way. To this end, we consider a new operator s+ : int → int such that s+(t)
denotes the infinite set of terms {sn(t) | n > 0}. The rewrite system

Rs+ = { s+(s(x))→ s+(x), s(s+(x))→ s+(x), s+(s+(x))→ s+(x) }

is used to simplify terms containing s+. For each of these rules, one can easily check that
the set of terms denoted by the left-hand side is included in the set of terms denoted by
the right-hand side. These rules are applied eagerly whenever a new literal is generated.

5.1.1 Schematic calculus

The schematic paramodulation calculus handles schematic clauses whose definition is
changing because of the new operator s+.

Definition 55 (Schematic Clause). A schematic clause is a constrained clause built over
the signature extended with s+. An instance of a schematic clause is a constraint instance
where each occurrence of s+ is replaced by some sn with n > 0.

For a given theory T with the signature ΣT , we define G0 by

G0 = {⊥, x = y ‖ const(x, y), x 6= y ‖ const(x, y), i = s+(j)‖const(i, j)}
∪
⋃

f∈ΣT
{f(x1, . . . , xn) = x0 ‖ const(x0, x1, . . . , xn)}

where i, j are constrained variables of sort int, and x, y are of the same sort.
Compared to the standard definition of G0 introduced in [LRRT11], our G0 contains

in addition the schematic literal i = s+(j)‖const(i, j).
To design a schematic calculus for Integer Offsets, we re-use the unitary version of

the rules of SPC presented in Figure 5.1 and Figure 5.2 and complete them with two
reduction rules – presented in Fig. 5.3 – which are simplification rules for Integer Offsets.

Superposition
l[u′] ⊲⊳ r‖ϕ u = t‖ψ

σ(l[t] ⊲⊳ r‖ϕ ∧ ψ)

if i) σ(u) 6≤ σ(t), ii) σ(l[u′]) 6≤ σ(r), and iii) u′ is not an
unconstrained variable.

Reflection
u′ 6= u‖ψ

⊥
if σ(ψ) is satisfiable.

Above, u and u′ are unifiable and σ is the most general unifier of u and u′.

Figure 5.1: Schematic expansion rules

52

5.1. Schematic paramodulation calculus with counting operators

Subsumption
S ∪ {L‖ψ, L′‖ψ′}

S ∪ {L‖ψ}

if either a) L ∈ Ax(T), ψ is empty and for some substitution
σ, L′ = σ(L); or b) L′ = σ(L) and ψ′ = σ(ψ), where σ is a re-
naming or a mapping from constrained variables to constrained
variables.

Simplification
S ∪ {C[l′]‖ϕ, l = r}

S ∪ {C[σ(r)]‖ϕ, l = r}

if i) l = r ∈ Ax(T), ii) l′ = σ(l), iii) σ(l) > σ(r), and
iv) C[l′] > (σ(l) = σ(r)).

Tautology
S ∪ {u = u‖ϕ}

S

Deletion
S ∪ {L‖ϕ}

S
if ϕ is unsatisfiable.

Schematic Del.
S ∪ {C ′‖ϕ,C[s+(t)]‖ψ}

S ∪ {C[s+(t)]‖ψ}

if σ(π(C ′) ↓Rs
+) = C[s+(t)], σ(ϕ) = ψ, for a renaming σ.

Figure 5.2: Schematic contraction rules

R1
S ∪ {s(u) = s(v)‖ϕ}
S ∪ {u = v‖ϕ}

if u and v are ground terms.

R2
S ∪ {s(u) = t‖ϕ, s(v) = t‖ψ}
S ∪ {s(v) = t‖ψ, u = v‖ψ ∧ ϕ}

if u, v and t are ground terms, s(u) > t, s(v) > t and u > v.

Figure 5.3: Ground reduction rules

Let SUPCI denote the calculus depicted in Figs. 5.1, 5.2 and 5.3. Let us notice that
two simplification rules C1 and C2 described in Section 3.4.2 that represent two remaining
axioms of the theory of Integer Offsets do not appear in the schematic paramodulation

53

Chapter 5. Schematic Calculus for Integer Offsets

calculus modulo Integer Offsets. This is due to the fact that these rules produce only the
empty clause ⊥ which is already in the initial set G0. Note that the Reflection rule could
be omitted as well, but it is kept because it cannot be removed in the non-unitary case.

We assume that the ordering > used in SUPCI is TI − good (Definition 45).
In [NRR09c] the definition of derivation has been adapted to the paramodulation

calculus for Integer Offsets. Similarly, we adapt the standard definition of derivation to
the schematic paramodulation calculus modulo Integer Offsets.

Definition 56. A derivation with respect to SUPCI is a (finite or infinite) sequence of
sets of literals S1, S2, S3, . . . , Si, . . . such that, for every i, it holds that:

1. Si+1 is obtained from Si by adding a literal obtained by the application of one of the
rules in Figs. 4.1, 4.2 and 5.3 to some literals in Si;

2. Si+1 is obtained from Si by removing a literal according to one of the rules in Figs.
4.2 and 5.3.

Schematic deletion

Unfortunately, the schematic saturation calculus diverges. To illustrate this point, let us
take a look at the theory of lists with length (LLI) defined in Section 2.2.2 and the theory
of records with increment (RII) defined in Section 2.2.4.

Example 13 (LLI). In fact, the calculus generates a schematic clause

len(a) = s(len(b))‖const(a, b)

which will superpose with a renamed copy of itself, i.e. with

len(a′) = s(len(b′))‖const(a′, b′)

to generate a schematic clause of a new form

len(a) = s(s(len(b′)))‖const(a, b′)

This process continues to generate deeper and deeper schematic clauses so that the
Schematic Saturation will diverge.

Example 14 (RII). The calculus generates a schematic clause

rselecti(a) = s(rselecti(b))‖const(a, b)

which will superpose with a renamed copy of itself to generate a schematic clause of a new
form

rselecti(a) = s(s(rselecti(b
′)))‖const(a, b′)

This process continues to generate deeper and deeper schematic clauses so that the
Schematic Saturation will diverge.

54

5.1. Schematic paramodulation calculus with counting operators

Since a term s+(t) represents all the terms sn(t) with n > 0, the idea is to replace all
these terms by s+(t) in the clauses containing them. To cope with this kind of clauses,
we add the following Schematic Deletion rule, where π is a morphism replacing all the
occurences of s by s+ (π(s(t)) = s+(π(t)) for any t, and π(x) = x if x is a variable):

Schematic Deletion
C ′‖ϕ C[s+(t)]‖ψ

C[s+(t)]‖ψ

if there is a renaming σ s.t.
σ(π(C ′) ↓Rs

+) = C[s+(t)] and σ(ϕ) = ψ

This rule removes a schematic literal C ′‖ϕ from a set of schematic literals that contains
C[s+(t)]‖ψ if C ′‖ϕ is an instance of C[s+(t)]‖ψ, modulo some renaming. Thus, this rule
deletes constrained clauses that are not relevant for simulating inferences of UPCI .

The Schematic Deletion rule can be applied if and only if the initial set of schemas of
ground flat literals G0 is extended with the non-flat schematic literal len(a) = s+(len(b)) ‖
const(a, b) for the theory of lists with length, and rselecti(a) = s+(rselecti(b)) ‖ const(a, b)
for the theory of records with increment.

Thanks to these two changes, the schematic saturation terminates for the theory of
lists with length and for the theory of records with increment.

More generally, we propose to extend G0 given above with all the non-flat schematic
literals of the form u = s+(v)‖ϕ where u and v are two flat terms of sort int over the
initial signature without s (and, of course, without s+) whose variables are all constrained
(are in ϕ). Finally, the set of ground schematic literals G0 is defined as follows:

G0 = {⊥, x = y ‖ const(x, y), x 6= y ‖ const(x, y), u = s+(v)‖ϕ}
∪
⋃

f∈ΣT
{f(x1, . . . , xn) = x0 ‖ const(x0, x1, . . . , xn)}

where u, v are flat terms of sort int whose variables are all constrained, and x, y are
constrained variables of the same sort.

5.1.2 Adequation result

We show that any clause in a saturation obtained by UPCI is an instance of a schematic
clause in a schematic saturation obtained by SUPCI , under the following assumption.

Assumption 1. Let SC be any set of schematic clauses generated by SUPCI . If an
s+-rooted term (resp. s-rooted term) occurs in a term u which is maximal in an equality
u = t in SC, then there is no s-rooted term (resp. s+-rooted term) occurring in a term
l[u′] which is maximal in a clause l[u′] ⊲⊳ r in SC.

Without Assumption 1 we would need a specific unification algorithm to handle literals
involving s and s+. Thanks to it we can continue applying the superposition rule with
syntactic unification.

Theorem 13. Let T be a theory axiomatized by a finite set Ax(T) of literals, which is
saturated with respect to UPCI . Let G∞ be the set of all schematic clauses in a saturation
of Ax(T) ∪G0 by SUPCI . Then for every set S of ground flat literals, every clause in a
saturation of Ax(T) ∪ S by UPCI is an instance of a schematic clause in G∞.

55

Chapter 5. Schematic Calculus for Integer Offsets

Proof. The proof is an adaptation of the one of [LRRT11, Theorem 2]. The proof is
by induction on the length of derivations of UPCI . The base case is obvious. For the
inductive case, we need to show two facts:

(1) each clause added in the process of saturation of Ax(T) ∪ S is an instance of a
schematic clause in the saturation G∞ of Ax(T) ∪G0 by SUPCI , and

(2) if a clause is deleted by Subsumption, Tautology or Deletion from (or simplified by
Simplification/reduced by Reduction in) G∞, then all instances of the latter will also
be deleted from (or simplified/reduced in) the saturation of Ax(T) ∪ S by UPCI .

Moreover, because of additional rewriting rules for terms containing s+, we have to check
another fact:

(3) Any such rule preserves the set of instances of any schematic clause.

Proof of (1). Consider the Superposition rule of UPCI . By induction hypothesis l[u′] ⊲⊳ r
and u = t are instances of schematic clauses in G∞, i.e. there is some schematic clause D̂
in G∞ such that l[u′] ⊲⊳ r is an instance of D̂, and a schematic clause Ê in G∞ such that
u = t is an instance of Ê. Two cases can be distinguished:

(∗) If there is no occurrence of s in u or u′, then there exists a Superposition inference of
SUPCI in G∞ whose premises are D̂ and Ê, and whose conclusion is a schematic
clause Ĉ such that σ(l[t] ⊲⊳ r) is an instance of Ĉ, where σ denotes the most general
unifier of u and u′.

(∗∗) If there are occurrences of s in both u and u′, two additional subcases can be con-
sidered. Assume that û and û′ denote the schematic terms of u and u′.

1. If û and û′ contain only s+-rooted terms (resp. s-rooted terms), then we proceed
as in (∗).

2. If û contains an s+-rooted term (resp. s-rooted term) and û′ contains an s-
rooted term (resp. s+-rooted term), then û may not unify with û′ since we
use syntactic unification, while u and u′ may unify. This subcase is avoided by
Assumption 1 and the side conditions of the Superposition rule.

Reflection of UPCI can be handled in a way similar to Superposition and is therefore
omitted.
Proof of (2). Let us consider Subsumption of SUPCI . For the case (a), let us assume
that there are a schematic clause A deleted from G∞ and a clause B in the saturation of
Ax(T) ∪ S by UPCI , which is an instance of the schematic clause A. Then there must
exist a clause C ∈ Ax(T) and some substitution θ such that θ(C) ⊆ A. Since all the
clauses in Ax(T) persist, there must be a substitution θ′ such that θ′(C) ⊆ B. Thereby
B must also be deleted from the saturation of Ax(T) ∪ S by UPCI , and we are done.
The case (b) of Subsumption is just a matter of deleting duplicates and leaving only more
general constrained literals.

56

5.1. Schematic paramodulation calculus with counting operators

Since axioms do not contain the s+ symbol, a similar argument can be used for Sim-

plification of SUPCI . Assume that there is a schematic clause C[l′] ‖ ϕ in G∞ simpli-
fied by an equality l = r (l = r ∈ Ax(T)) into C[θ(r)] ‖ ϕ. Let σ be a substitution
such that σ(C[l′]) is an instance of C[l′] ‖ ϕ. Since l = r persists in the saturation of
Ax(T) ∪ S by UPCI , there must be a simplification of σ(C[l′]) = σ(C)[σ(θ(l))] by l = r

into σ(C)[σ(θ(r))] = σ(C[θ(r)]), which is an instance of C[θ(r)] ‖ ϕ.
For the Tautology Deletion rule of SUPCI , it is easy to see that a constraint instance

of a tautology is also a tautology. For the Deletion rule of SUPCI , notice that clauses
with an unsatisfiable constraint have no instances.

For the reduction rule R1 of SUPCI , it is easy to see that an instance of a schematic
clause s(u) = s(v) will also reduce a root symbol s. For the reduction rule R2 of SUPCI ,
a similar argument can be given.
Proof of (3). Let C ↓Rs

+ be the clause obtained from C by replacing the terms occurring
in C with their normal forms w.r.t. Rs+. The set of (concrete) clauses schematized by
a schematic clause C is included in the set of (concrete) clauses schematized by C ↓Rs

+ ,
because a similar inclusion holds for all the terms in C and all the rules in Rs+.

5.1.3 Application to the analysis of paramodulation

Contrary to the standard case, a schematized saturation may represent an infinite set of
clauses since the term s+(t) represents all the terms sn(t) with n ≥ 1. The difficulty is then
to prove the termination in this case. In [NRR09c], the termination proofs do not only rely
on the fact that there are finitely many forms of clauses generated by the paramodulation
calculus. In addition, the following proof argument is used: any new ground literal is
strictly smaller than the biggest ground literal in the input set. Similarly, whereas the
schematic paramodulation allows computing the different forms of clauses generated by
paramodulation, we still need an additional analysis to conclude that the paramodulation
calculus terminates. Fortunately, this analysis can be easily performed for some cases. We
investigate hereafter a new solution where the analysis is restricted to the (few) schematic
equalities containing s+ that occur in the (finite) schematic saturation.

Assumption 2. A schematic equality containing s+ cannot be instantiated with different
values of the exponent of s in a saturation of a satisfiable input.

Thanks to Assumption 2, there are only finitely many possible instances in the satu-
ration of a satisfiable input. For instance, we cannot have both i = s(j) and i = s2(j) in
the saturation of a satisfiable input due to the acyclicity axiom.

With respect to disequalities, we restrict us to the case where UPCI does not generate
new disequalities having an occurrence of s: the simplification of an input disequality is
the only way to have a disequality with an occurrence of s introduced in a derivation with
UPCI . This restriction is satisfied in the following cases:

• The set of axioms of the theory contains only equalities.

• The set of axioms of the theory contains some disequalities of a given sort, say d,
such that it is not possible to build terms of sort d containing s.

57

Chapter 5. Schematic Calculus for Integer Offsets

Hence, this restriction is satisfied for the theories we are interested in.

Theorem 14. Assume that UPCI does not generate new disequalities having an occur-
rence of s. If SUPCI generates a finite schematic saturation such that all its schematic
equalities satisfy Assumption 2, then UPCI terminates on any input set of ground literals.

Proof. Consider a satisfiable input. Let nd (resp. ne) be the number of disequalities
(resp. equalities) obtained from the schematic disequalities (resp. equalities) in the finite
schematic saturation by considering all possible instantiations of constrained variables
by the finitely many constants in the input. The number of clauses occurring in the
saturation of the input can be bounded as follows:

1. By hypothesis, the number of disequalities cannot be greater than nd + id, where id
denotes the number of disequalities in the input set.

2. Consider the equalities. According to Assumption 2, the number of equalities is
bounded by ne.

Consequently, the paramodulation calculus computes a finite saturated set of clauses and
terminates.

One can remark that our restriction on the generation of new disequalities in Theo-
rem 14 is expressed with UPCI , but not with SUPCI . We adopt this solution because
this restriction is easy to satisfy in practice and it is sufficient for our need. Of course, an
interesting problem would be to find a way at the schematic level to ensure the bounded-
ness of the generated disequalities. A possible solution could be envisioned when all the
generated schematic literals are ground.

5.2 Automatic modular termination

The combination of theories extending TI has been discussed in Section 3.4.3. Let us now
study the question of automatic modular termination. Firstly let us define the notion of
safe schematic saturation.

Definition 57 (Safe saturation). The schematic saturation is safe if it does not contain
(1) variable-active clauses, and (2) non-ground clauses of the form s(u) = t (resp. s+(u) =
t), where s(u) (resp. s+(u)) is maximal.

The paramodulation modulo Integer Offsets terminates for the union of two theories
sharing only function symbols of theory of Integer Offsets if these two theories are safely
terminating.

Theorem 15 (Automatic modular termination). Let T1 and T2 be two theories sharing
only function symbols of TI , which are already saturated with respect to UPCI . Assume
that any schematic saturation of Ax(Ti) ∪ G

Ti

0 by SUPCI is finite and safe, for i = 1, 2.
Then, UPCI is a satisfiability procedure for T1 ∪ T2.

The sufficient argument for the proof of this theory is that any instance of a safe
schematic clause is safe.

58

5.3. Summary

5.3 Summary

In this chapter we have introduced a new schematic calculus integrating the axioms of
the Integer Offsets theory into a framework based on schematic paramodulation. In this
context, introducing the s+ operator together with rewriting rules for terms containing s+

fits well with automatic verification needs.
The calculus SUPCI with a new form of schematization for arithmetic expressions

is used in Chapter 7 to automatically prove the termination of paramodulation modulo
Integer Offsets for data structures equipped with counting operators.

Thanks to schematic saturation, we can automatically check the modular termination
for unions of theories sharing only function symbols of theory of Integer Offsets. As we
could see, we need only to check that the saturation does not contain clauses of a specific
form given in Definition 57.

59

Chapter 5. Schematic Calculus for Integer Offsets

60

Chapter 6

Implementation

Contents

6.1 Data representation . 63

6.1.1 Term . 63

6.1.2 Literals . 63

6.1.3 Clauses . 64

6.1.4 Constraints . 64

6.1.5 Constrained clauses . 65

6.2 Traces . 65

6.2.1 Clause labelling . 67

6.2.2 Flattening . 68

6.3 Theories . 68

6.3.1 Signature . 68

6.3.2 Axioms . 70

6.3.3 Initial set of constrained clauses 71

6.4 Inference rules . 71

6.4.1 Contraction rules . 72

6.4.2 States for rule application control 76

6.4.3 Superposition rule . 76

6.4.4 Reflection and Eq. Factoring rules 82

6.5 Saturation . 84

6.6 Orderings . 85

6.7 Automatic combinability . 89

6.8 Summary . 90

61

Chapter 6. Implementation

This chapter describes the main ideas and principles of our implementation of schematic
paramodulation calculi. The goal is to implement the calculi so that the user could eas-
ily modify the code corresponding to an executable specification. Implementing this
schematic calculus in an off-the-shelf equational theorem prover like the E prover [Sch02]
or SPASS [WDF+09] would be a difficult and less interesting task, since the developer
and the user would have to understand a complex piece of code which is the result of
years of engineering and debugging. To make the task easier another quite natural solu-
tion is to use a logical framework since calculi are defined by inference systems. This is
why we propose to prototype schematic superposition calculi by using a rule-based logical
framework.

Our goal was to get a rule-based program as close as possible to the formal specifi-
cation. To achieve this goal, we choose the Maude system because it includes support
for unification and narrowing, which are key operations of the calculus of interest, and
because the Maude meta-level provides a flexible way to control the application of rules
and powerful search mechanisms.

Our tool contains about 3000 lines and 55 Maude modules. It is composed of 12 files
including the main one. To define a theory the user needs to declare its signature, a set
of axioms and an initial set of ground flat literal.

Our implementation makes use of many Full-Maude functions working at the meta-
level:

• metaUnify for unifying two terms,

• metaXmatch for matching two terms,

• metaFrewrite for rewriting a given term by a given rule,

• metaENarrowShowAll for narrowing,

• metaSearch for searching for a saturated set of schematic clauses,

• and many others.

Moreover, to define some parameterized modules we use the genericity provided by the
Maude system.

In the framework of this thesis, two schematic paramodulation calculi have been im-
plemented: the standard one, and the schematic paramodulation calculus modulo Integer
Offsets. A big part of the code is common to both calculi.

The chapter is organized as follows. Section 6.1 presents the implementation of literals,
clauses and constrained clauses. Thanks to our tool the user can see how new constrained
clauses are generated. Section 6.2 shows how this functionality is implemented. In Sec-
tion 6.3 we explain how to proceed to define a theory within our tool. Section 6.4 details
the implementation of contraction and expansion rules. The implementation of functions
that allow us to get a saturated set of schematic clauses is presented in Section 6.5. Sec-
tion 6.6 shows how the ordering used in rules of schematic paramodulation calculus is
encoded. The functions that allow checking whether the considered theory is combinable
are presented in Section 6.7. The last section summarizes this chapter.

62

6.1. Data representation

6.1 Data representation

In order to represent terms, literals, clauses and constrained clauses, we exploit the Maude
reflection feature by using the sort Term for two reasons: firstly, we would like to use the
Maude existing features as much as possible, and secondly, our implementation works at
the meta-level, i.e. its functions operate on meta-terms with Maude sort Term.

6.1.1 Term

The base cases in the metarepresentation of terms are given by the subsorts Constant

and Variable of the sort Term. Constants in Maude are quoted identifiers composed of
the constant name and its type separated by a “.”, e.g., ’a.Lists. Similarly, variables
in Maude are quoted identifiers composed of variable name and its type separated by
a “:”, e.g., ’a:Lists. A term of depth one or more in Maude is a quoted identifier of
the form _[_], where the first underscore is some quoted identifier and the second one
is a list of terms separated with a comma. For example, the term car(cons(E, V)),
where V is a variable of sort lists and E is a constant of sort elem, is represented by
’car[cons[’E.Elem, ’V:Lists]].

6.1.2 Literals

To define the new sort Literal for literals, we exploit the Maude reflection feature by
using the sort Term. A module META-TERM (“prelude.maude”), where this sort is defined,
should be protected in the module LITERAL in order to use the sort Term.

fmod LITERAL is

pr META-TERM .

sort Literal .

op _equals_ : Term Term -> Literal [comm] .

op _!=_ : Term Term -> Literal [comm] .

endfm

The attribute [comm] declares that the infix binary symbols equals and != for respectively
equality and disequality are commutative.

For sets of literals we define the sort SetLit by instantiating the polymorphic sort
Set{X} defined in the parameterized module SET{X :: TRIV} of the prelude of Maude,
as follows:

view Literal from TRIV to LITERAL is

sort Elt to Literal .

endv

fmod SETLIT is

pr LITERAL .

pr SET{Literal} * (sort Set{Literal} to SetLit) .

endfm

63

Chapter 6. Implementation

The first three lines declare that the sort Literal can be viewed as the sort of elements
Elt provided by the theory TRIV. This Maude view is named Literal. It is used in
the module SETLIT to instantiate Set{X} as Set{Literal}. Finally, the sort SetLit is
a renaming of the sort Set{Literal}. Consequently, the sets in this sort can be built
by using the constant empty, and by using an associative, commutative, and idempotent
union operator, written _,_. A singleton set is identified with its element (Literal is a
subsort of SetLit).

6.1.3 Clauses

A clause is a set of literals. The sort Clause is defined by the operator clause that takes
a set of literals as a parameter.

fmod CLAUSE is

pr SETLIT .

sort Clause .

op clause : SetLit -> Clause .

endfm

6.1.4 Constraints

A constraint is implemented as a set of atomic constraints of the form const(t) where t
is a term.

fmod ATOMIC-CONSTRAINT is

pr META-TERM .

sort AtomicConstraint .

op const : Term -> AtomicConstraint .

endfm

The same technique (as for sets of literals) is used to define sets of atomic constraints.

view AtomicConstraint from TRIV to ATOMIC-CONSTRAINT is

sort Elt to AtomicConstraint .

endv

fmod SETCONSTR is

pr ATOMIC-CONSTRAINT .

pr SET{AtomicConstraint} * (sort Set{AtomicConstraint} to Constraint) .

endfm

The sort Constraint is a renaming of the sort Set{AtomicConstraint}.

64

6.2. Traces

6.1.5 Constrained clauses

The sort SClause of constrained clauses is declared by

sort SClause .

op _||_ : Clause Constraint -> SClause .

op emptySClause : -> SClause .

where the infix operator || constructs a constrained clause from a clause and a constraint
of sort Constraint.

A simple example of constrained clause could be

clause(’X:Lists equals ’b:Lists) || const(’b:Lists)

where X is a universally quantified variable of sort lists, and b is a constrained variable
of sort lists.

An axiom is represented as a constrained clause with an empty constraint. For exam-
ple, the axiom car(cons(X, Y)) = X of the theory of lists has the following profile:

clause(’car[’cons[’X:Elem,’Y:Lists]] equals ’X:Elem) || empty

6.2 Traces

An important feature of our tool consists in providing a trace indicating the name of the
applied rule and the constrained clauses it is applied to at each derivation step. This trace
helps understanding the origin of each new constrained clause. With this information,
the user could replay the derivation manually if necessary.

Each constrained clause carries its trace. Let us take as an example the superpositon
rule:

C ∨ l[u′] ⊲⊳ r‖ϕ D ∨ u = t‖ψ
σ(C ∨D ∨ l[t] ⊲⊳ r‖ϕ ∧ ψ)

The expression

sup(C1, C2, u, l[u′], Ctx) gives C3

means that the constrained clause C3 = σ(C ∨ D ∨ l[t] ⊲⊳ r‖ϕ ∧ ψ) is derived from the
constrained clauses C1 = (C ∨ l[u′] ⊲⊳ r‖ϕ) and C2 = (D ∨ u = t‖ψ) by superposing the
term u from C2 in the term l[u′] from C1 at the context Ctx = l[], where the rewriting
has taken place.

The sorts STrace and TracedSClause of traces and traced constrained clauses are
defined by

65

Chapter 6. Implementation

sort STrace .

sort TracedSClause .

subsort SClause < STrace .

op sup : STrace STrace Substitution Substitution -> STrace .

op sup : STrace STrace Term Term Context -> STrace .

op refl : STrace -> STrace .

op ef : STrace -> STrace .

op simpl : STrace STrace -> STrace .

op _gives_ : STrace SClause -> TracedSClause .

The subsort condition considers constrained clauses as traces. It is needed in order
to declare the initial set of traced constrained clauses and axioms, where the constrained
clause and its trace are the same (see Section 6.3.2 and 6.3.3).

The operators sup, refl and ef associate a trace to each expansion rule (respectively,
superposition, reflection and equality factoring). One can remark that the operator sup

has two profiles. The first one is needed in order to store the traces of the contrained
clauses between which Superposition has been applied and also it stores two substitutions.
It is needed because of the renaming of the constrained clauses which is performed before
applying the superposition rule. The second one is more detailed: It shows not only the
traces of the superposed constrained clauses but also the terms to which superposition
has been applied, and the context of the application. More details can be found in
Section 6.4.3.

The operator simpl associates a trace with the Simplification rule, a contraction rule
that does not eliminate a clause but rewrites it into a simpler one. The infix operator
gives builds a traced constrained clause from a trace of sort STrace, and a constrained
clause.

The sort SetTracedSClause of sets of traced constrained clauses is defined in a similar
way as the sort SetLit of sets of literals.

Let us now show an example and consider the trace sup that stands for the superpo-
sition rule. Let us consider two constrained clauses from the theory of lists with length
presented in Section 2.2.2: an axiom

clause(len(cons(X,Y)) = succ(len(Y))) || empty gives

clause(len(cons(X,Y)) = succ(len(Y))) || empty

and a traced constrained clause from G0

clause(cons(e,a) = b) || const(e,a,b) gives

clause(cons(e,a) = b) || const(e,a,b)

Superposition between these two clauses yields a traced constrained clause of the following
form

sup(

clause(len(cons(X,Y)) = succ(len(Y))) || empty,

66

6.2. Traces

clause(cons(e,a) = b) || const(e,a,b),

cons(e,a),

len(cons(X,Y)),

len([])

) gives

clause(len(b) = succ(len(a))) || const(a,b)

From this trace, we can see that the new constrained clause is obtained by superposing
the term cons(e,a) in the term len(cons(X,Y)) at the position shown by the context
len([]).

6.2.1 Clause labelling

At one point the trace can become so long and heavy that it would be unreadable. That
is why, we propose to give the label to each clause and to rewrite the clauses in the
trace by their labels. The function givesIndex does it. It gives a number to each traced
constrained clause. This function is encoded as follows:

op givesIndex : SetTracedSClause Nat -> SetTracedSClause .

eq givesIndex(empty, N) = empty .

eq givesIndex((Tr gives SC, STSC), N) =

Tr gives SC as N, givesIndex(STSC, N + 1) .

The first equation returns an empty set if the empty set of traced constrained clauses is
given. The second equation returns the set of traced constrained clauses with the following
profile:

op _gives_as_ : STrace SClause Nat -> TracedSClause .

where the last underscore stands for the natural number. After indexing the clauses, the
following two rules are repeatedly applied until all the traces are flattened:

rl [initial] : SC1 gives SC1 as N => SC1 as N .

crl [trace] : Tr1 gives SC1 as N1, Tr2 gives SC2 as N2 =>

Tr1 gives SC1 as N1,

newTrace(Tr1 gives SC1 as N1, Tr2) gives SC2 as N2

if mFr(Tr1 gives SC1 as N1, Tr2) =/= failure .

The first rule initial replaces the initial traced constrained clauses of the form SC1

gives SC1 as N by traced constrained clauses of the form SC1 as N, where SC1 is a
constrained clause and N is its number. The second rule trace makes one step towards
flattening the trace Tr2 of the second traced constrained clause by the trace Tr1 of the
first traced constrained clause by replacing the trace Tr1 in Tr2 with its label (number)
N1. The condition of this rule determines whether the rewriting can be performed with
the given data. The rewriting is performed by the function mFr that uses the Maude
function metaFrewrite.

67

Chapter 6. Implementation

6.2.2 Flattening

To get fully flattened traces, i.e. to determine when no rule can be applied anymore,
we apply a function searchP that uses the Maude function metaSearch with the ’*

parameter.

op searchP : SetTracedSClause Nat -> SetTracedSClause .

eq searchP(STSC, N) = downTerm(getTerm(

metaSearch(upModule(’TRACE, false), upTerm(STSC),

’S:SetTracedSClause, nil, ’*, unbounded, N)), errorTr) .

It tries to reach N-th set of traced constrained clauses from an initial one, called STSC,
by applying the flattening rules.

The function satP implements a fix point algorithm in order to reach a set of traced
constrained clauses with flattened traces. When no clause can be rewriten by its label, it
returns the unchanged set.

op satP : SetTracedSClause -> SetTracedSClause .

eq satP(STSC) =

if searchP(STSC, 1) == errorTr

then STSC

else

if searchP(STSC, 1) =/= STSC

then satP(searchP(STSC, 1))

else STSC

fi

fi .

6.3 Theories

The schematic paramodulation calculus takes as input the set G0 of constrained clauses
and the set Ax of axioms. Thus, to declare a theory, the user has to define a file for its
signature, a file for its set of axioms, and a file for the set of initial constrained clauses.
Let us show what each of these files contains.

6.3.1 Signature

To declare the signature, the user has to define the set of sorts of the theory, the set of
function symbols, and the precedence order on symbols.

Sorts

The underlying logic of Maude is order-sorted, admitting a subsort ordering, whereas the
underlying logic of our calculus SPC is many-sorted, i.e. there is no subsort relation
between sorts in the addressed theories. For instance, the theory of lists with length
presented in Section 2.2.2 has the following set of sorts S = {lists,elem, ints} and
the following signature Σ = {car : lists → elem, cdr : lists → lists, cons : elem ×

68

6.3. Theories

lists → lists, len : lists → int, s : int → int}. The sorts lists, elem and ints are
implemented in Maude in the module SORT by the declaration

sorts Lists Elem Ints .

Moreover, no subsort relation is declared between these Maude sorts. This condition
guarantees that the order-sorted features of Maude (pattern-matching, unification, etc)
behave as many-sorted ones on the set of Maude sorts associated with S.

We take profit of subsorting by declaring all these Maude sorts as subsorts of a new
sort, named Tops, as follows:

sort Tops .

subsorts Lists Elem Ints < Tops .

The sort Tops is a main sort in our tool. Firstly, it is used as a sort for unsorted theories
to declare the signature. Secondly, it is used as a “super” sort for many-sorted theories in
order to avoid the definition of, for example, an equality for each sort in the considered
theory.

Function symbols

A module called SIGNATURE contains the signature of the theory. For example, the many-
sorted theory of lists with length has the following signature

op car : Lists -> Elem .

op cdr : Lists -> Lists .

op cons : Elem Lists -> Lists .

op len : Lists -> Ints .

op succ : Ints -> Ints .

where succ stands for s. The unsorted theory of lists with length has the same functional
symbols but only one sort. Its signature is declared by

op car : Tops -> Tops .

op cdr : Tops -> Tops .

op cons : Tops Tops -> Tops .

op len : Tops -> Tops .

op succ : Tops -> Tops .

Precedence order

A module PRECEDENCE declares the precedence order on symbols. This precedence is
specified by a list of quoted identifiers, named listOfSymbols. For example, this list is
defined by

op listOfSymbols : -> QidList .

eq listOfSymbols = (’cons ’cdr ’car ’c.Lists ’c.Elem ’len ’c.Ints ’succ) .

for the theory of lists with length. Note that for each sort s ∈ S, there should exist at
least one constant of this sort in the precedence, e.g., ’c.Lists is a constant of sort lists.

This precedence order is used in the implementation of ordering (explained in Sec-
tion 6.6).

69

Chapter 6. Implementation

6.3.2 Axioms

An axiom is a constrained clause whose constraint is empty. A traced axiom is a traced
constrained clause whose trace is the clause itself. Since subsumption and simplification
use the axioms in their rules, the axioms are declared globally. The modules where
subsumption and simplification auxiliary functions are defined (such as SUBSUM-AUX-FCT
and SIMPL-AUX-FCT), are parameterized with the view

view Ax-view from THAXIOMS to AX-MOD is

op ax to ax .

endv

This view maps entities from the interface theory (the theory THAXIOMS that declares the
operator ax)

fth THAXIOMS is

pr SET-SCLAUSE-TRACE .

op ax : -> SetTracedSClause .

endfth

to the corresponding entities in the parameter module (the module AX-MOD, where the
operator ax is defined). For instance, the set of axioms for the theory of lists with length
is defined as follows:

fmod AX-MOD is

pr SET-SCLAUSE-TRACE .

op ax : -> SetTracedSClause .

eq ax = (

clause(’X1:Elem equals ’car[’cons[’X1:Elem,’Y1:Lists]]) || empty gives

clause(’X1:Elem equals ’car[’cons[’X1:Elem,’Y1:Lists]]) || empty,

clause(’X2:Lists equals ’cdr[’cons[’Y2:Elem,’X2:Lists]]) || empty gives

clause(’X2:Lists equals ’cdr[’cons[’Y2:Elem,’X2:Lists]]) || empty,

clause(’len[’cons[’X3:Elem, ’Y3:Lists]] equals ’succ[’len[’Y3:Lists]])

|| empty gives

clause(’len[’cons[’X3:Elem, ’Y3:Lists]] equals ’succ[’len[’Y3:Lists]])

|| empty

) .

endfm

where X1, Y2 and X3 are universally quantified variables of sort elem, and Y1, X2 and
Y3 are universally quantified variables of sort lists. Note that we use capital letters to
declare universally quantified variables.

Then, when a parameterized module such as SUBSUM-AUX-FCT{X :: THAXIOMS} is
imported into another module, we write pr SUBSUM-AUX-FCT{Ax-view}. This helps in
specifying and declaring some modules globally, for their different use.

70

6.4. Inference rules

6.3.3 Initial set of constrained clauses

The initial set of constrained clauses is declared in the module INIT-SET. It is composed
of traced constrained clauses, whose trace is the clause itself. The empty clause is de-
noted by emptySClause, and therefore, the traced empty constrained clause is of the
form emptySClause gives emptySClause. An extract from the initial set of constrained
clauses for the theory of lists with length can be found below:

fmod INIT-SET is

pr SET-SCLAUSE-TRACE .

op initSet : -> SetTracedSClause .

eq initSet = (

emptySClause gives emptySClause,

clause(’g:Lists != ’f:Lists) || (const(’g:Lists), const(’f:Lists)) gives

clause(’g:Lists != ’f:Lists) || (const(’g:Lists), const(’f:Lists)),

clause(’car[’e:Lists] equals ’k:Elem) || (const(’e:Lists), const(’k:Elem))

gives

clause(’car[’e:Lists] equals ’k:Elem) || (const(’e:Lists), const(’k:Elem)),

...

) .

endfm

The whole theory which is composed of the set of axioms and the set of initial con-
strained clauses is declared by

fmod THEORY is

pr AX-MOD .

pr INIT-SET .

op thList : -> SetTracedSClause .

eq thList = (ax, initSet) .

endfm

6.4 Inference rules

This section presents the encoding of SPC. Let us emphasize two main ideas of this
encoding: 1) inference rules are translated into rewrite rules, and 2) rule application is
controlled thanks to specially designed states. The following description of this encoding
starts with the translation of the contraction rules into rewrite rules. Then, it continues
with the expansion rules, whose fair application strategy is encoded by using a notion of
state together with rules to specify the transitions between states.

71

Chapter 6. Implementation

6.4.1 Contraction rules

We first present the encoding of the contraction rules used for both SPC and SUPCI ,
namely Tautology, Deletion, Subsumption and Simplification. Then, we present the en-
conding of Schematic Deletion rules for SPC and for SUPCI . And finally, we present the
encoding of Reduction rules for SUPCI . All these rules are defined in the module called
CONTR.

Tautology rule

The inference rule Tautology is simply encoded by the rewrite rule

rl [tautology] : Tr gives clause((SL, U equals U)) || Phi => empty .

where Tr is a clause trace, SL is a set of literals, U is a term and Phi is a constraint.

Deletion rule

The inference rule Deletion is encoded by the conditional rewrite rule

crl [del] : Tr gives C || Phi => empty

if isSatisfiableSet(Phi) == false .

where the function isSatisfiableSet checks if a given constraint holds, i.e. none of the
terms it constraints is compound. It is encoded by

op isSatisfiableSet : Constraint -> Bool .

eq isSatisfiableSet(empty) = true .

eq isSatisfiableSet((const(U), Phi)) =

isVariable(U) and isSatisfiableSet(Phi) .

where the function isVariable checks whether an atomic constraint contains a variable
or not.

var Vr : Variable .

op isVariable : Term -> Bool .

eq isVariable(Vr) = true .

eq isVariable(T) = false [owise] .

Subsumption rule

The first case of the Subsumption rule uses the global variable ax (presented in Sec-
tion 6.3.2) that represents the set of axioms of the current theory.

crl [subsum1] : Tr gives C || Phi => empty

if ax isSubsum (Tr gives C || Phi) .

The rule condition checks whether the clause C can be subsumed by one of the axioms in
ax. The function isSubsum is encoded as follows:

72

6.4. Inference rules

op _isSubsum_ : SetTracedSClause SClause -> Bool .

eq empty isSubsum C’ = false .

eq (Tr gives SC1, STSC) isSubsum C’ =

clauseMatch(SC1, C’) or (STSC isSubsum C’) .

The function clauseMatch calls the Maude function metaXmatch that tries to match two
clauses represented as terms.

The other two cases of the Subsumption rule are similar. In the first case, the con-
strained clause is eliminated if it is a renaming of another one.

crl [subsum2] : Tr1 gives C1 || Phi1, Tr2 gives C2 || Phi2

=> Tr1 gives C1 || Phi1

if isRename(C1 || Phi1, C2 || Phi2) .

In the last case of the Subsumption rule one constrained clause should be an elementary
instance of another one and therefore eliminated.

crl [subsum3] : Tr1 gives C1 || Phi1, Tr2 gives C2 || Phi2

=> Tr1 gives C1 || Phi1

if isElementaryInstance(C1 || Phi1, C2 || Phi2) .

The function isElementaryInstance checks whether the constrained clause C2 ||

Phi2 is an elementary instance of C1 || Phi1 by determining the existence of a substi-
tution mapping the first clause into the second one, and the constraint of the first clause
into the constraint of the second one. Moreover, the obtained substitution should replace
variables by variables or constants. The mapping is performed by the Maude function
metaXmatch that returns an element of sort MatchPair composed of a substitution and a
context.

The function isRename is similar to the function isElementaryInstance except that
in addition it checks whether the correspondence between the replaced variables and the
replacing ones in the “matching” substitution is one to one.

Simplification rule

The Simplification rule does not eliminate the clause, but reduces it to a simpler one
thanks to some equality axiom. This rule is encoded as a conditional rewrite rule using
the set of axioms ax.

var newTC : TracedSClause .

crl [simpl] : Tr gives C || Phi

=> simpl(Tr, axTr) gives newC || newPhi

if newTC := applyUnitAx(C, Phi, ax) /\

newTC =/= NoSimpl /\

axTr gives newC || newPhi := newTC .

73

Chapter 6. Implementation

The function applyUnitAx considers each literal in the clause C and tries to rewrite it into
a simpler one by using one of the equality axioms from ax. This function uses the Maude
function metaXmatch that returns a context and a substitution. By knowing the context,
we can rewrite the given literal into a simpler one at the right position. The function
applyUnitAx returns a simplified constrained clause whose trace describes the axiom. If
Simplification does not apply, the function applySimpl returns the constant NoSimpl of
sort TracedSClause.

Schematic Deletion rules for SPC

The first case of Schematic Deletion rule for SPC is encoded by

crl [sd1] : Tr gives C || Phi => empty

if sd1Cond(C || Phi) .

It removes clauses containing only equalities and disequalities between terms of depth 0.
In such literals all the variables are necessarily constrained. The function sd1Cond checks
these requirements.

op sd1Cond : SClause -> Bool .

eq sd1Cond(clause(SL) || Phi) =

if aritySL(SL) > 1 and depthSL(SL) == 0 then

const&constrVars(SL, Phi) else false fi .

In order this rule to apply, the given clause should contain more than one literal. Thus, it is
the first condition checked by the function aritySL. The function depthSL checks whether
all literals in the given clause are of depth 0. If these two conditions are satisfied, then the
function const&constrVars verifies whether the given clause contains only equalities and
disequalities between constants and/or constrained variables. In order to check whether
the variables are constrained, the additional parameter Phi is added to this function.

The second case of the Schematic Deletion rule for SPC

crl [sd2] : Tr1 gives D’ || Phi’,

Tr gives clause((D, L, SL)) || Phi =>

Tr1 gives D’ || Phi’

if sd2Cond(D’ || Phi’, D, Phi, SL, L) .

requires a more sophisticated condition. It removes clauses that are composed of some
literal L, some sets of literals D and SL (that can be empty), if

• L is a non-maximal literal in D ∨ L,

• a constrained clause composed of D and L is an elementary instance of some existing
constrained clause D’ || Phi’, and

• each literal in SL is an elementary instance of L.

74

6.4. Inference rules

op sd2Cond : SClause SetLit Constraint SetLit Literal -> Bool .

eq sd2Cond(D’ || Phi’, D, Phi, SL, L) =

if isMax(L, Phi, D) == false and

isElementaryInstance(D’ || Phi’, ((D, L)), Phi) and

isElementaryInstanceSet(L, SL, Phi) then

true

else false fi .

All these required conditions are checked by the following functions. The maximality
property is checked by the Boolean function isMax. It uses the function implementing
lexicographic path ordering discussed in Section 6.6. To check whether the constrained
clause composed of D and L with appropriate constraint is an elementary instance of D’
|| Phi’, we use the discussed above function isElementaryInstance. And finally, the
Boolean function isElementaryInstanceSet returns true if all the literals in SL are
elementary instances of L. This function also uses the function isElementaryInstance.

Schematic Deletion for SUPCI

The Schematic Deletion rule for SUPCI is encoded by the following Maude conditional
rewrite rule

crl [sdel] : L || Phi1, L’ || Phi2 => L’ || Phi2

if sdelCond(L || Phi1, L’ || Phi2) .

It leaves the second constrained clause if the following three conditions checked by the
sdelCond function are satisfied: a) one of the terms of the literal L contains an s function
symbol, b) one of the terms of the literal L’ contains an s+ function symbol, c) after
replacing s with s+ in L and normalizing the result by function nfLit described below,
literals L and L’ are renamings of each other.

The function nfLit (nfLit : Literal -> Literal) normalizes both sides of a given
literal. The normalization of a term is encoded by the function nf (op nf : Term ->

Term) that computes a normal form by applying the rules from the convergent rewrite
system Rs+ presented in Section 5.1.

Reduction rules for SUPCI

The R1 reduction rule is encoded by the following conditional rewrite rule:

crl [red1] :

’succ[U] equals ’succ[U’] || Phi => U equals U’ || Phi

if isGround(U, Phi) and isGround(U’, Phi) .

This rule removes the root symbol in both sides of a literal if this root symbol is ’succ
(’succ stands for s) and their subterms U and U’ are ground terms w.r.t. constraint, i.e.
all the variables of U and U’ are constrained. This condition is checked by the function
isGround defined by

op isGround : Term Constraint -> Bool .

eq isGround(T, Phi) = vars(T) inTL varsOfSC(Phi) .

75

Chapter 6. Implementation

The function checks whether all variables of term T are in the list of variables of constraint
Phi. This inclusion is checked by the inTL function.

The following Maude conditional rewrite rule encodes the R2 reduction rule.

crl [red2] :

’succ[U] equals T || Phi1, ’succ[V] equals T || Phi2 =>

’succ[V] equals T || Phi2,

U equals V || cleanConstraint(U, V, Phi1, Phi2)

if isGround(U, Phi1) and isGround(V, Phi2) and

isGround(T, Phi1) and gtLPO(’succ[U], Phi1, T) and

gtLPO(’succ[V], Phi2, T) and gtLPO(U, (Phi1, Phi2), V) .

The ordering > on terms is extended with a rule saying that compound terms are greater
than constrained variables. That is why it is implemented as a Boolean function gtLPO

such that gtLPO(u, Phi, t) = true iff u > t with an additional parameter Phi that col-
lects the constrained variables. The function cleanConstraint aims at removing the
constrained variables that do no occur in u = v.

6.4.2 States for rule application control

Since in particular contraction rules should be given a higher priority than expansion
ones, the order of rule applications has to be controlled. An expected solution could be to
control rule applications with the strategy language described in [MOMV05, EMOMV07],
but unfortunately it appeared not to be compatible with the Full Maude version 2.5b
required for narrowing (see details in Sect. 6.4.3). To circumvent this technical problem
we propose to control rules with states.

In order to detect redundant clauses generated by expansion rules, we consider two
distinct states defined as follows:

sort State .

op state : SetTracedSClause -> State .

op _redundancy_ : SetTracedSClause TracedSClause -> State .

The input state of the expansion rules of SPC is expected to be of the form state(S),
where S is a set of traced constrained clauses. A state of the form _redundancy_ is
entered after each application of an expansion rule. The state S redundancy C is the
input state for checking whether the constrained clause C is redundant with respect to
the set of constrained clauses S. If this is not the case, the clause is added to the set
and this leads to a new state of the form state(S ∪ {C}). Otherwise, the next state is
state(S).

6.4.3 Superposition rule

The Superposition rule produces a new clause of the form σ((C∨D∨l[t] ⊲⊳ r) ‖ ϕ∧ψ) from
any set containing two constrained clauses of the form (C∨l[u′] ⊲⊳ r)‖ϕ and (D∨u = t)‖ψ,
if the side conditions given in Fig. 4.1 are satisfied with the most general unifier σ of u
and u′. This notion of superposition is close to the notion of narrowing. The idea is to use

76

6.4. Inference rules

the literal u = t from the second clause as a rewriting rule u→ t to narrow the left-hand
side term l[u′] of some literal in the first clause. If the narrowing succeeds it produces the
term σ(l[t]), where σ is the most general unifier of u and u′. It remains to apply σ to the
right-hand side term r of the literal in the first clause, to the clauses C and D, and to the
conjunction of the two constraints ϕ and ψ.

To narrow we have developed a function narrow that uses a function metaENarrow-

ShowAll implemented in Full Maude. In the standard version the narrowing is restricted
to non-variable positions, along its standard definition. But the Superposition rule of
SPC requires an unusual feature: narrowing should also be applied at the positions of the
variables schematizing constants. This is why we use a dedicated version of Full Maude
provided by Santiago Escobar to implement this unusual feature.

A second difficulty is that narrowing supports only rewriting rules where the variables
of the right-hand side term of the rule are included in the set of variables that are on the
left. To overcome this problem, we propose to build a rule that would contain only the
variables in u. The one we use is u→ f(u), where f is a special functional symbol that is
not used anywhere else. When rewriting a term l[u′] by this rule, we obtain a new term
of the form σ(l[f(u)]), where σ is the most general unifier of u and u′. The last step is to
replace f(u) by t. Thus, we get the expected term σ(l[t]).

The function narrow is encoded by the following four equations. It takes two ele-
ments of sort NCLit and two constraints as parameters, and returns an element of sort
ResultContextSet.

op narrow : NCLit Constraint NCLit Constraint -> ResultContextSet .

eq narrow(nclit(Lu’, r, b1), empty, nclit(u, t, b2), empty) =

metaENarrowShowAll(addEq(u, buildTerm(u)),

Lu’, 1, full BuiltIn-unify noStrategy E-normalize-terms) .

eq narrow(nclit(Lu’, r, b1), empty, nclit(u, t, b2), Phi) =

metaENarrowShowAll(addEq(u, buildTerm(u)),

Lu’, 1, full BuiltIn-unify noStrategy E-normalize-terms) .

eq narrow(nclit(Lu’, r, b1), Phi, nclit(u, t, b2), empty) =

metaENarrowShowAll(addEq(u, buildTerm(u)),

Lu’, 1, full BuiltIn-unify noStrategy E-normalize-terms alsoAtVarPosition) .

eq narrow(nclit(Lu’, r, b1), Phi1, nclit(u, t, b2), Phi2) =

metaENarrowShowAll(addEq(u, buildTerm(u)),

Lu’, 1, full BuiltIn-unify noStrategy E-normalize-terms alsoAtVarPosition) .

The new sort NCLit defines a non-commutative literal by the function nclit that takes as
parameters two terms and a boolean, where true stands for equality and false stands for
disequality. The function addEq returns a module including the rewriting rule u→ f(u),
where the function buildTerm adds the special function symbol f to the term u. In the
first two equations the standard version of the function metaENarrowShowAll is used.

77

Chapter 6. Implementation

The first equation presents a narrowing between two literals that are axioms, the second
one presents a narrowing between an axiom and a literal from a constrained clause. The
next two equations present narrowing between a literal from a constrained clause and a
literal that is an axiom, and between two literals from constrained clauses. In both cases,
the narrowing can be performed at the position of variables schematizing constants, that
is why a new flag alsoAtVarPosition developed by Santiago Escobar is added to the
function metaENarrowShowAll.

A third difficulty is that the metaENarrowShowAll function applied to the term l(u′)
and the rule u→ t generates all the possible narrowings at all the positions, whereas one
application of the Superposition rule should produce only one clause. In order to consider
each candidate clause one by one (among the set of results obtained by narrowing) we
introduce an additional state add_withLitFrom_to_ defined by

op add_withLitFrom_to_ : TracedSClause SetLSC SetTracedSClause

-> State .

where the sort SetLSC corresponds to the set of results computed by narrowing. The state
“add C withLitFrom N to S” stores a part C of the new clause under construction, the
set N of narrowing results and the current set of clauses S. Its use is detailed below.

A last difficulty is related to the substitution σ. In fact, narrowing renames all the
variables in u by fresh variables and does not return this substitution. Let us call it σr.
When applying narrowing, the actual rule becomes σr(u)→ σr(f(u)). To get σr, we use
a term of the form σr(l[f(u)]) obtained by narrowing. Due to the fact that the functional
symbol f is unique and there is only one subterm containing f , the substitution σr can be
obtained by matching f(σr(u)) with f(u). The narrowing output ResultContext contains
two substitutions s1 and s2 that we use in order to build narrowing substitution σn, i.e.
σn = s1; cleaned(s2), where function cleaned removes the substitutions with left-hand
side variables not appearing in the considered terms. Finally, the needed substitution σ

is a composition of σr and σn. We use the Maude function _.._ to build σ.
In order to better understand how the Superposition rule works, let us draw a graph

(Figure 6.1) showing the intermediate states and guarded transitions. In this figure,
the superposition rule applies between two clauses. We start from the state containing
an initial set S of clauses. This set is decomposed into T ∪ {L1 ∨ C1, L2 ∨ C2}, where
L1 and L2 are two literals to which superposition will be applied, C1 and C2 are two
remaining clauses, and T is a set of clauses. After applying narrowing between L1 and
L2 (transition [sup2]), a new state add C1 ∨ C2 withLitFrom U to S is constructed,
where C1 ∨ C2 is a disjunction of the remaining clauses, U is a set of all the possible
narrowings of L1 by L2 at all the positions, and S is the initial set of clauses. If U
is empty then by transition [no-sup] we go back to the input state. Otherwise, from
this state the transition [select] will select some literal L in the set U of narrowing
results decomposed into {L} ∪ R, where R is the set of other narrowing results. If the
constraint of L obtained from narrowing is satisfiable, then it builds (transition [select]

(then part)) a new state S redundancy N , where N is the new clause C1 ∨ C2 ∨ L.
Otherwise, another narrowing result is considered (transition [select] (else part)). If
the new clause is redundant with respect to S, i.e. S can be obtained from S ∪ {C} by a
sequence of applications of contraction rules (S ∪ {C} →∗ S), then the state S remains

78

6.4. Inference rules

unchanged (transition [pick] (else part)). Otherwise, the new clause N is added to the
state (transition [pick] (then part)).

state(S)start
add (C1 ∨ C2)
withLitFrom U

to S

S redundancy N

[sup2]

S = T ∪ {L1 ∨ C1, L2 ∨ C2}
U ← narrowing(L1, L2)

[no-sup]

if U = ∅

[select] (then part)
if U = R ∪ {L} and
L satisfible then
N ← C1 ∨ C2 ∨ L

[select] (else part)
if U = R ∪ {L} and
L not satisfiable

then U ← R

[pick] (else part)
if S ∪ {N} →∗ S

[pick] (then part)
if S ∪ {N} 6→∗ S

then S ← S ∪ {N}

Figure 6.1: Intermediate states and transitions

Let us now implement these transitions by Maude rewriting rules. So, the Superposi-
tion rule is encoded by five rules named sup1, sup2, select, no-sup and pick, where
sup1 applies Superposition between a clause and itself. These rules are encoded as
follows.

• Implementation of [sup2] and [sup1] rules:

The sup2 rule applies Superposition between two distinct traced constrained clauses.

var renamedSC2 : SClause .

crl [sup2] : state((STSC, Tr1 gives SC1, Tr2 gives SC2)) =>

add

sup(Tr1, Tr2, SubstR1, SubstR2) gives clause((SL1, SL2)) || (Phi1,Phi2)

withLitFrom

79

Chapter 6. Implementation

applySup(L1, SL1, Phi1, L2, SL2, Phi2)

to (STSC, Tr1 gives SC1, Tr2 gives SC2)

if renamedSC2 := renameSClause(SC1, SC2) /\

SubstR1 := none /\

SubstR2 := getSubstRename(renamedSC2, C2) /\

clause((SL1, L1)) || Phi1 := SC1 /\

clause((SL2, L2)) || Phi2 := renamedC2 /\

isSelected(L1, SC1) /\ isSelected(L2, renamedSC2) .

The first condition renamedC2 := ... renames the second clause in order to guar-
antee that its variables are distinct from the ones of the first clause SC1. The
substitutions SubstR1 and SubstR2 represent the renaming substitutions. The first
substitution is empty (SubstR1 := none), because the renaming of the first clause
has not been performed. The function getSubstRename returns a renaming substi-
tution by filtering the given clause with the renamed one. The fourth (resp. fifth)
condition decomposes the constrained clause SC1 (resp. renamedSC2) and distin-
guishes a literal L1 (resp. L2) in it. The Superposition rule applies only to literals
that are selected in their clauses. The last two conditions check whether the literals
L1 and L2 are selected in their clause. The function applySup generates a set of
results (composed of two terms, a literal, a substitution, a constraint and a context)
by calling the narrowing function and checking the ordering conditions of the Super-
position rule. The ordering conditions invoke a function implementing the ordering
detailed in Section 6.6.

The sup1 rule superposes a traced constrained clause with a renamed copy of itself.
It is very similar to sup2.

var renamedSC : SClause .

crl [sup1] : state((STSC, Tr gives SC)) =>

add

sup(Tr, Tr, SubstR1, SubstR2) gives clause((SL1, SL2)) || (Phi1, Phi2)

withLitFrom

applySup(L1, SL1, Phi1, L2, SL2, Phi2)

to (STSC, Tr gives SC)

if renamedSC := renameSClause(SC) /\

renamedSC2 := renameSClause(renamedSC) /\

SubstR1 := getSubstRename(renamedSC, C1) /\

SubstR2 := getSubstRename(renamedSC2, C1) /\

clause((SL1, L1)) || Phi1 := renamedSC /\

clause((SL2, L2)) || Phi2 := renamedSC2 /\

isSelected(L1, renamedSC) /\

isSelected(L2, renamedSC2) .

In order to get two constrained clauses with distinct variables, we rename the given
constrained clause SC twice.

80

6.4. Inference rules

• Implementation of [select] rule:

When the set of checked narrowing results is not empty, the following rule [select]
considers these results one by one until either the set is empty, or a clause with a
satisfiable constraint is found. Each narrowing result is of the form superpose

T in T’ gives L withSubst Sigma andConstraint Phi at Ctx of sort LSC and
means that superposing a term T in a term T’ gives a literal L. The superposition
is performed at the context Ctx with substitution Sigma. The sort also stores a
constraint of the clause Phi. The set of such results is of the sort SetLSC.

var S’ : SetLSC .

rl [select] :

add

sup(Tr1,Tr2, SubstR1, SubstR2) gives clause(SL) || Phi’

withLitFrom (superpose T1 in T2 gives L3

withSubst Sigma andConstraint Phi at Ctx, S’)

to

STSC =>

if isSatisfiableSet(Phi applyToConstraint Sigma) then

STSC redundancy

buildTrace(sup(Tr1, Tr2), T1 << SubstR2, T2 << SubstR1, Ctx)

gives newSClause((SL, L3), Phi, Sigma)

else

add sup(Tr1,Tr2) gives clause(SL) || Phi’

withLitFrom S’

to STSC

fi .

Satisfiability is checked by the function isSatisfiableSet. If the constraint of
a new clause is satisfiable then a state _redundancy_ is constructed. The first
element of this state is the set STSC of traced constrained clauses generated so far.
Its second element is a new traced constrained clause. The function buildTrace

adds to the stored constrained clauses, between which superposition is performed,
two terms substituted with the renaming substitutions and a context. The function
newSClause applies the substitution Sigma to a set of literals and to the constraint
Phi, and leaves only the atomic constraints built over variables occurring in the new
clause. It returns the resulting constrained clause.

• Implementation of [no-sup] rule:

When the set of results of narrowing is empty, the rule

rl [no-sup] : add TSC withLitFrom (empty).SetLSC to STSC

=> state(STSC) .

returns the input set in a state ready for another expansion.

• Implementation of [pick] rule:

Eventually, the rule

81

Chapter 6. Implementation

rl [pick] : STSC redundancy Tr gives SC =>

if (Tr gives SC) isRedundant STSC == false then

state((STSC, Tr gives SC))

else state(STSC) fi .

checks whether the newly generated traced constrained clause Tr gives SC is re-
dundant with respect to the set STSC of traced constrained clauses. If the new traced
constrained clause is not redundant then it is added to the state, otherwise, the state
remains unchanged. The redundancy is checked by the function isRedundant that
uses the Maude function metaSearch.

op error : -> [SetTracedSClause] .

op _isRedundant_ : TracedSClause SetTracedSClause -> Bool .

ceq (Tr gives SC) isRedundant STSC = true

if (Tr gives SC) in STSC .

eq (Tr gives SC) isRedundant STSC =

if downTerm(getTerm(

metaSearch(

upModule(’CONTR, false),

upTerm((STSC, (Tr gives SC))),

upTerm(STSC),

nil, ’*, unbounded, 0)), error) =/= error

then true

else false

fi .

This function tries to reach the set STSC from the union of STSC and {Tr gives

SC} by applying contraction rules defined in the module CONTR. When the Maude
function downTerm fails in moving down the meta-represented term given as its first
argument, it returns its second argument, namely error, declared as a constant of
sort SetTracedSClause.

6.4.4 Reflection and Eq. Factoring rules

The implementation of the Reflection rule is divided into two cases. Let us consider the
case where the clause consists of only one disequality:

crl [reflection1] :

state((STSC, Tr gives clause(U’ != U) || Phi)) =>

state((STSC, Tr gives clause(U’ != U) || Phi,

emptySClause gives emptySClause))

if MU := unif(U’ != U) /\

isSatisf(MU, Phi) .

82

6.4. Inference rules

In this case the empty constrained clause emptySClause is added to the state (with itself
as trace). The function unif unifies two terms by using the Maude function metaUnify.

op unif : Literal -> UnificationPair .

eq unif(U’ != U) = metaUnify(upModule(’ALL-SYMBOLS,false), U’ =? U, Max, 0) .

Since it is convenient to reuse variable names from unifiers in new problems, for example
in narrowing, the metaUnify function has its third argument, which is the largest number
n appearing in a unificand metavariable of the form #n : Sort. The fresh metavariables
in the computed unifiers will all be numbered from n + 1 on. We use as third argument
the constant Max which is equal to 10. If the variables given to unification problem are
greater than Max, for example, one of the variables is #11, then the Maude will display
the following warning

Warning: unsafe variable name #11:Lists in unification problem.

that will make user understand that Max is too small for the unification problem. The
last argument in this function (0 in our case) means that the first result is wanted.

The function isSatisf defined by

op isSatisf : UnificationPair Constraint -> Bool .

eq isSatisf(MU, Phi) =

if MU =/= noUnifier then

isSatisfiableSet(cleanConstr(Phi applyToConstraint getSubst(MU)))

else false fi .

checks whether the substitution obtained from the unification pair satisfies the constraint.
In the general case, when the clause is not a unit one, the rule is encoded by using the

same technique as the one developed for Superposition.

crl [reflection2] :

state((STSC, Tr gives clause((S, U’ != U)) || Phi)) =>

(STSC, Tr gives clause((S, U’ != U)) || Phi) redundancy

refl(Tr) gives applicSubstToSClause(clause(S) || Phi, getSubst(MU))

if S =/= empty /\

MU := unif(U’ != U) /\

isSatisf(MU, Phi) /\

isSelected(U != U’, clause((U != U’, S)) || Phi) .

The first condition S =/= empty checks whether the clause is not unit. The second
condition MU := unif(U’ != U) unifies two terms U and U’ and returns the unification
pair containing the needed substitution. The third condition checks, by the function
isSatisf, whether the substitution satisfies the constraint Phi, and the last condition
determines whether the disequality U != U’ is selected in its clause. The trace of the new
traced constrained clause is refl(Tr), where Tr is the trace of the considered clause. The
new constrained clause is obtained by the function applicSubstToSClause that applies
the substitution obtained from the unification to the given constrained clause without the
considered disequality.

83

Chapter 6. Implementation

In the same way, the implementation of the inference rule Eq. Factoring makes use
of the same constructs, such as the function isSelected, together with a specific side
condition involving ordering expressions.

var NewPhi : Constraint .

crl [eqfactor] :

state((STSC, Tr gives clause((SL, U equals T, U’ equals T’)) || Phi)) =>

STSC redundancy

ef(Tr) gives

applicSubstToSClause(clause((SL, T != T’, U equals T’)) || Phi, Sigma)

if isSelected(U equals T, clause((SL, U equals T, U’ equals T’)) || Phi) /\

MU := metaUnify(upModule(’ALL-SYMBOLS,false), U’ =? U, Max, 0) /\

MU =/= noUnifier /\

Sigma := getSubst(MU) /\

NewPhi := cleanConstr(Phi applyToConstraint Sigma) /\

isSatisfiableSet(NewPhi) /\

condEF(U << Sigma equals T << Sigma,

U’ << Sigma equals T’ << Sigma, NewPhi) .

Firstly, we check whether the literal U equals T is selected in its clause. Then, we unify
U and U’ by using the function metaUnify. If the unification is possible, we get the sub-
stitution by the function getSubst and apply it to constraint Phi. The new constrained
NewPhi is a substituted constrained Phi where all the atomic constraints containing con-
stants (e.g., const(’nil.Lists)) are eliminated by the function cleanConstr. After
having checked that the obtained constraint is satisfiable, we check whether the ordering
conditions are also satisfied by the function condEF. As the Eq. Factoring rule is an
expansion rule, it generates a new constrained clause and therefore redundancy of the
new constrained clause with respect to the given set of traced schematic clauses has to
be checked. Thus, this rule constructs a new state _redundancy_. The trace of the new
constrained clause is of the form ef(Tr), where Tr is the trace of the given constrained
clause. The new constrained clause is the constrained clause clause((SL, T != T’,

U equals T’)) || Phi substituted with obtained substitution Sigma by the function
applicSubstToSClause.

6.5 Saturation

A forward search for generated sets of traced constrained clauses is performed by a function
searchState defined by

op searchState : State Nat -> State .

eq searchState(St, N) = downTerm(getTerm(

metaSearch(upModule(’SP, false), upTerm(St),

’state[’S:SetTracedSClause], nil, ’*, unbounded, N)),

error) .

where SP is a module where all the expansion rules are defined. The function call
searchState(St,N) tries to reach the N-th state from an initial state St by applying

84

6.6. Orderings

the expansion rules. It performs a breadth-first exploration of the reachable state space
by calling the Maude function metaSearch with the ’* parameter. When the Maude
function downTerm fails in moving down the meta-represented term given as its first argu-
ment, it returns its second argument, namely error, declared as a constant of sort State
(op error : -> [State] .).

Then the principle of saturation is implemented by the function saturate defined by

op saturate : State -> State .

eq saturate(St) = if searchState(St, 1) == error1 then St else

if searchState(St, 1) =/= St then

saturate(searchState(St, 1))

else St fi fi .

which implements a fixpoint algorithm in order to reach a state where the set of con-
strained clauses is saturated. If the initial state is already saturated, then the function
returns it unchanged.

A saturated set of constrained clauses could alternatively be computed from an initial
state by the Maude function metaSearch with a ’! parameter (searching for a state
that cannot be further rewritten), but the function searchState computing intermediary
states is also interesting for debugging purposes.

6.6 Orderings

A fundamental feature of paramodulation calculi is the usage of a simplification ordering
which is total on ground terms. We use a lexicographic path ordering (Definition 52)
with a precedence on function symbols. This section describes the implementation of this
ordering.

The LPO ordering is implemented as a Boolean function gtLPO such that gtLPO(s,Phi,
t) = true if and only if s >lpo t. The additional parameter Phi collects the constrained
variables, that should be viewed as constants in the ordering definition.

Let us present the rules implementing gtLPO(s,Phi,t).

1. Rule (1) is encoded by

ceq gtLPO(F[NeSL], Phi, F[NeTL]) = true

if gtLexLPO(NeSL, Phi, NeTL) /\ termGtList(F[NeSL], Phi, NeTL) .

where NeSL and NeTL are non-empty lists of terms. Here the head symbols of both
terms are equal. Then the list of subterms NeSL of F[NeSL] should be greater than
the list of subterms NeTL and the term F[NeSL] should be greater than all the
elements in the list of subterms of F[NeTL]. The first condition is checked by the
function gtLexLPO

op gtLexLPO : TermList Constraint TermList -> Bool .

eq gtLexLPO(SL, Phi, empty) = true .

ceq gtLexLPO((S1, SL), SC, (T1, TL)) = true

if gtLPO(S1, Phi, T1) or (S1 == T1 and gtLexLPO(SL, Phi, TL)) .

85

Chapter 6. Implementation

that considers one by one the terms in the first list of terms and in the second one.
The function checks whether either the first term S1 from the first list of terms is
greater than the first term T1 from the second one, or they are equal and the rest SL
of the first list of terms is greater than the rest TL of the second list of terms. The
second condition is checked by the function termGtList that determines whether
the term F[NeSL] is greater than each element in the list of terms NeTL by using
the function gtLPO:

op termGtList : Term Constraint TermList -> Bool .

eq termGtList(T, Phi, empty) = true .

ceq termGtList(T, Phi, (T1, TL)) = true

if gtLPO(T, Phi, T1) /\ termGtList(T, Phi, TL) .

2. Rule (2) is encoded by

ceq gtLPO(F[NeSL], Phi, G[NeTL]) = true

if gtSymb(F, G) /\ termGtList(F[NeSL], Phi, NeTL) .

Here the heads of the compared terms are not equal. Then the head F of the first
one should be greater than the head G of the second one and F[NeSL] should be
greater than all the direct subterms of G[NeTL]. The following function gtSymb is
used to check the first condition.

op gtSymb : Qid Qid -> Bool .

ceq gtSymb(Q1, Q2) = true

if precedesInList(Q1, Q2, listOfSymbols) .

This function determines whether the first quoted identifier precedes the second one
in the list of symbols listOfSymbols defined by the user.

3. Rule (3) is encoded by

ceq gtLPO(F[NeSL], Phi, V) = true

if V in Phi /\

C := cteOfSort(listOfSymbols, getType(V)) /\

gtSymb(F, C) .

where the function cteOfSort returns the constant from the defined by user list-
OfSymbols of the given sort. This function is encoded by

op cteOfSort : QidList Qid -> Qid [memo] .

ceq cteOfSort((Q QL), S) = Q

if getType(Q) == S .

eq cteOfSort((Q QL), S) = cteOfSort(QL, S) [owise] .

86

6.6. Orderings

The constant Q is returned if its sort is the given sort S. Otherwise, we continue to
search for the right constant. Thanks to the attribute memo, the constants associated
with each sort are stored in some memoization table. This allows us to avoid the
search for the right constant each time when this function is called, but to use the
stored one.

4. Rule (4) is encoded by

ceq gtLPO(F[NeSL], Phi, C) = true

if gtSymb(F, C) .

where it is checked whether the function symbol F precedes the constant C in the
precedence of symbols.

5. Rule (5) is encoded by

ceq gtLPO(V, Phi, G[NeTL]) = true

if V in Phi /\

C := cteOfSort(listOfSymbols, getType(V)) /\

gtSymb(C, G) /\

termGtList(V, Phi, NeTL) .

where the function _in_ checks whether the variable V is constrained, i.e. this
variable is in the constraint Phi. After finding the constant C that has the same sort
as the given constrained variable V, we determine whether it precedes the function
symbol G in the precedence. The last condition checks whether the constrained
variable is greater than each subterm of the term G[NeTL].

6. Rule (6) is encoded by

ceq gtLPO(C, Phi, G[NeTL]) = true

if gtSymb(C, G) and termGtList(C, Phi, NeTL) .

This rule is similar to the previous one, except that now the constant is compared
with a compound term.

7. The rules (7), (8), (9) and (10) are similar in the sense that all these rules compare
terms of depth 0. Rule (7) compares two constrained variables of different sorts by
comparing the appropriate constants.

ceq gtLPO(V1, Phi, V2) = true

if V1 in Phi /\ V2 in Phi /\

getType(V1) =/= getType(V2) /\

C1 := cteOfSort(listOfSymbols, getType(V1)) /\

C2 := cteOfSort(listOfSymbols, getType(V2)) /\

gtSymb(C1, C2) .

87

Chapter 6. Implementation

Rule (8) compares two constants by looking if the first one precedes the second one
in the precedence defined by the user.

ceq gtLPO(C1, Phi, C2) = true

if gtSymb(C1, C2) .

Rule (9) compares a constant and a constrained variable of distinct sorts by compar-
ing the given constant with the constant representing the given constrained variable.

ceq gtLPO(C, Phi, V) = true

if V in Phi /\

getType(C) =/= getType(V) /\

C1 := cteOfSort(listOfSymbols, getType(V)) /\

gtSymb(C, C1) .

Rule (10) compares a constrained variable with a constant:

ceq gtLPO(V, Phi, C) = true

if V in Phi /\

getType(C) =/= getType(V) /\

C1 := cteOfSort(listOfSymbols, getType(V)) /\

gtSymb(C1, C) .

All these rules use the same functions: the function _in_ to check whether the
variable is constrained, the function cteOfSort to find a constant of the given sort
in the list of symbols, and the function gtSymb to check whether one quoted identifier
precedes another one in the precedence defined by the user.

8. Rule (11) is encoded by

ceq gtLPO(F[UL1, Uk, UL2], Phi, t) = true

if gtLPO(Uk, Phi, t) == true .

whose condition checks whether a direct subterm of F[UL1, Uk, UL2] is greater
than t.

9. Rule

eq gtLPO(F[UL1, Uk, UL2], Phi, Uk) = true .

encodes (12), when a compound term F[UL1, Uk, UL2] is compared with one of
its direct subterms Uk.

To compare literals we use the ordering >lpo on terms extended to literals thanks to
the multiset extension of >lpo. An equality l = r is represented as a multiset [l, r] while
a disequality l 6= r is represented as a multiset [l, l, r, r]. The multiset extension of >lpo

specified as an inference system is similarly encoded in Maude. The module BAG declares
sorts and operators for manipulating bags of terms.

88

6.7. Automatic combinability

fmod BAG is

pr META-TERM .

sorts Bag NeBag .

subsorts Term < NeBag < Bag .

op emptyBag : -> Bag .

op _&_ : Bag Bag -> Bag [assoc comm id: emptyBag] .

op _&_ : Bag NeBag -> NeBag [ditto] .

endfm

For example the equivalence relation on bags is encoded as follows:

op _equivBag_ : Bag Bag -> Bool .

eq emptyBag equivBag emptyBag = true .

eq (B1 & T1) equivBag (B2 & T2) =

B1 equivBag B2 and T1 == T2 .

where T1,T2 are two terms, and B1, B2 are two bags.

6.7 Automatic combinability

As explained in Section 4.6, checking the combinability of a theory reduces to checking
the existence of a variable-active clause in the saturation of G0 for this theory. For the
set of maximal literals in a clause, the following function detects whether the variable X
does not occur in t when this literal is of the form X = t:

eq isVarActiveClause(empty, Phi) = false .

eq isVarActiveClause((X equals T, SL), Phi) =

if not (X inTL vars(T)) and not (X inTL varsOfSC(Phi)) then

true

else isVarActiveClause(SL, Phi) fi .

eq isVarActiveClause((L, SL), Phi) =

isVarActiveClause(SL, Phi) [owise] .

For the theories sharing function symbols of theory of Integer Offsets, the combinability
depends on the safety of saturations. As explained in Section 5.2, the saturation is safe if
it does not contains variable-active clauses and non-ground clauses of the form s(u) = v,
where s(u) is maximal. The following function checks the latter condition:

op isGroundLitWithSClause : SetLit Constraint -> Bool .

eq isGroundLitWithSClause(empty, Phi) = true .

eq isGroundLitWithSClause((L, SL), Phi) =

isGroundLitWithS(L,Phi) and isGroundLitWithSClause(SL, Phi) .

where the function isGroundLitWithS checks whether the literal is a ground equality and
one of its term is maximal and s-rooted.

Then the function checking whether the saturation is safe or not is encoded as follows:

op isSafe : SetTracedSClause -> Bool .

eq isSafe(STSC) =

isGroundLitWithSSet(STSC) and not isVarActiveSet(STSC) .

89

Chapter 6. Implementation

6.8 Summary

This chapter has reported on a prototyping environment for designing and verifying de-
cision procedures. This environment, based on the theoretical studies in [LM02, Tra07,
LRRT11], is the first implementation of the schematic paramodulation calculus for the-
ories of classical data-types such as lists, arrays, records, and for theories with counting
operators. It has been implemented from scratch on the firm basis provided by Maude.
To implement the schematic paramodulation calculus modulo Integer Offsets, we use the
same rules as for the standard schematic paramodulation calculus, except the Schematic
Deletion rule, and the reduction rules representing the axioms of the theory of Integer
Offsets. Our tool will help testing new saturation strategies and experimenting new ex-
tensions of the original schematic paramodulation calculus. In the next section we present
our experimental results obtained thanks to this tool.

90

Chapter 7

Experimentation

Contents

7.1 Theory of lists without extensionality 92

7.2 Theory of lists with extensionality 93

7.3 Theory of records without extensionality 94

7.4 Theory of lists with length . 96

7.5 Theory of lists with integer elements 98

7.6 Theory of records with increment 100

7.7 Theory of possibly empty lists 102

7.8 Theory of arrays . 105

7.9 Theory of recursive data structures 107

7.10 Combinability . 109

7.11 Summary . 109

This chapter reports on experiments to compare the schematic saturations computed
by our tool with corresponding results found in the literature. We consider the following
theories:

• Unitary theories such as the theory of lists with and without extensionality and the
theory of records without extensionality,

• Unitary theories that share Integer Offsets such as the theory of lists with length,
the theory of lists with integer elements and the theory of records with increment,

• Non-unitary theories such as the theory of possibly empty lists, the theory of arrays
and the theory of recursive data structures.

For all considered theories the paramodulation is known to terminate.

91

Chapter 7. Experimentation

7.1 Theory of lists without extensionality

The many-sorted signature ΣL of the theory of lists is the set of function symbols {car :
lists→ elem, cdr : lists→ lists, cons : elem× lists→ lists}.

The set G0 consists of the empty clause ⊥ and the following constrained clauses over
the signature ΣL:

1. Schematic literals for elem

a) car(a) = e ‖ const(a, e)

b) e1 = e2 ‖ const(e1, e2)

c) e1 6= e2 ‖ const(e1, e2)

2. Schematic literals for lists

a) cons(e, a) = b ‖ const(e, a, b)

b) cdr(a) = b ‖ const(a, b)

c) a = b ‖ const(a, b)

d) a 6= b ‖ const(a, b)

where e, e1, e2 are constrained variables of sort elem, a and b are constrained variables
of sort lists.

This theory is axiomatized by the following set of axioms:

car(cons(X,Y)) = X (7.1)

cdr(cons(X,Y)) = Y (7.2)

whereX is a universally quantified variable of sort elem, and Y is a universally quantified
variable of sort lists.

The LPO ordering > over the symbols of the signature ΣL respects the following
requirement: cons > cdr > car > l > e for every constant l of sort lists, and every
constant e of sort elem.

Lemma 2. The set G0 ∪ {(7.1), (7.2)} is saturated by SPC.

Proof. Eq. Factoring applies to a clause with at least two positive literals, and therefore
does not apply to unitary clauses. No rule can be applied to the set of axioms {(7.1), (7.2)},
and therefore it is saturated. All the applications of the Superposition rule between two
constrained clauses produce clauses that are redundant w.r.t. G0. The application of
the Reflection rule produces the empty clause, which is also redundant w.r.t. G0. Thus,
the set G0 is saturated. It remains to show the same property for the union of G0 and
{(7.1), (7.2)}.

Superposition between (7.1) and (2.a) yields a renaming of (1.a), which is immediately
removed by the Subsumption rule. Similarly, Superposition between (7.2) and (2.a) yields
a renaming of (2.b), which is removed by the Subsumption rule as well. Superposition
between any axiom and (2.c) or (1.b) yields constrained clauses that are immediately
removed by the Subsumption rule. Since no other rule can be applied between an axiom
and a constrained clause, we conclude that the set G0 ∪ {(7.1), (7.2)} is saturated.

From an encoding of G0∪{(7.1), (7.2)} our tool generates no new constrained clauses.
Notice that for this example the abstraction by schematization is exact, in the following
sense: the saturated set computed by SPC is the schematization of any saturated set
computed by PC. The same result is shown in [LM02].

92

7.2. Theory of lists with extensionality

7.2 Theory of lists with extensionality

For this theory the signature, G0 and the ordering requirement are the same as in 7.1.
The set of axioms is extended with one extensionality axiom:

cons(car(X), cdr(X)) = X (7.3)

where X is a universally quantified variable of sort lists.

Lemma 3. The saturation of G0∪{(7.1), (7.2), (7.3)} by SPC consists of G0, (7.1), (7.2),
(7.3) and the following constrained clauses:

cons(e, cdr(a)) = b ‖ const(e, a, b) (7.4)

cons(car(a), b) = c ‖ const(a, b, c) (7.5)

car(a) = car(b) ‖ const(a, b) (7.6)

cdr(a) = cdr(b) ‖ const(a, b) (7.7)

cons(car(a), cdr(b)) = c ‖ const(a, b, c) (7.8)

Proof. Eq. Factoring applies to a clause with at least two positive literals, and there-
fore does not apply to unitary clauses. No rule is applicable to the set of axioms
{(7.1), (7.2), (7.3)} and, therefore, it is saturated.

All the applications of the Superposition rule between two constrained clauses in G0

generate clauses that are redundant w.r.t. G0. The application of the Reflection rule
generates the empty clause which is already in G0. Thus, the set G0 is also saturated.

Let us now consider all the applications of the Superposition rule between an axiom
and a constrained clause. Superposition between (7.1) and (2.a) and between (7.2) and
(2.a) respectively yields renamings of (1.a) and (2.b), which are immediately removed by
the Subsumption rule. Superposition between (7.3) and (1.a) yields the new constrained
clause

cons(e, cdr(a)) = a ‖ const(e, a). (7.9)

Then, Superposition between (7.9) and (2.c) gives the constrained clause (7.4), which sub-
sumes (7.9). Similarly, Superposition between (7.3) and (2.b) yields the new constrained
clause

cons(car(a), b) = a ‖ const(a, b) (7.10)

and Superposition between (7.10) and (2.c) gives the constrained clause (7.5), which
subsumes (7.10). Superposition between (7.1) and (7.5) and between (7.2) and (7.4)
respectively gives the constrained clauses (7.6) and (7.7). Superposition between (7.3)
and (7.6) gives the new constrained clause

cons(car(a), cdr(b)) = b ‖ const(a, b) (7.11)

and Superposition between (7.11) and (2.c) gives the constrained clause (7.8), which
subsumes (7.11). Superposition between any axiom and (2.c) or (1.b) yields constrained
clauses that are redundant w.r.t. the set G0 ∪ {(7.1), (7.2), (7.3), (7.4), (7.5), (7.6), (7.7),
(7.8)}. Therefore, this set is saturated.

93

Chapter 7. Experimentation

The example given in [LRRT11] is not complete. In that paper, it is said that the
saturation of G0 ∪ {(7.1), (7.2), (7.3)} by SPC, consists of the constrained clauses (7.4)
and (7.5), while it also contains (7.6), (7.7) and (7.8). From an encoding of G0 ∪ {(7.1),
(7.2), (7.3)} our tool generates five new constrained clauses corresponding to the ones
given in Lemma 3:

sup(
sup(label(7.3), label(1.a), car(a), cons(car(X), cdr(X)), cons([], cdr(X))),
label(2.c), b, cons(e, cdr(a)), cons(e, cdr([])),) gives

clause(b = cons(e, cdr(a))) ‖ const(e, a, b)
sup(

sup(label(7.3), label(2.b), cdr(a), cons(car(X), cdr(X)), cons(car(X), [])),
label(2.c), b, cons(car(a), b), cons(car([]), b)) gives

clause(c = cons(car(a), b)) ‖ const(a, b, c)
sup(label(7.1), label(7.5), cons(car(a), b), car(cons(X,Y)), car([])) gives

clause(car(a) = car(b)) ‖ const(a, b)
sup(label(7.2), label(7.4), cons(e, cdr(a)), cdr(cons(X,Y)), cdr([])) gives

clause(cdr(a) = cdr(b)) ‖ const(a, b)
sup(

sup(label(7.3), label(7.6), car(a), cons(car(X), cdr(X)), cons([], cdr(X))),
label(2.c), b, cons(car(b), cdr(a)), cons(car(b), cdr([]))) gives

clause(c = cons(car(a), cdr(b))) ‖ const(a, b, c)

On this example we can see that the abstraction by schematization is an over-approxi-
mation: the abstract saturation computed by SPC is larger than any concrete saturation
computed by PC.

7.3 Theory of records without extensionality

A record can be considered as a special form of array where the number of elements is
fixed. Contrary to the theory of arrays, the theory of records can be specified by unit
clauses. The termination of superposition for the theories of records with and without
extensionality is shown in [ABRS09]. We consider here the theory of records of length 3
without extensionality given by the many-sorted signature ΣRec =

⋃3
i=1{rstorei : rec ×

int → rec, rselecti : rec → int}, and axiomatized by the following set of axioms
Ax(Rec):

rselect1(rstore1(X,Y)) = Y (7.12)

rselect2(rstore2(X,Y)) = Y (7.13)

rselect3(rstore3(X,Y)) = Y (7.14)

rselect1(rstore2(X,Y)) = rselect1(X) (7.15)

rselect1(rstore3(X,Y)) = rselect1(X) (7.16)

rselect2(rstore1(X,Y)) = rselect2(X) (7.17)

rselect2(rstore3(X,Y)) = rselect2(X) (7.18)

rselect3(rstore1(X,Y)) = rselect3(X) (7.19)

rselect3(rstore2(X,Y)) = rselect3(X) (7.20)

94

7.3. Theory of records without extensionality

where X is a universally quantified variable of sort rec, and Y is a universally quantified
variable of sort int.

Let G0 be composed of the empty clause ⊥ and the following constrained clauses:

1. Constrained clauses for sort rec

a) rstore1(a, i) = b ‖ const(a, b, i)

b) rstore2(a, i) = b ‖ const(a, b, i)

c) rstore3(a, i) = b ‖ const(a, b, i)

d) a = b ‖ const(a, b)

e) a 6= b ‖ const(a, b)

2. Constrained clauses for sort int

a) rselect1(a) = i ‖ const(a, i)

b) rselect2(a) = i ‖ const(a, i)

c) rselect3(a) = i ‖ const(a, i)

d) i1 = i2 ‖ const(i1, i2)

e) i1 6= i2 ‖ const(i1, i2)

where a, b are constrained variables of sort rec, and i, i1, i2 are constrained variables of
sort int.

The ordering over the terms is the LPO ordering > whose underlying precedence over
the symbols of the signature ΣRec respects the following requirements: rstorei > rselectj >

r > c for all i, j ∈ {1, 2, 3}, and for every constrained variable r of sort rec and every
constrained variable c of sort int.

Lemma 4. The saturation of G0 ∪ Ax(Rec) by SPC consists of G0, Ax(Rec) and the
following constrained clauses:

rselect1(a) = rselect1(b) ‖ const(a, b) (7.21)

rselect2(a) = rselect2(b) ‖ const(a, b) (7.22)

rselect3(a) = rselect3(b) ‖ const(a, b) (7.23)

Proof. Eq. Factoring applies to a clause with at least two positive literals, and therefore
does not apply to unitary clauses. No rules are applicable to the set of axioms Ax(Rec),
and therefore it is saturated.

All the applications of the Superposition rule between two constrained clauses produce
clauses that are redundant w.r.t. G0. The application of the Reflection rule produces the
empty clause, which is also redundant w.r.t. G0. Thus, the set G0 is saturated.

Let us now consider all the applications of the Superposition rule between an axiom and
a constrained clause. Superposition between (7.12) (resp. (7.13), (7.14)) and (1.a) (resp.
(1.b), (1.c)) yields a renaming of (2.a) (resp. (2.b), (2.c)), which is immediately removed
by the Subsumption rule. Superposition between (7.15) and (1.b) yields the constrained
clause (7.21). Afterwards, Superposition between (7.16) and (1.c) yields a renaming of
(7.21), which is immediately removed by the Subsumption rule. It is similar for the indices
2 and 3, between (7.17) and (1.a) and between (7.19) and (1.a). Superposition between
any axiom and (1.d) or (2.d) yields constrained clauses that are immediately removed by
the Subsumption rule. Superposition between new clauses (7.21), (7.22), (7.23) and (2.a),
(2.b), (2.c) yields respectively renaming copies of (2.a), (2.b), (2.c) that are immediately
removed by the Subsumption rule. Since no other rule applies we conclude that the set
G0 ∪ Ax(Rec) ∪ {(7.21), (7.22), (7.23)} is saturated for SPC.

95

Chapter 7. Experimentation

From an encoding of G0 ∪Ax(Rec) our tool generates the schematic saturation given
in Lemma 4 which corresponds to the form of saturations described in [ABRS09]:

sup(label(7.15), label(1.b), rstore2(a, i), rselect1(rstore2(X,Y)), rselect1([])) gives
clause(rselect1(a) = rselect1(b)) ‖ const(a, b)

sup(label(7.17), label(1.a), rstore1(a, i), rselect2(rstore1(X,Y)), rselect2([])) gives
clause(rselect2(a) = rselect2(b)) ‖ const(a, b)

sup(label(7.19), label(1.a), rstore1(a, i), rselect3(rstore1(X,Y)), rselect3([])) gives
clause(rselect3(a) = rselect3(b)) ‖ const(a, b)

7.4 Theory of lists with length

The many-sorted signature ΣLLI of the theory of lists with length is the set {car : lists→
elem, cdr : lists → lists, cons : elem × lists → lists, len : lists → int, nil :→
lists, 0 :→ int, s : int→ int}. Let Σ+

LLI = ΣLLI ∪ {s
+ : int→ int}.

This theory is axiomatized by the following set of axioms Ax(LLI):

1. Axioms for lists

a) car(cons(X, Y)) = X

b) cdr(cons(X, Y)) = Y

c) cons(X, Y) 6= nil

2. Axiom for the length

a) len(cons(X, Y)) = s(len(Y))

b) len(nil) = 0

where X is a universally quantified variable of sort elem, and Y is a universally quantified
variable of sort lists.

The set G0 consists of the empty clause ⊥ and the following schemas of literals:

3. Schematic literals of sort elem

a) car(a) = e ‖ const(a, e)

b) e1 = e2 ‖ const(e1, e2)

c) e1 6= e2 ‖ const(e1, e2)

4. Schematic literals of sort lists

a) cons(e, a) = b ‖ const(e, a, b)

b) cdr(a) = b ‖ const(a, b)

c) a = b ‖ const(a, b)

d) a 6= b ‖ const(a, b)

5. Schematic literals of sort int

a) len(a) = s+(i) ‖ const(a, i)

b) len(a) = s+(len(b)) ‖ const(a, b)

c) i = s+(len(a)) ‖ const(a, i)

d) i1 = s+(i2) ‖ const(i1, i2)

e) i = len(a) ‖ const(a, i)

f) i1 = i2 ‖ const(i1, i2)

g) i1 6= i2 ‖ const(i1, i2)

where e, e1, e2 are constrained variables of sort elem, a,b are constrained variables of sort
lists, and i, i1, i2 are constrained variables of sort int.

We consider the LPO ordering on the terms whose underlying precedence over the
symbols of the signature Σ+

LLI respecting the following requirement: cons > cdr > car >

c > e > len > i > s > s+ for every constant c of sort lists, every constant e of sort
elem, and every constant i of sort int. These precedence requirements guarantee that

96

7.4. Theory of lists with length

every compound term of sort lists or elem is bigger than any constant, and that > is a
TI − good ordering (Definition 45).

Lemma 5. The saturation of Ax(LLI)∪G0 by SUPCI consists of Ax(LLI), G0 and the
following schematic literals:

s+(i1) = s+(i2) ‖ const(i1, i2) (7.24)

i1 6= s+(i1) ‖ const(i1, i2) (7.25)

s+(i1) 6= s+(i2) ‖ const(i1, i2) (7.26)

s+(i1) = s+(len(a)) ‖ const(i1, a) (7.27)

len(a) = len(b) ‖ const(a, b) (7.28)

s+(len(a)) = s+(len(b)) ‖ const(a, b) (7.29)

Proof. The six new schematic literals are generated by applications of the Superposition
rule between two schematic literals in the initial set G0, as follows: Superposition between
(5.d) and a renamed copy of itself yields the new schematic literal (7.24). Superposition
between (5.g) and (5.d) yields the new schematic literal (7.25) that can be superposed with
(5.d) to generate (7.26). Superposition between (5.a) and (5.b) yields the new schematic
literal (7.27). Superposition between (5.b) and a renamed copy of itself yields two new
schematic literals (7.28) and (7.29), and a literal len(a) = s+(s+(len(b))) that becomes a
renaming copy of (5.b) after applying the rules from Rs+ (defined in Section 5.1) and is
eliminated thanks to Subsumption rule.

Let us now consider all the applications of the Superposition rule between an axiom
in Ax(LLI) and a schematic literal in G0. Superposition between (1.a) (resp. (1.b))
and (4.a) yields a renaming of (3.a) (resp. (4.b)) which is immediately removed by the
Subsumption rule. Superposition between (2.a) and (4.a) yields the new schematic literal

len(a) = s(len(b)) ‖ const(a, b)

which is immediately removed by applying the Schematic Deletion rule between it and
(5.b). Superposition between (1.c) and (4.a) yields an elementary instance of (4.d) that
is immediately eliminated by the Subsumption rule.

The set of axioms Ax(LLI) is saturated. Moreover, any other application of the Su-
perposition rule between two schematic literals or between an axiom and a schematic
literal yields a schematic literal that is redundant with respect to G0 ∪ Ax(LLI) ∪
{(7.24), (7.25), (7.26), (7.27), (7.28), (7.29)}. Therefore, this set of schematic literals is
saturated.

From an encoding of G0 ∪Ax(LLI) our tool generates the schematic saturation given
in Lemma 5. Moreover, its trace

sup(label(5.d), label(5.d), i1, i1, []) gives s
+(i1) = s

+(i2) ‖ const(i1, i2)
sup(label(5.g), label(5.d), i1, i1, []) gives i1 6= s

+(i2) ‖ const(i1, i2)
sup(label(7.25), label(5.d), i1, i1, []) gives s

+(i1) 6= s
+(i2) ‖ const(i1, i2)

sup(label(5.a), label(5.b), len(a), len(a), []) gives s
+(i1) = s

+(len(a)) ‖ const(i1, a)
sup(label(5.b), label(5.b), s+(len(b)), s+(len(b)), []) gives len(a) = len(b) ‖ const(a, b)
sup(label(5.b), label(5.b), len(a), len(a), []) gives s

+(len(a)) = s
+(len(b)) ‖ const(a, b)

97

Chapter 7. Experimentation

shows that the new schematic clauses are generated as described in the lemma proof.

7.5 Theory of lists with integer elements

The many-sorted signature ΣLIE of the theory of lists with integer elements is the set
{car : lists → int, cdr : lists → lists, cons : int × lists → lists, len : lists →
int, nil :→ lists, 0 :→ int, s : int→ int}. Let Σ+

LIE = ΣLIE ∪ {s
+ : int→ int}.

This theory is axiomatized by the following set of axioms Ax(LIE):

1. Axioms of sort lists

a) cdr(cons(X, Y)) = Y

b) cons(X, Y) 6= nil

2. Axiom of sort int

a) car(cons(X, Y)) = X

b) len(cons(X, Y)) = s(len(Y))

c) len(nil) = 0

where X is a universally quantified variable of sort int, and Y is a universally quantified
variable of sort lists.

The set G0 consists of the empty clause ⊥ and the following schemas of literals

3. Schematic literals of sort lists

a) cons(i, a) = b ‖ const(i, a, b)

b) cdr(a) = b ‖ const(a, b)

c) a = b ‖ const(a, b)

d) a 6= b ‖ const(a, b)

4. Schematic literals of sort int

a) car(a) = i ‖ const(a, i)

b) len(a) = i ‖ const(a, i)

c) len(a) = s+(i) ‖ const(a, i)

d) i = s+(len(a)) ‖ const(a, i)

e) len(a) = s+(len(b)) ‖ const(a, b)

f) car(a) = s+(i) ‖ const(a, i)

g) i = s+(car(a)) ‖ const(a, i)

h) car(a) = s+(car(b)) ‖ const(a, b)

i) i1 = s+(i2) ‖ const(i1, i2)

j) i1 = i2 ‖ const(i1, i2)

k) i1 6= i2 ‖ const(i1, i2)

where a,b are constrained variables of sort lists, and i, i1, i2 are constrained variables of
sort int.

We choose an order > over the symbols of the signature Σ+
LIE that respects the fol-

lowing requirement: cons > cdr > c > len > car > i > s > s+ for every constant c of sort
lists, and every constant i of sort int. This order > is a TI − good order.

Lemma 6. The saturation of Ax(LIE)∪G0 by SUPCI consists of Ax(LIE), G0 and the
following schematic literals:

98

7.5. Theory of lists with integer elements

s+(i1) = s+(i2) ‖ const(i1, i2) (7.30)

i1 6= s+(i2) ‖ const(i1, i2) (7.31)

s+(i1) 6= s+(i2) ‖ const(i1, i2) (7.32)

a = cons(s+(i), b) ‖ const(a, i, b) (7.33)

s+(i) = s+(car(a)) ‖ const(i, a) (7.34)

car(a) = car(b) ‖ const(a, b) (7.35)

s+(car(a)) = s+(car(b)) ‖ const(a, b) (7.36)

s+(i) = s+(len(a)) ‖ const(i, a) (7.37)

len(a) = len(b) ‖ const(a, b) (7.38)

s+(len(a)) = s+(len(b)) ‖ const(a, b) (7.39)

Proof. The new schematic literals are generated by application of the Superposition rule
between two schematic literals in the initial set G0 as follows. Superposition between
(4.i) and a renamed copy of itself yields the new schematic literal (7.30). Superposition
between (4.k) and (4.i) yields the new schematic literal (7.31). Superposition between
(7.32) and (4.i) yields the new schematic literal (7.32). Superposition between (3.a) and
(4.i) yields the new schematic literal (7.33). Superposition between (4.f) and (4.h) yields
the new schematic literal (7.34). Superposition between (4.h) and a renamed copy of itself
yields two new schematic literals (7.35) and (7.36), and the schematic literal

car(a) = s+(s+(car(b))) ‖ const(a, b)

that becomes a renaming copy of (4.h) after application of the rules from Rs+ (defined in
Section 5.1), and is therefore eliminated by the Subsumption rule. Superposition between
(4.c) and (4.e) yields the new schematic literal (7.37). Superposition between (4.e) and a
renamed copy of itself yields two new schematic literal (7.38) and (7.39), and the schematic
literal

len(a) = s+(s+(len(b))) ‖ const(a, b)

that becomes a renaming copy of (4.e) after application of the rules from Rs+, and is
therefore eliminated by the Subsumption rule.

Let us now consider all the applications of the Superposition rule between an axiom
in Ax(LIE) and a schematic literal in G0. Superposition between (2.a) (resp. (1.a))
and (3.a) yields a renaming of (4.a) (resp. (3.b)) which is immediately removed by the
Subsumption rule. Superposition between (2.b) and (3.a) yields the new schematic literal

len(a) = s(len(b)) ‖ const(a, b)

which is immediately removed by applying the Schematic Deletion rule between it and
(4.e). Superposition between (1.b) and (3.a) yields an elementary instance of (3.d) that
is immediately eliminated by the Subsumption rule.

The set of axioms Ax(LIE) is saturated. Moreover, any other application of the Su-
perposition rule between two schematic literals or between an axiom and a schematic

99

Chapter 7. Experimentation

literal yields a schematic literal that is redundant with respect to G0 ∪ Ax(LIE) ∪
{(7.30), (7.31), (7.32), (7.33), (7.34), (7.35), (7.36), (7.37), (7.38), (7.39)}. Therefore, this set
of schematic literals is saturated.

From an encoding ofG0∪Ax(LIE) our tool generates the schematic saturation given in
Lemma 6. Moreover, the system traces show that the new schematic clauses are generated
as described in the lemma proof.

sup(label(4.i), label(4.i), i1, i1, []) gives s
+(i1) = s

+(i2) ‖ const(i1, i2)
sup(label(4.k), label(4.i), i1, i1, []) gives i1 6= s

+(i2) ‖ const(i1, i2)
sup(label(7.31), label(4.i), i1, i1, []) gives s

+(i1) 6= s
+(i2) ‖ const(i1, i2)

sup(label(3.a), label(4.i), i1, cons(i, a), cons([], a)) gives a = cons(s+(i), b) ‖ const(a, i, b)
sup(label(4.f), label(4.h), car(a), car(a), []) gives s

+(i) = s
+(car(a)) ‖ const(a, i)

sup(label(4.h), label(4.h), s+(car(b)), s+(car(b)), []) gives car(a) = car(b) ‖ const(a, b)
sup(label(4.h), label(4.h), car(a), car(a), []) gives s

+(car(a)) = s
+(car(b)) ‖ const(a, b)

sup(label(4.c), label(4.e), len(a), len(a), []) gives s
+(i) = s

+(len(a)) ‖ const(a, i)
sup(label(4.e), label(4.e), s+(len(b)), s+(len(b)), []) gives len(a) = len(b) ‖ const(a, b)
sup(label(4.e), label(4.e), len(a), len(a), []) gives s

+(len(a)) = s
+(len(b)) ‖ const(a, b)

7.6 Theory of records with increment

We consider the theory of records of length 3 (without extensionality) with increment
defined by the many-sorted signature ΣRII =

⋃3
i=1{rstorei : rec × int → rec, rselecti :

rec→ int, incr : rec→ rec, s : int→ int}. Let Σ+
RII = ΣRII ∪ {s

+ : int→ int}.
This theory is axiomatized by the following set of axioms Ax(RII):

1. Axioms for records

a) rselecti(rstorei(X, Y)) = Y for all i ∈ {1, 2, 3}

b) rselectj(rstorei(X, Y)) = rselectj(X, Y) for all i, j ∈ {1, 2, 3}, i 6= j

2. Axiom for the increment

a) rselecti(incr(X)) = s(rselecti(X)) for all i ∈ {1, 2, 3}

where X is a universally quantified variable of sort rec, and Y is a universally quantified
variable of sort int. The set G0 consists of the empty clause ⊥ and the following schemas
of literals:

3. Schematic literals of sort rec

a) b = rstorei(a, e) ‖ const(a, b, e)

b) b = incr(a) ‖ const(a, b)

c) a = b ‖ const(a, b)

d) a 6= b ‖ const(a, b)

4. Schematic literals of sort int

100

7.6. Theory of records with increment

a) e = rselecti(a) ‖ const(a, e)

b) rselecti(a) = s+(e) ‖ const(a, e)

c) rselecti(a) = s+(rselecti(b)) ‖ const(a, b)

d) e = s+(rselecti(a))‖const(a, e)

e) e1 = s+(e2) ‖ const(e1, e2)

f) e1 = e2 ‖ const(e1, e2)

g) e1 6= e2 ‖ const(e1, e2)

where a, b are constrained variables of sort rec, e, e1, e2 are constrained variables of sort
int, and i ∈ {1, 2, 3}.

We consider an LPO ordering > whose underlying precedence over the symbols of the
signature Σ+

RII satisfies the following requirements: for all i, j in {1, .., n} incr > rstorei,
rstorei > rselectj, rselecti > c for every constant c, and every constant c is such that
c > s > s+.

Lemma 7. The saturation of G0 ∪Ax(RII) by SUPCI consists of G0, Ax(RII) and the
following schematic literals, where i ∈ {1, 2, 3}:

s+(e1) = s+(e2) ‖ const(e1, e2) (7.40)

e1 6= s+(e2) ‖ const(e1, e2) (7.41)

s+(e1) 6= s+(e2) ‖ const(e1, e2) (7.42)

rselecti(a) = rselecti(b) ‖ const(a, b) (7.43)

s+(rselecti(a)) = s+(rselecti(b)) ‖ const(a, b) (7.44)

s+(e1) = s+(rselecti(a)) ‖ const(a, e1) (7.45)

rstorei(a, s
+(e)) = b ‖ const(a, b, e) (7.46)

Proof. The new schematic literals are generated by application of the Superposition rule
between two schematic literals in the initial set G0, as follows: Superposition between
(4.e) and the renamed copy of itself yields the new schematic literal (7.40). Superposition
between (4.g) and (4.e) yields the new schematic literal (7.41) that can be superposed
with (4.e) to generate the new schematic literal (7.42). Superposition between (4.c) and
its renamed copy yields two new schematic literals (7.43) and (7.44) for i ∈ {1, 2, 3},
and the schematic literals rselecti(a) = s+(s+(rselecti(b))) ‖ const(a, b) for i ∈ {1, 2, 3}
that become renaming copies of (4.c) after application of the rules from Rs+ (defined in
Section 5.1), and are therefore removed. Superposition between (4.c) and (4.b) yields the
new schematic literals (7.45) for i ∈ {1, 2, 3}. Superposition between (3.a) and (4.e) yields
the new schematic literals (7.46) for i ∈ {1, 2, 3}.

Let us now consider all the applications of the Superposition rule between an axiom in
Ax(RII) and a schematic literal in G0. For i ∈ {1, 2, 3}, Superposition between (1.a) and
(3.a) yields a renaming of (4.a), which is immediately removed by the Subsumption rule.
For i, j ∈ {1, 2, 3} with i 6= j, Superposition between (1.b) and (3.a) yields a renaming of
(7.43), which is immediately removed by the Subsumption rule.

101

Chapter 7. Experimentation

The set of axioms Ax(RII) is saturated. Moreover, any other application of Superpo-
sition rule between an axiom and a schematic literal, or between two schematic literals
yields a schematic literal that is redundant with respect to G0 ∪ Ax(RII) ∪ {(7.40),
(7.41), (7.42), (7.43), (7.44), (7.45), (7.46)}. Therefore, this set of schematic literals is
saturated.

From an encoding of G0 ∪Ax(RII) our tool generates the schematic saturation given
in Lemma 7 and provides the following trace in conformity with the proof of this lemma:

sup(label(4.e), label(4.e), e1, e1, []) gives s+(e1) = s+(e2) ‖ const(e1, e2)
sup(label(4.g), label(4.e), e1, e1, []) gives e1 6= s+(e2) ‖ const(e1, e2)
sup(label(7.41), label((4.e), e1, e1, []) gives s+(e1) 6= s+(e2) ‖ const(e1, e2)
sup(label(4.c), label(4.c), s+(rselecti(b)), s

+(rselecti(b)), []) gives
rselecti(a) = rselecti(b) ‖ const(a, b)

sup(label(4.c), label(4.c), rselecti(a), rselecti(a), []) gives
s+(rselecti(a)) = s+(rselecti(b)) ‖ const(a, b)

sup(label(4.c), label(4.b), rselecti(a), rselecti(a), []) gives
s+(e) = s+(rselecti(a)) ‖ const(a, e)

sup(label(3.a), label(4.e), e1, rstorei(a, e), rstorei(a, []),) gives
rstorei(a, s

+(e)) = b ‖ const(a, b, e)

7.7 Theory of possibly empty lists

The signature of the theory of possibly empty lists (PEL, for short, introduced in Sect. 4.4)
is composed of the binary function symbol cons, the unary function symbols car and cdr,
and the constant nil, denoting the empty list. This theory is axiomatized by the following
set Ax(PEL) of axioms:

car(cons(X,Y)) = X (7.47)

cdr(cons(X,Y)) = Y (7.48)

cons(X,Y) 6= nil (7.49)

cons(car(Y), cdr(Y)) = Y ∨ Y = nil (7.50)

car(nil) = nil (7.51)

cdr(nil) = nil (7.52)

where X, Y are universally quantified variables.
The set G0 consists of the empty clause ⊥ and the following constrained clauses:

x = y ‖ const(x, y) (7.53)

x 6= y ‖ const(x, y) (7.54)

car(x) = y ‖ const(x, y) (7.55)

cdr(x) = y ‖ const(x, y) (7.56)

cons(x, y) = z ‖ const(x, y, z) (7.57)

where x, y and z are constrained variables.

102

7.7. Theory of possibly empty lists

We choose an LPO ordering > over the terms, whose underlying precedence over the
symbols of the signature ΣPEL respects the following requirement: cons > cdr > car >

nil > c, where nil is a constant and c is any other constant than nil.

Lemma 8. The saturation of G0 ∪ Ax(PEL) by SPC consists of G0, Ax(PEL) and the
following constrained clauses:

car(x) = y ∨ z = nil ‖ const(x, y, z) (7.58)

cdr(x) = y ∨ z = nil ‖ const(x, y, z) (7.59)

cons(x, y) = z ∨ z = nil ‖ const(x, y, z) (7.60)

cons(x, cdr(y)) = z ∨ z = nil ‖ const(x, y, z) (7.61)

cons(car(x), y) = z ∨ z = nil ‖ const(x, y, z) (7.62)

car(x) = car(y) ∨ z = nil ‖ const(x, y, z) (7.63)

cdr(x) = cdr(y) ∨ z = nil ‖ const(x, y, z) (7.64)

cons(car(x), cdr(y)) = z ∨ z = nil ‖ const(x, y, z) (7.65)

Proof. The only rule that applies to the set of axioms is the Superposition rule. Superpo-
sition between (7.50) and (7.47) yields cons(x, cdr(cons(x, y))) = cons(x, y)∨ cons(x, y) =
nil, that is simplified by (7.48) to cons(x, y) = cons(x, y)∨ cons(x, y) = nil that is imme-
diately eliminated by the Tautology rule. Superposition between (7.47) and (7.50) yields
car(y) = car(y), y = nil, which is immediately eliminated by the Tautology rule. Simi-
larly, Superposition between (7.50) and (7.48) yields cons(car(cons(x, y)), y) = cons(x, y)∨
cons(x, y) = nil, that is simplified by (7.47) to cons(x, y) = cons(x, y) ∨ cons(x, y) = nil

that is immediately eliminated by the Tautology rule. Superposition between (7.48) and
(7.50) yields cdr(y) = cdr(y), y = nil, which gets deleted by the Tautology rule. Su-
perposition between (7.50) and (7.51) gives cons(nil, cdr(nil)) = nil ∨ nil = nil which is
eliminated by the Tautology rule. Similarly, Superposition between (7.50) and (7.52)
gives cons(car(nil), nil) = nil ∨ nil = nil which is also eliminated by the Tautology rule.

All the applications of the Superposition rule between two constrained clauses in G0

generate clauses that are redundant w.r.t. G0. Superposition between (7.55) (resp. (7.56)
or (7.57)) and (7.53) generates a renamed copy of (7.55) (resp. (7.56) or (7.57)) that is
immediately subsumed by the Subsumption rule. The application of the Reflection rule
generates an empty clause which is already in G0. The Eq. Factoring rule does not apply
to the unitary clauses in G0. Thus, the set G0 is saturated.

Let us now consider all the applications of the Superposition rule between an axiom and
a constrained clause. Superposition between (7.50) and (7.55) yields a new constrained
clause

cons(y, cdr(x)) = x ∨ x = nil ‖ const(x, y) (7.66)

Superposition between (7.47) and (7.66) yields a new constrained clause

car(x) = y ∨ x = nil ‖ const(x, y) (7.67)

that can be superposed with (7.53) to generate the new constrained clause (7.58). Su-
perposition between (7.50) and (7.56) yields a new constrained clause

cons(car(x), y) = y ∨ y = nil ‖ const(x, y) (7.68)

103

Chapter 7. Experimentation

Superposition between (7.48) and (7.68) yields a new constrained clause

cdr(x) = y ∨ x = nil ‖ const(x, y) (7.69)

that can be superposed with (7.53) to generate the new constrained clause (7.59). Super-
position between (7.66) and (7.56) yields the new constrained clause (7.60). Superposition
between (7.66) and (7.53) yields the new constrained clause (7.61). Superposition between
(7.68) and (7.53) yields the new constrained clause (7.62). Superposition between (7.47)
and (7.62) gives a constrained clause

car(x) = car(y) ∨ x = nil ‖ const(x, y) (7.70)

Superposition between (7.50) and (7.70) gives a constrained clause

cons(car(x), cdr(y)) = y ∨ y = nil ‖ const(x, y) (7.71)

whose superposition with (7.53) generates the new constrained clause (7.65) that sub-
sumes (7.71). Superposition between (7.70) its renamed copy produces the new con-
strained clause (7.63) that subsumes (7.70). Superposition between (7.48) and (7.61)
gives a constrained clause

cdr(x) = cdr(y) ∨ x = nil ‖ const(x, y) (7.72)

whose superposition with its renamed copy generates the new constrained clause (7.64)
that subsumes (7.72). Superposition between (7.50) and (7.65) gives a constrained clause
x = y ∨ y = nil ‖ const(x, y) that is eliminated by the Schematic Deletion rule. Super-
position between (7.50) and (7.58) gives a constrained clause cons(x, cdr(y)) = y ∨ y =
nil ∨ x = nil ‖ const(x, y) that is eliminated by Schematic Deletion. Similarly, Super-
position between (7.50) and (7.59) gives a constrained clause cons(car(x), y) = y ∨ x =
nil ∨ y = nil ‖ const(x, y) that is also eliminated by Schematic Deletion. Superposition
between (7.63) (resp. (7.62), (7.65)) and (7.51) generates an elementary instance of (7.58)
(resp. (7.60), (7.61)). Similarly, Superposition between (7.64) (resp. (7.61), (7.65)) and
(7.52) yields an elementary instance of (7.59) (resp. (7.60), (7.61)). All these instances are
eliminated by Subsumption. Superposition between (7.58) and (7.51) and between (7.59)
and (7.52) gives clauses that are composed of equalities between constrained variables and
constants, that are deleted by the Schematic Deletion rule. All the possible applications
of the Superposition rule between new generated clauses give clauses that are redundant
with respect to the set Ax(PEL)∪G0∪{(7.58), (7.59), (7.60), (7.61), (7.62), (7.63), (7.64),
(7.65)}. The Eq. Factoring rule cannot be applied to this set because there is no clause
satisfying the side condition of that rule. Therefore, we can conclude that the obtained
set is saturated.

Lemma 8 is consistent with the termination proof in [ABRS09] for any concrete sat-
uration by PC, but one can remark that descriptions of saturations slightly differ. For
example, clauses of the form car(e1) = e2 ∨

∨n

i=1 ci = di with n ≥ 1 generated by
PC [ABRS09] correspond to the constrained clause car(x) = y ∨ z = nil ‖ const(x, y, z)
generated by SPC.

104

7.8. Theory of arrays

From an encoding of G0 ∪Ax(PEL) our tool generates the schematic saturation given
in Lemma 8. Moreover, the system traces show how the new constrained clauses are
generated:

sup(
sup(
label(7.47),
sup(label(7.50), label(7.55), car(x), cons(car(Y), cdr(Y)), cons([], cdr(Y))),
cons(y, cdr(x)), car(cons(X,Y)), car([])

), label(7.53), x, car(x), car([])
) gives clause((car(x) = y, z = nil)) ‖ const(x, y, z)
sup(
sup(
label(7.48),
sup(label(7.50), label(7.56), cdr(x), cons(car(Y), cdr(Y)), cons(car(Y), [])),
cons(car(x), y), cdr(cons(X,Y)), cdr([])

), label(7.53), x, cdr(x), cdr([])
) gives clause((cdr(x) = y, z = nil)) ‖ const(x, y, z)
sup(
sup(label(7.50), label(7.55), car(x), cons(car(Y), cdr(Y)), cons([], cdr(Y))),
label(7.56), cdr(x), cons(y, cdr(x)), cons(y, [])

) gives clause((cons(x, y) = z, z = nil)) ‖ const(x, y, z)
sup(
sup(label(7.50), label(7.55), car(x), cons(car(Y), cdr(Y)), cons([], cdr(Y))),
label(7.53), x, cons(y, cdr(x)), cons(y, cdr([]))

) gives clause((cons(x, cdr(y)) = z, z = nil)) ‖ const(x, y, z)
sup(
sup(label(7.50), label(7.56), cdr(x), cons(car(Y), cdr(Y)), cons(car(Y), [])),
label(7.53), x, cons(car(x), y), cons(car([]), y))

) gives clause((cons(car(x), y) = z, z = nil)) ‖ const(x, y, z)

sup(sup((7.47), (7.62), cons(car(x), y), car(cons(X,Y)), car([])),
sup((7.47), (7.62), cons(car(x), y), car(cons(X,Y)), car([]))

) gives clause((car(x) = car(y), z = nil)) ‖ const(x, y, z)
sup(sup((7.48), (7.61), cons(x, cdr(y)), cdr(cons(X,Y)), cdr([])),
sup((7.48), (7.61), cons(x, cdr(y)), cdr(cons(X,Y)), cdr([]))

) gives clause(cdr(x) = cdr(y)z = nil) ‖ const(x, y, z)
sup(
sup(
label(7.50),
sup(label(7.47), label(7.62), cons(car(x), y), car(cons(X,Y)), car([])),
car(x), cons(car(Y), cdr(Y)), cons([], cdr(Y))

), label(7.53), x, cons(car(x), cdr(y)), cons(car(x), cdr([]))
) gives clause((cons(car(x), cdr(y)) = z, z = nil)) ‖ const(x, y, z)

7.8 Theory of arrays

The many-sorted signature ΣA of the theory of arrays is the set of function symbols
{select : array× index→ elem, store : array× index× elem→ array}.

105

Chapter 7. Experimentation

This theory is axiomatized by the following set Ax(A) of axioms

select(store(V, I, E), I) = E (7.73)

select(store(V, I, E), J) = select(V, J) ∨ I = J (7.74)

where V is a universally quantified variable of sort array, I, J are universally quantified
variables of sort index, and E is a universally quantified variable of sort elem.

The set G0 consists of the empty clause ⊥ and the following constrained clauses over
the signature ΣA:

1. Sort array

a) store(a1, i, e) = a2 ‖ const(a1, i, e, a2)

b) a1 = a2 ‖ const(a1, a2)

c) a1 6= a2 ‖ const(a1, a2)

2. Sort index

a) i1 = i2 ‖ const(i1, i2)

b) i1 6= i2 ‖ const(i1, i2)

3. Sort elem

a) select(a, i) = e ‖ const(a, i, e)

b) e1 = e2 ‖ const(e1, e2)

c) e1 6= e2 ‖ const(e1, e2)

where a, a1, a2 are constrained variables of sort array, i, i1, i2 are constrained variables
of sort index, and e, e1, e2 are constrained variables of sort elem.

The LPO ordering > is used with the following requirement: store > select > a > e > i

for all constants a of sort array, e of sort elem and i of sort index.

Lemma 9. The saturation of G0∪Ax(A) by SPC consists of G0, Ax(A) and the following
constrained clauses:

select(a1, I) = select(a2, I) ∨ i = I ‖ const(a1, a2, i) (7.75)

select(a, i) = e ∨ i1 = i2 ‖ const(a, i, e, i1, i2) (7.76)

where I is a universally quantified variable of sort index.

Proof. The only rule that applies to the set of axioms is the Superposition rule. This
application between two axioms generates select(A, J) = E ∨ J = J that is immediately
eliminated by the Tautology rule. Thus, the set of axioms Ax(A) is saturated.

All the applications of the Superposition rule between two constrained clauses in G0

generate clauses that are redundant w.r.t. G0. Superposition between (1.a) and (1.b)
(resp. ((2.a) or 3.b)) yields a renamed copy of (1.a) which is subsumed by the Subsumption
rule. Similarly, Superposition between (3.a) and (1.b) (resp. (2.a)) yields a renamed copy
of (1.a) which gets subsumed by the Subsumption rule. The application of the Reflection

106

7.9. Theory of recursive data structures

rule generates the empty clause which is already in G0. The Eq. Factoring rule does not
apply to the unitary clauses in G0. Thus, the set G0 is also saturated.

Let us now consider all the applications of the Superposition rule between an axiom
and a constrained clause. Superposition between (7.73) and (1.a) yields a renamed copy
of (3.a), which is immediately removed by the Subsumption rule. Superposition between
(7.74) and (1.a) yields the new constrained clause (7.75). Superposition between (7.75) and
its renamed copy yields select(a1, I) = select(a2, I)∨ i1 = I ∨ i2 = J ‖ const(a1, a2, i1, i2),
which is removed by the Schematic Deletion rule. Superposition between (7.75) and
(3.a) yields select(a1, j) = e ∨ i = j ‖ const(a1, e, i, j), which can be superposed with
(2.a) to generate the new constrained clause (7.76). Superposition between (7.76) and
its renamed copy yields e1 = e2 ∨ i1 = i2 ‖ const(e1, e2, i1, i2), removed by Schematic
Deletion. Superposition between any axiom and (1.b), (3.b) or (2.a) yields constrained
clauses that are redundant w.r.t. G0 ∪Ax(A) ∪ {(7.75), (7.76)}. Similarly, Superposition
between any new constrained clause and (1.b), (3.b) or (2.a) generates constrained clauses
that are also redundant w.r.t. G0 ∪ Ax(A) ∪ {(7.75), (7.76)}. Since no other rule can be
applied to this set, we conclude that it is saturated.

We can observe that the schematic saturation computed by SPC corresponds to the
description given in [ABRS09] for any concrete saturation computed by PC.

From an encoding of G0 ∪ Ax(A) our tool generates the schematic saturation given
in Lemma 9. Moreover, the system traces show that the new constrained clauses are
generated by the Superposition rule as follows:

sup((7.74), (1.a), store(a1, i, e), select(store(V, I, E), J), select([], J))
gives clause(select(a1, I) = select(a2, I), i = I) ‖ const(a1, a2, i)

sup(sup((3.a), (7.75), select(a1, I), select(a, i), []), (2.a), i1, select(a1, i), select(a1, []))
gives clause(select(a, i) = e, i1 = i2) ‖ const(a, i, e, i1, i2)

7.9 Theory of recursive data structures

We consider here the unsorted theory of recursively-defined data structures [LM02] of
length 3 given by the signature ΣRDS =

⋃3
i=1{seli} ∪ {injc} and axiomatized by the

following set Ax(RDS) of axioms:

sel1(injc(X1, X2, X3)) = X1 (7.77)

sel2(injc(X1, X2, X3)) = X2 (7.78)

sel3(injc(X1, X2, X3)) = X3 (7.79)

injc(X1, X2, X3) 6= injc(X1, X2, X3), X1 = Y1 (7.80)

injc(X1, X2, X3) 6= injc(X1, X2, X3), X2 = Y2 (7.81)

injc(X1, X2, X3) 6= injc(X1, X2, X3), X3 = Y3 (7.82)

where X1, X2, X3, Y1, Y2, Y3 are universally quantified variables.
Let G0 be the set composed of the empty clause ⊥ and the following constrained

clauses:

107

Chapter 7. Experimentation

x = y ‖ const(x, y) (7.83)

x 6= y ‖ const(x, y) (7.84)

sel1(x) = y ‖ const(x, y) (7.85)

sel2(x) = y ‖ const(x, y) (7.86)

sel3(x) = y ‖ const(x, y) (7.87)

injc(x, y, z) = w ‖ const(x, y, z, w) (7.88)

where x, y, z, w are constrained variables.
The LPO ordering > is used with the following requirement: seli > injc > c for all

i ∈ {1, 2, 3} and for every constant c.

Lemma 10. The saturation of G0∪Ax(RDS) by SPC consists of G0, Ax(RDS) and the
following constrained clauses:

injc(X1, X2, X3) 6= x, y = X1 ‖ const(x, y) (7.89)

injc(X1, X2, X3) 6= x, y = X2 ‖ const(x, y) (7.90)

injc(X1, X2, X3) 6= x, y = X3 ‖ const(x, y) (7.91)

Proof. The set of axioms Ax(RDS) is saturated. The set G0 is also saturated.
Let us now consider all the applications of the Superposition rule between an axiom and

a constrained clause. Superposition between (7.77) and (7.88) yields a renaming copy of
(7.85), which is immediately removed by the Subsumption rule. Similarly, Superposition
between (7.78) and (7.88) and between (7.79) and (7.88) yields respectively renaming
copies of (7.86) and (7.87). Superposition between (7.80) and (7.88) yields (7.89) that can
be superposed with (7.88) to generate

w 6= x ∨ y = z ‖ const(x, y, z, w) (7.92)

But this clause is immediately removed by the Schematic Deletion rule. Superposition
between (7.81) and (7.88) yields (7.90) whose superposition with (7.88) generates a new
clause (7.92) that is immediately eliminated by the Schematic Deletion rule. Similarly,
Superposition between (7.82) and (7.88) yields (7.91) whose superposition with (7.88)
gives (7.92) that is immediately removed by the Schematic Deletion rule.

Since no other rule can be applied to the set G0 ∪Ax(RDS)∪{(7.89), (7.90), (7.91)},
we conclude that it is saturated.

From an encoding of G0∪Ax(RDS) our tool generates the schematic saturation given
in Lemma 10. Moreover, the system traces show that the new constrained clauses are
generated by the Superposition rule as follows:

sup(label(7.80), label(7.88), injc(x, y, z), injc(X1, X2, X3), []) gives
clause((injc(X1, X2, X3) 6= x, y = X1))‖const(x, y)

sup(label(7.81), label(7.88), injc(x, y, z), injc(X1, X2, X3), []) gives
clause((injc(X1, X2, X3) 6= x, y = X2))‖const(x, y)

sup(label(7.82), label(7.88), injc(x, y, z), injc(X1, X2, X3), []) gives
clause((injc(X1, X2, X3) 6= x, y = X3))‖const(x, y)

108

7.10. Combinability

Theory Reference Conformity
1 Lists without extensionality [LM02] X

2 Lists with extensionality [LRRT11] ×
3 Records [ABRS09] X

4 Lists with length [NRR09c] X

5 Lists with integer elements [NRR09c] X

6 Records with increment [NRR09c] X

7 Possibly empty lists [ABRS09] X

8 Arrays [ABRS09] X

9 Recursive data structure [LRRT11] X

Figure 7.1: Experimental results

7.10 Combinability

This experimentation has handled theories for lists, records, arrays and recursive data
structure. We have considered two classes of theories:

1. The first one uses standard schematic paramodulation calculus. These are the clas-
sical theories such as the theory of lists with and without extensionality, the theory
of records without extensionality, the theory of possibly empty lists, the theory of
arrays and the theory of recursive data structures.

2. The second one uses schematic paramodulation calculus modulo Integer Offsets.
These are the theory of lists with length, the theory of lists with integer element
and the theory of records with increment.

In [ARR03, LM02, ABRS09] we can find pen-and-paper proofs that any saturation of the
theories of the first class is finite with respect to PC. Our implementation of schematic
paramodulation provides mechanical proofs of these results. After computing a finite
schematic saturation for all these theories, our tool automatically checks that it does not
contain any variable-active clause. According to Theorem 10, we can conclude that all
these theories are combinable with PC. In [NRR09c] we can find proofs that any saturation
of the theories of the second class is finite with respect to UPCI . Our implementation
of schematic paramodulation modulo Integer Offsets provides mechanical proofs of these
results. After computing a finite schematic saturation for all these theories, our tool
automatically checks that this saturation is safe. According to Theorem 15, we can
conclude that all these theories are combinable with PC.

7.11 Summary

This chapter has presented our experimental results. We have tested nine theories for
which paramodulation is known to terminate. In Figure 7.1 the reader can see that for
eight out of nine considered theories our tool has automatically proved that the results

109

Chapter 7. Experimentation

given in the literature are correct. More surprisingly, for the theory of lists with extension-
ality (Section 7.2), our implementation reveals that the saturation given in [LRRT11] is
incomplete. One can notice that we have only considered the theory of records of length 3.
In fact, the schematic paramodulation calculus considers only finite set G0 schematizing
any set of ground flat literals built over the signature. But of course the length can be
increased.

110

Chapter 8

Modular specification of generic Java

methods and classes

Contents

8.1 Overview of Krakatoa Modeling Language (KML) 112

8.1.1 Basic standard features . 113

8.1.2 Logical specifications . 114

8.2 Specification of a sorting algorithm 116

8.2.1 Selection sort in Java . 116

8.2.2 Sorting algorithm with a KML specification 117

8.2.3 Specifying the sorting algorithm by selection with a bag 120

8.3 Generic sorting . 124

8.3.1 Generic sorting in Java . 124

8.3.2 Type parameters: the permutation property 125

8.3.3 Theory parameters: the sorting property 126

8.3.4 Theory instantiation . 126

8.3.5 Verification conditions for soundness 127

8.4 Generic hashmaps . 129

8.4.1 Specification of the Fibonacci sequence 130

8.4.2 Theories for hashable objects and hash maps 130

8.4.3 Instantiating generic hash maps 132

8.4.4 Verification conditions for soundness 133

8.5 Summary . 134

The work presented in this chapter has been done in the framework of the INRIA
CeProMi2 “Action de Recherche Collaborative” (ARC). One of the objectives of the ARC

2http://www.lri.fr/cepromi

111

Chapter 8. Modular specification of generic Java methods and classes

is modular specification and proof of properties of Java or C programs. A well conceived
program is developed in a modular way, that is by the structured assembly of simpler
components. The goal is also to get modularity to prove modular programs.

A specification language is a formal language used in computer science during require-
ment analysis and system design. Most programming languages are directly executable
formal languages. They are used to implement a system. Specification languages are
generally not directly executed. They describe the system at a much higher level than
a programming language. There are many specification languages like CASL [ABK+02],
JML [BCC+05, LC06], Spec# [LP08], Z [Spi92], B [Abr05], etc.

Some members of the ARC project develop a specification language for Java programs
called the Krakatoa Modeling Language (KML). The main features of this language are
presented in Section 8.1. The question of automaticity of algorithm proofs is addressed
in Section 8.2 through the typical example of a sorting algorithm.

A new feature introduced in Java 5 is genericity. Generics enable types (classes and
interfaces) to be parameters when defining classes, interfaces and methods. Type parame-
ters provide a way to re-use the same code with different inputs. This notion is supported
neither by upstream JML (Java Modeling Language) nor KML. Supporting genericity
naturally requires adding type parameters to specifications, but not only: More complex
issues arise when one tries to formally specify generic programs. The last two sections
address the question of modular specification of generic Java classes and methods. They
propose extensions of the KML language to allow specifications of these generic classes
and methods, which essentially amount to

• add type parametricity in that specification language;

• add a notion of instantiation of theories used to model programs.

Our proposal is illustrated by two examples. The former is the specification of an
algorithm to sort a Java array. It is presented in Section 8.3. The latter is the specification
of the java.util.HashMap class and its use for memoization. It is presented in Section 8.4.

8.1 Overview of Krakatoa Modeling Language (KML)

This section describes a specification language for the Java programming language, named
Krakatoa Modeling Language (KML). KML is a new specification language for Java pro-
grams. It is designed to reduce the distance between programming and proving activities.

Why is a generic platform for program verification [FM07]. From a source program
annotated by definite specifications, the Why platform extracts the proof obligations and
transmits them to provers like Simplify, Yices, Alt-Ergo, etc. The Krakatoa tool is a
part of the Why platform. Krakatoa expects a Java source file as input, annotated with
the Krakatoa Modeling Language. KML is largely inspired from JML. KML specifica-
tions are given as annotations in the source code, in a special style of comments after
//@ ... or between /*@ and @*/. KML also shares many features with the ANSI/ISO
C Specification Language [BFM+09].

112

8.1. Overview of Krakatoa Modeling Language (KML)

8.1.1 Basic standard features

Method contracts

Method contracts are made of a precondition and a set of behaviors. The precondition
is a proposition introduced by requires keyword which is supposed to hold in the pre-
state of the method, i.e. when it is called. It must be checked valid by the caller.

A normal behavior has the form:

/*@ requires R;

@ behavior b:

@ assumes A;

@ assigns L;

@ ensures E;

@*/

where R and E are logical assertions, R is a precondition and E is a postcondition, L is a set
of memory locations, that may be modified by the method. In E, the notation \result

denotes the returned value. The semantics of such a behavior is the following: The callee
guarantees that if it returns normally, then in the post-state:

• \old(A) ⇒ E holds

• If \old(A) holds, each location of the pre-state not in L remains allocated and
unchanged in the post-state

where \old(A) denotes the value of A in the pre-state. An exceptional behavior has the
form

/*@ requires R;

@ behavior b:

@ assumes A;

@ assigns L;

@ signals (Exc x) E;

@*/

The semantics is similar to normal behaviors, but here properties must hold when the
method terminates abruptly with exception of class Exc.

Statement annotations

A loop annotation can be given just in front of a loop construct (while, for, etc.). It is
of the form:

/*@ loop_invariant I

@ for b: loop_invariant Ib;

@ loop_variant V;

@*/

113

Chapter 8. Modular specification of generic Java methods and classes

It states that I is an inductive invariant: it must hold at loop entry and be preserved by
any iteration of the loop body. The loop invariant Ib must also be an inductive invariant,
but under assumes A of behavior b. The loop variant, if given, must be an expression of
integer type, which must decrease at each loop iteration, and remain non-negative.

Class invariants

A class invariant is a property attached to a class. It is of the form:

/*@ invariant id: e; @*/

This property must be established by constructors, and preserved by each method of
the class.

8.1.2 Logical specifications

Logic functions and predicates

KML does not allow pure methods to be used in annotations. However, it permits to
declare new logic functions and predicates. They must be placed at the global level, i.e.
outside any class declaration, and are respectively of the form

//@ logic m id(m1 x1, .. , mn xn) = e;

and

//@ predicate id(m1 x1, .. , mn xn) = p;

where x1, . . . , xn are variables, e must have type m, and p must be a proposition. The
types m and mi can be either Java types or purely logic types, such as integer or real.

Logic functions and predicates can also be hybrid. It means that they depend on some
memory state. More generally, they can depend on several memory states, by attaching
several labels to them. A hybrid function and a predicate definition are of the following
general form

//@ logic m id{L1, .. , Ln}(m1 x1, .. , mn xn) = e;

//@ predicate id{L1, .. , Ln}(m1 x1, .. , mn xn) = p;

where L1, . . . , Ln are memory state labels on which the predicate or function depends,
and m, m1, ... , mn, e, p have the same definition as presented before.

Lemmas

Lemmas are user-given propositions, a facility that might help theorem provers to establish
the validity of KML specifications. A lemma is declared as

//@ lemma id: p;

Obviously, a complete verification of a KML specification must provide a proof for
each lemma.

114

8.1. Overview of Krakatoa Modeling Language (KML)

Inductive definitions

A predicate may also be defined by an inductive definition

/*@ inductive P(x1, . . . , xn) {

@ case c1 : p1;

@ . . .
@ case cn : pn;

@ }

@*/

where c1, . . . , cn are identifiers and p1, . . . , pn are propositions. The semantics of this
definition is that P is the least fixpoint of the cases, i.e. the smallest predicate (in the
sense that it is false the most often) satisfying the propositions p1, . . . , pn. To ensure
existence of a least fixpoint, each of these propositions is required to be of the form

\forall y1, . . . , ym, h1 ==> . . . ==> hl ==> P(t1, . . . , tn)

where P occurs only positively in hypotheses h1, . . . , hl.

Theories

Logical specifications were supported by Krakatoa/Why under the form of axiomatic
blocks in Java source files within specification comments by declaring a set of types, a set
of predicates and functions with expected profiles, and a set of axioms. Now it is defined
in a separated file with the “.spec” extension. The syntax for defining a theory is the
same as for an axiomatic block but without comments, as in the following example:

theory Th {

type new_type;

logic new_type func1;

logic integer func2(new_type v, integer k);

axiom axiom_name: axiom_body;

}

where Th is the theory name, and axiom_body is a closed formula.
Unlike inductive definitions, there is no syntactic conditions which would guarantee

axiomatic definitions to be consistent. It is usually up to the user to ensure that the
introduction of axioms does not lead to a logical inconsistency.

Construct \at and default logic labels

The construct \at(e, L) refers to the value of the expression e in the program state at label
L. There exist predefined labels, e.g. Old and Here. \old(e) is in fact syntactic sugar for
\at(e, Old). The label Here is visible in all statement annotations, where it refers to the
state where the annotation appears. It refers to the pre-state in a method precondition
(requires clause), and to the post-state in a method postcondition (ensures clause).
The label Old is visible in ensures clauses and refers to the pre-state of the method’s
contract.

115

Chapter 8. Modular specification of generic Java methods and classes

More details about KML notions could be found in [Mar09].
In this section we have shortly described the Krakatoa Modeling Language. In the

next section this specification language is used to prove a sorting algorithm.

8.2 Specification of a sorting algorithm

A sorting algorithm is an algorithm that puts elements of an array in a certain order. The
resulting array must satisfy the following two properties:

1. The elements are in increasing order with respect to some ordering relation.

2. The elements in the sorted array are a permutation of the elements of the initial
array.

In [FM99] several algorithms for sorting have been studies. The authors specify and
prove them correct within the Why tool, but only on the particular instance of an array
of integers and the usual “less-than” order. The first condition is specified by a predicate
(sorted t i j) which expresses that array t is sorted in increasing order between the
bounds i and j. The second condition is specified by a predicate (permut t tt) where
t and tt are permutations of each other. They describe many ways to define such a
predicate, but the best solution is to express that the set of permutations is the smallest
equivalence relation containing the transpositions, i.e. exchanges of two elements. The
predicate (exchange t tt i j) is defined for two arrays t and tt and two indexes i and
j, and the predicate (permut t tt) is defined inductively for the following properties:
reflexivity, symmetry and transitivity. The proofs are performed within the Coq proof
assistant [TCDT06].

A selection sorting algorithm is written in Java by Marché [Mar09] with a similar
specification in KML. It is also specific to integers and the usual less-than order. The
proof is done fully automatically within SMT solvers (namely Simplify and Alt-Ergo
provers).

Our proposal is to re-use the bag datatype defined in [Mar07] and to rewrite the second
condition by saying that the initial array and the resulting array have the same content.

This section is organized as follows: Section 8.2.1 presents the sorting algorithm by
selection in Java, Section 8.2.2 presents this algorithm completed with a specification in
KML. In Section 8.2.3 we specify the array content with a bag and discusses whether it
can be proved automatically

try to prove the sorting algorithm automatically.

8.2.1 Selection sort in Java

The sorting algorithm by selection in Figure 8.1 is written in Java. There are two
methods: the swap method just exchanges two array elements of given indexes. In the
selectionSort method the integers i and mi are indexes for the current element and the
minimal element respectively. The integer mv serves to store this minimal element. The

116

8.2. Specification of a sorting algorithm

1. class Sort {

2. /** method swapping 2 elements */

3. void swap(int t[], int i, int j) {

4. int tmp = t[i];

5. t[i] = t[j];

6. t[j] = tmp;

7. }

9. void selectionSort(int t[]) {

10. int i, j;

11. int mi, mv;

12. for (i = 0; i < t.length - 1; i++) {

13. mv = t[i];

14. mi = i;

15. for (j = i + 1; j < t.length; j++) {

16. if (t[j] < mv) {

17. mi = j;

18. mv = t[j];

19. }

20. }

21. swap(t, i, mi);

22. }

23. }

24.}

Figure 8.1: Selection sort in Java

minimal element is found in the remainder of the array and swapped with the current
element.

This algorithm can be tested with different array examples, but it is not sure that it is
always correct, i.e. it satisfies properties 1 and 2 described above for any array. A formal
specification of these two properties constitutes the first step towards a formal proof of
its correctness.

8.2.2 Sorting algorithm with a KML specification

In [Mar09] two postconditions for the method selectionSort are proved:

behavior sorts:

ensures Sorted(t,0,t.length-1);

which means that the resulting array is in increasing order, and

behavior permuts:

ensures Permut{Old,Here}(t,0,t.length-1);

which means that the resulting array is a permutation of the initial array.

117

Chapter 8. Modular specification of generic Java methods and classes

predicate Sorted{L}(int a[], integer l, integer h) =

\forall integer i; l <= i < h ==> \at(a[i] <= a[i+1], L) ;

Figure 8.2: Specification of the first property

inductive Permut{L1,L2}(int a[], integer l, integer h) {

case Permut_refl{L}:

\forall int a[], integer l h; Permut{L,L}(a, l, h) ;

case Permut_sym{L1,L2}:

\forall int a[], integer l h;

Permut{L1,L2}(a, l, h) ==> Permut{L2,L1}(a, l, h) ;

case Permut_trans{L1,L2,L3}:

\forall int a[], integer l h;

Permut{L1,L2}(a, l, h) && Permut{L2,L3}(a, l, h) ==> Permut{L1,L3}(a, l, h) ;

case Permut_swap{L1,L2}:

\forall int a[], integer l h i j;

l <= i <= h && l <= j <= h &&

Swap{L1,L2}(a, i, j) ==> Permut{L1,L2}(a, l, h) ;

}

Figure 8.3: Inductive predicate Permut

predicate Swap{L1,L2}(int a[], integer i, integer j) =

\at(a[i],L1) == \at(a[j],L2) &&

\at(a[j],L1) == \at(a[i],L2) &&

\forall integer k; k != i && k != j ==>

\at(a[k],L1) == \at(a[k],L2);

Figure 8.4: Predicate Swap

The Sorted predicate is presented in Figure 8.2. It is a hybrid predicate. It means
that its value depends on the memory heap in some state L.

The Permut predicate presented in Figure 8.3 has two labels. This predicate is true
whenever the slice of the array a from lower bound l to upper bound h in the state L1

is a permutation of the same slice in the state L2. The predicate defines four properties:
reflexivity, symmetry, transitivity and swap. The last case tells us that swapping two
elements in the slice is a permutation.

The Swap predicate is reproduced in Figure 8.4. Swap{L1,L2}(a,i,j) is true if and
only if the value of a[i] in the state of label L2 equals the value of a[j] in the state of
label L1, the value of a[j] in the state of label L2 equals the value of a[i] in the state of
label L1, and the value of a[k] is the same in both states, if k is different from i and j.

118

8.2. Specification of a sorting algorithm

/*@ loop_invariant 0 <= i;

@ for sorts:

@ loop_invariant Sorted(t,0,i) &&

@ (\forall integer k1 k2 ;

@ 0 <= k1 < i <= k2 < t.length ==> t[k1] <= t[k2]);

@ for permuts:

@ loop_invariant

@ Permut{Pre,Here}(t,0,t.length−1);
@*/

for (i = 0; i < t.length−1; i++) {

mv = t[i];

mi = i;

/*@ loop_invariant

@ i < j &&

@ i <= mi < t.length &&

@ mv == t[mi];

@ for sorts:

@ loop_invariant

@ (\forall integer k; i <= k < j ==> t[k] >= mv);

@ for permuts:

@ loop_invariant

@ Permut{Pre,Here}(t,0,t.length−1);
@*/

for (j = i + 1; j < t.length; j++) {

...

}

...

}

Figure 8.5: Loop invariants

Figure 8.5 presents two loop invariants for the two loops in Figure 8.1. The loop
invariants for the sorts behavior tell that the array is sorted up to index i in the external
loop and that mv is a minimal element between a[i] and a[j] in the internal loop. The
loop invariant for the permuts behavior is the same for the external and internal loops.
It tells that the current array is a permutation of the initial array.

The algorithm with this specification is proved within the Simplify prover, except the
postcondition for the selectionSort method which tells that the resulting array is a
permutation of the initial array. This postcondition is proved within the Alt-Ergo prover.
So, this algorithm is proved within the Simplify and the Alt-Ergo provers.

The proof results are satisfactory. However, we want to explore another way for the
second property by re-using a bag datatype. More precisely, we try to prove the same
algorithm but with a property 2 saying that the initial array and the resulting array have
the same content.

119

Chapter 8. Modular specification of generic Java methods and classes

type ibag;

// empty bag

logic ibag empty_bag();

// singleton(n)

logic ibag singleton(integer n);

// remove element n from bag b

logic ibag remove(integer n, ibag b);

// union b1 and b2

logic ibag union(ibag b1, ibag b2);

Figure 8.6: Signature for bags

axiom union_assoc:

\forall ibag b1 b2 b3;

union(union(b1,b2),b3) == union(b1,union(b2,b3));

axiom union_comm:

\forall ibag b1 b2; union(b1,b2) == union(b2,b1);

axiom union_empty_id_left:

\forall ibag b; union(empty_bag(),b) == b;

axiom union_empty_id_right:

\forall ibag b; union(b,empty_bag()) == b;

axiom remove_union:

\forall ibag b, integer x;

remove(x,union(singleton(x),b)) == b;

Figure 8.7: Algebraic specification of bags

8.2.3 Specifying the sorting algorithm by selection with a bag

A bag (or multiset) is a collection without order. We want to associate with each array
the bag of its elements, and to express that the output array is a permutation of the
input array by writing that the corresponding bags are the same. It is a new way to prove
property 2.

The type of bags is described by the following functions on Figure 8.6 and the following
set of first-order axioms on Figure 8.7 that present some properties of bags. The first four
axioms tell that union is associative, commutative and that the empty_bag is a neutral
element for the union of bags. The last axiom establishes a relation between union and
remove. When an element is removed from the union of a bag b and the bag containing
only this element, the result is the bag b.

120

8.2. Specification of a sorting algorithm

logic ibag boundContent{L1}(int[] a,

integer i, integer j) reads a[i..j];

axiom emptyContent{L1}:

\forall int[] a; \forall integer i j;

(i > j ==> boundContent{L4}(a,i,j) == empty_bag());

axiom nonemptyContent{L1}:

\forall int[] a, integer i j;

i <= j ==> boundContent{L4}(a,i,j) ==

union(boundContent{L4}(a,i+1,j),singleton(a[i]));

Figure 8.8: Hybrid function for array content

boundContent{Old}(a,0,a.length-1) == boundContent{Here}(a,0,a.length-1);

Figure 8.9: Postcondition for selectionSort and swap methods

Figure 8.8 declares a hybrid function named boundContent which takes an array, a
lower and an upper bound as parameters and returns a bag. The KML reads keyword
says that boundContent just reads the array between i and j, it does not modify it.
The first axiom says that boundContent returns the empty bag if the lower bound is
greater than the upper bound. The second axiom says that, otherwise, the resulting bag
is the union of the singleton bag containing the first array element and the content of the
remaining part of the array.

It should be proved that the swap and selectionSort methods do not change the
content of the slice as shown in Figure 8.9.

This postcondition is proved for the selectionSort method, but is not proved for the
swap method. The selectionSort method depends on the swap method, therefore, it is
easy to prove, but proving the swap method requires induction because boundContent is
inductively defined. To prove the swap method we must guide provers step by step with
the following assertions which are presented in Figure 8.11.

The first assertion tells that the new content is obtained from the old content by
replacing the old value of a[i] by the value of a[j] in the old content. The second
assertion tells that the value of a[j] has not changed. Then the memory state between
states Old and Here is labelled Middle. The last assertion tells that the new content is
obtained from the previous content by removing the previous value of a[j] and adding
the value of the local variable tmp (which is the old value of a[i]).

Moreover, the following lemma presented in Figure 8.12 is added. It says that whenever
the elements of an array are the same at two states, except in some position k, then the
array content at the second state can be obtained from its content at the first state by
removing the element at position k in the first state and adding the element at position
k in the second state.

121

Chapter 8. Modular specification of generic Java methods and classes

Proof obligations Alt-Ergo Simplify Yices Z3 CVC3
0.8 1.5.4 1.0.21 2.2 2.1

Lemma − − − − −

P
O

s
fo

r
th

e
se

le
ct

io
n
S
or

t
m

et
h
o
d Loop invariants + + − + −

Postcondition presented + + + + −
in Figure 8.9

Postcondition using − + − − −
the Sorted predicate

Pointer dereferencing + + − + −

P
O

s
fo

r
th

e
sw

ap
m

et
h
o
d

Postcondition presented − + − − −
in Figure 8.9

PO for the assigns clause − + − + −

Postcondition using + + − + +
the Swap predicate

Pointer dereferencing + + − + +

Number of proved POs 5 8 1 6 2

Figure 8.10: Results

Figure 8.10 presents proof obligations (POs) proved by five provers: Alt-Ergo 0.8,
Simplify 1.5.4, Yices 1.0.21, Z3 2.2 and CVC3 2.1. There are nine POs: one PO for
the lemma, four POs for the selectionSort method and four POs for the swap method.
Since the lemma itself is not provable without induction it is proved by none of these
provers. All POs are proved by the Simplify prover. Unlike Simplify the SMT solvers
Alt-Ergo,Yices, Z3 and CVC3 fail to prove some of the POs.

As a conclusion, the sorting algorithm is proved for array elements with the int Java
type. Nevertheless, we would like to prove this algorithm for every Java type, that is as
a generic sorting algorithm. It is the matter of the next section.

122

8.2. Specification of a sorting algorithm

void swap(int a[], int i, int j) {

int tmp = a[i];

a[i] = a[j];

/*@ for cont: assert

@ boundContent{Here}(a,0,a.length−1) ==

@ union(remove(\at(a[i],Pre),

@ boundContent{Pre}(a,0,a.length−1)),
@ singleton(\at(a[j],Pre)));

@*/

/*@ for cont: assert

@ a[j] == \at(a[j],Pre);

@*/

Middle: {

a[j] = tmp;

/*@ for cont: assert

@ boundContent{Here}(a,0,a.length−1) ==

@ union(remove(\at(a[j],Middle),

@ boundContent{Middle}(a,0,a.length−1)),
@ singleton(tmp));

@*/

}

}

Figure 8.11: Assertions to guide provers step by step

lemma UpdateContent{L1,L2}:

\forall int[] a, integer i j k;

// update of a[k]

i <= k <= j &&

(\forall integer l;

i <= l <= j && k != l ==>

\at(a[l],L1) == \at(a[l],L2))

==> boundContent{L2}(a,i,j) ==

union(

remove(\at(a[k],L1),

boundContent{L1}(a,i,j)),

singleton(\at(a[k],L2)));

Figure 8.12: New lemma

123

Chapter 8. Modular specification of generic Java methods and classes

class Main {

public static void main(String[] args) {

IntLtComparator intc = new IntLtComparator();

Integer[] b = {new Integer(2),new Integer(1),new Integer(3)};

java.util.Arrays.sort(b,intc);

//@ assert b[0].value <= b[1].value;

}

}

Figure 8.13: A sample client code calling the generic sorting method

class IntLtComparator implements Comparator<Integer> {

public int compare(Integer x, Integer y) {

if (x.intValue() < y.intValue()) return −1;
if (x.intValue() == y.intValue()) return 0;

return 1;

}

}

Figure 8.14: The usual “less-than” comparator on integers

8.3 Generic sorting

Java generics are a language feature that allows definition and use of generic types and
methods. Generics are needed for implementing a generic class that can be instantiated
for a variety of types.

We want to specify a generic method for sorting arrays, where the array elements are
of any type T . A significant challenge is to specify the ordering relation which is given
as a parameter, under the form of a comparison function on T . As we will see, it is also
important to study how this generic specification can be used by client code, because it
has to be instantiated.

8.3.1 Generic sorting in Java

The class java.util.Arrays defines a generic sorting method with the profile:

public static <T> void sort(T[] a, Comparator<? super T> c)

In this method <T> is a type parameter and the syntax <? super T> denotes an unknown
type that is a supertype of T (or T itself). The java.util.Comparator<T> interface
imposes a total ordering on some collection of objects.

interface Comparator<T> {

public int compare(T x, T y);

}

T is the type of objects that may be compared by this comparator. The method compare

is expected to return a negative integer, zero, or a positive integer when the first argument

124

8.3. Generic sorting

predicate Swap<T>{L1,L2}(T a[], integer i, integer j) =

\at(a[i],L1) == \at(a[j],L2) &&

\at(a[j],L1) == \at(a[i],L2) &&

\forall integer k; k != i && k != j ==>

\at(a[k],L1) == \at(a[k],L2);

inductive Permut<T>{L1,L2}(T a[], integer l, integer h){

case Permut_refl{L}: \forall T a[], integer l h;

Permut<T>{L,L}(a, l, h);

case Permut_sym{L1,L2}: \forall T a[], integer l h;

Permut<T>{L1,L2}(a, l, h) ==>

Permut<T>{L2,L1}(a, l, h);

case Permut_trans{L1,L2,L3}:

\forall T a[], integer l h;

Permut<T>{L1,L2}(a, l, h) &&

Permut<T>{L2,L3}(a, l, h) ==>

Permut<T>{L1,L3}(a, l, h);

case Permut_swap{L1,L2}:

\forall T a[], integer l h i j;

l <= i <= h && l <= j <= h &&

Swap<T>{L1,L2}(a, i, j) ==>

Permut<T>{L1,L2}(a, l, h);

}

Figure 8.15: The permutation predicate

is respectively less than, equal to, or greater than the second one, for the desired ordering
relation.

The sample code given in Figure 8.13 illustrates an instance of use of this sort method.
It ends with a simple assertion which we expect to be able to prove, as a consequence of
the generic specification we will provide. The validity of this assertion indeed depends on
the comparator we choose. Here it is an instance of the class given in Figure 8.14, which
implements the usual “less-than” ordering on integers. Changing this comparator, say to
the “greater-than” ordering, would of course sort the array in decreasing order instead,
violating the assertion.

8.3.2 Type parameters: the permutation property

The first extension we propose to KML is to allow type parameters in algebraic specifica-
tions, as follows

/*@ predicate id〈T1, . . . , Tl〉{L1, . . . , Lk}(t1 x1, . . . , tn xn) = p;

@*/

and similarly for functions, inductive predicates, and such.
For the sorting example, and following [Mar09], we define a Permut〈T 〉{L1, L2}(a, l, h)

predicate which means that the part of array a between indexes l and h, in some program

125

Chapter 8. Modular specification of generic Java methods and classes

state L1 is a permutation of the same array part in state L2. It is defined inductively in
Figure 8.15. The first postcondition of the sort method is then specified below.

/*@ ensures Permut<V>{Old,Here}(a,0,a.length−1);
@*/

public static <V> void sort(V[] a, Comparator<? super V> cmp);

8.3.3 Theory parameters: the sorting property

The challenge is to specify the behavior of the comparator given as argument. What we
propose is to allow to pass theories as parameters. On the sorting example, the first step
is to define a general theory for types equipped with an ordering relation. Figure 8.16
shows a theory named ComparatorTheory which defines two predicates eq for equality
and lt for an arbitrary strict total order. Equality is reflexive, symmetric and transitive.
The strict total order satisfies four properties: irreflexivity, antisymmetry, totality and
transitivity.

The Comparator interface should take some comparison theory as a parameter. This
is shown in Figure 8.17. The Comparator interface thus has two parameters: a Java type
U and a theory Th. The syntax Th instantiating ComparatorTheory<U> says that Th

is an instance of the general theory defined in Figure 8.16. One may wonder why we
require an instance of the comparison theory ComparatorTheory: this will be discussed
in Section 8.3.4.

Figure 8.18 specifies the sorting property of the method sort with a second postcon-
dition. The sorting method is not only parameterized by the type V but also by the type
W which denotes the super type of V on which the comparator operates, and by a theory
th which can be any instance of the general ComparatorTheory on W. Notice the new as

keyword added to relate the anonymous Java type denoted by ? and the explicit name W

we need to introduce for it in the specification.
The comparator type is itself instantiated with the Java type W and the theory th. In

the method postcondition the predicate sorted is then qualified with this theory.

8.3.4 Theory instantiation

To deal with our client program, we need more annotations. First we add specifications
to the java.lang.Integer class: Figure 8.19 shows an excerpt of it annotated in KML

3.
Then, we need to specify the IntLtComparator class of Figure 8.14. For that, we first

provide a theory which instantiates the general comparison theory ComparatorTheory,
in Figure 8.20. The goal is to formalize that we decided to compare with the “less-
than” ordering. The instantiates declaration generates verification conditions: this is
discussed in Section 8.3.5. The class IntLtComparator shown in Figure 8.21 implements
the instantiation of the Comparator interface where the Java type is the Integer class
and the theory is the comparison theory for this class, defined in Figure 8.20.

3In KML, the private field is visible in the annotations of the public methods, whereas in JML, the
field should be annotated with modifier spec_public.

126

8.3. Generic sorting

theory ComparatorTheory<T> {

predicate eq{L}(T x, T y);

axiom eq_ref{L}: \forall T a; eq{L}(a,a);

axiom eq_sym{L}: \forall T a b; eq{L}(a,b)

==> eq{L}(b,a);

axiom eq_trans{L}: \forall T a1 a2 a3;

eq{L}(a1, a2) && eq{L}(a2,a3)

==> eq{L}(a1,a3);

predicate lt{L}(T x, T y);

axiom lt_irref{L}: \forall T a; ! lt{L}(a,a);

axiom lt_antisym{L}: \forall T a1 a2;

!(lt{L}(a1,a2) && lt{L}(a2,a1))

axiom lt_trans{L}:

\forall T a1 a2 a3;

lt{L}(a1,a2) && lt{L}(a2,a3)

==> lt{L}(a1,a3);

axiom lt_totality{L}: \forall T a1 a2;

eq{L}(a1,a2) || lt{L}(a1,a2)

|| lt{L}(a2,a1);

predicate leq{L}(T x, T y) =

eq{L}(x,y) || lt{L}(x,y);

predicate sorted{L}(T[] a,

integer l, integer h) =

\forall integer i; l <= i <h

==> leq{L}(\at(a[i],L),\at(a[i+1],L));
}

Figure 8.16: General theory for Comparators

Finally, notice that when checking the specific call to the method sort in the client
program, the “implicit” parameters V, W and also the theory Th must be guessed. The
value of V comes as usual with the Java typing, the value of W comes from the type of the
Comparator. Then the theory th must be inferred from the theory argument of cmp, and
it must be checked whether it really instantiates a convenient comparison theory.

8.3.5 Verification conditions for soundness

The soundness conditions to generate are as follows. First, the IntLtComparatorTheory

should be a valid instantiation of the ComparatorTheory<Integer>. This amounts to
check that the definitions of the predicates eq and lt given in IntLtComparatorTheory

satisfy the axioms given in ComparatorTheory<T> when the type variable T is instan-
tiated with Integer. This condition is easily discharged by SMT solvers. Second, the
class IntLtComparator should correctly implement the interface Comparator<Integer>,

127

Chapter 8. Modular specification of generic Java methods and classes

interface Comparator<U> /*@ <Th instantiating ComparatorTheory<U> > */ {

/*@ ensures (Th.lt(x,y) <==> \result < 0) &&

@ (Th.eq(x,y) <==> \result == 0) &&

@ (Th.lt(y,x) <==> \result > 0);

@*/

public int compare(U x, U y);

}

Figure 8.17: Specification of the Comparator interface

/*@ ensures th.sorted(a,0,a.length−1);
@*/

public static <V> /*@ <W> <th instantiating ComparatorTheory<W> > */

void sort(V[] a, Comparator<? /*@ as W */ super V> /*@ <th> */ cmp);

Figure 8.18: Specification of the generic sorting method

public final class Integer extends Number implements Comparable {

private int value;

/*@ assigns this.value;

@ ensures this.value == v;

@*/

public Integer(int v) { this.value = v; }

/*@ assigns \nothing;
@ ensures \result == this.value;

@*/

public int intValue() { return this.value; }

}

Figure 8.19: Annotated Integer class

theory IntLtComparatorTheory instantiates ComparatorTheory<Integer> {

predicate eq{L}(Integer x, Integer y) = \at(x.value == y.value, L);

predicate lt{L}(Integer x, Integer y) = \at(x.value < y.value,L);

}

Figure 8.20: Theory for “less-than” comparison

class IntLtComparator /*@ <IntLtComparatorTheory> */ {

public int compare(Integer x, Integer y) { ... }

}

Figure 8.21: Specification of the IntLtComparator class of Figure 8.14

128

8.4. Generic hashmaps

class Fib {

HashMap<Integer,Long> memo;

Fib() { memo = new HashMap<Integer,Long>(); }

public long fib(int n) {

if (n <= 1) return n;

Integer n_obj = new Integer(n);

Long x = memo.get(n_obj);

if (x == null) {

x = new Long(fib(n−1)+fib(n−2));
memo.put(n_obj,x);

}

return x.longValue();

}

}

Figure 8.22: Java source for Fib class

which requires that the method compare in the IntLtComparator class should satisfy the
specification of the method compare declared in the interface Comparator<U>, when the
type parameter U is instantiated with Integer and the theory parameter Th is instantiated
with IntLtComparatorTheory. This condition is again easily proved by SMT solvers. Fi-
nally, checking the assertion in our client code can be done, by instantiating the generic
postcondition th.sorted(. . .) of sort with the IntLtComparatorTheory. Substituting
the th.lt predicate with its actual definition does the job. It is important to notice here
that this final substitution is necessary, so it justifies why we initially parameterized the
sort method with a theory parameter: otherwise, we would know that the array is sorted
w.r.t some order, without knowing precisely which one.

8.4 Generic hashmaps

Finding the value associated with a given index is made efficient by use of classical hashing
techniques. We present additional constructs needed when specifying generic hash maps.
These are data types which build finite mappings from indexes of some type key to values
of some other type data.

A simple but illustrating example of use of hash maps is a method for computing
Fibonacci numbers4: F (0) = 0, F (1) = 1, and F (n+ 2) = F (n+ 1) + F (n) for n ≥ 0. To
avoid the exponential complexity of the naive recursive algorithm, we apply the general
technique of memoization. A Java Fib class with a fib method computing Fibonacci
numbers with memoization is shown in Figure 8.22.

4From CeProMi collection of challenging examples, http://www.lri.fr/cepromi. This is only for
illustration, since there exist other efficient ways to compute Fibonacci numbers.

129

Chapter 8. Modular specification of generic Java methods and classes

theory HashableTheory<T> {

... // equality theory as in Figure 4

logic integer hash{L}(T x);

axiom hash_eq{L}: \forall T x,y;

eq{L}(x,y) ==> hash{L}(x) == hash{L}(y);

}

Figure 8.23: Theory of hashable objects

8.4.1 Specification of the Fibonacci sequence

A mathematical definition of the Fibonacci sequence as a theory is given below.

theory Fibonacci {

logic integer math_fib(integer n);

axiom fib0: math_fib(0) == 0;

axiom fib1: math_fib(1) == 1;

axiom fibn: \forall integer n; n >= 2 ==>

math_fib(n) == math_fib(n−1) + math_fib(n−2);
}

The expected behavior of the fib method is specified as follows.

/*@ requires n >= 0;

@ assigns \nothing;
@ ensures \result == math_fib(n);

@*/

public long fib(int n);

Notice that issues related to arithmetic overflow are ignored. We just assume for simplicity
that computations are made on unbounded integers.

8.4.2 Theories for hashable objects and hash maps

The first step is to define a theory which provides a predicate for testing equality, and a
hash function. This theory is given in Figure 8.23. The dots are for the same axiomatiza-
tion of the eq predicate as in Figure 8.16. The important part of this theory is the axiom
hash_eq specifying the expected property for the hash function: two equal objects must
have the same hash code.

Then, we provide a theory for maps, as shown in Figure 8.24. This theory is parame-
terized by both a type K for the keys, and a theory for equality and hashing of K objects.
The type of data is not given as a parameter to the theory itself, but as a parameter V of
the type of maps. This allows using the same theory of maps for several instances of V.
This theory is indeed the classical theory of arrays which is a typical theory supported by
SMT solvers. It is defined by a function acc to access the element indexed by some key,
and a function upd which provides a so-called functional update of a map, returning a new
map in which the element associated with some key is changed. The behavior of these two

130

8.4. Generic hashmaps

theory Map<K><Th instantiating HashableTheory<K> > {

type t<V>;

logic <V> V acc{L}(t<V> m, K key);

logic <V> t<V> upd{L}(t<V> m, K key, V value);

axiom <V> acc_upd_eq{L}:

\forall t<V> m, K key1 key2, V value;

Th.eq{L}(key1,key2) ==>

\at(acc(upd(m,key1,value),key2) == value,L);

axiom <V> acc_upd_neq{L}:

\forall t<V> m, K key1 key2, V value;

! Th.eq{L}(key1,key2) ==>

\at(acc(upd(m,key1,value),key2) ==

acc(m,key2),L);

}

Figure 8.24: Theory of maps

class HashMap<K,V>

/*@ <Th instantiating HashableTheory<K> >

constraint: K extends Object<K><Th> */

{

//@ theory M = Map<K><Th>;

//@ model M.t<V> m;

/*@ requires x instanceof K;

@ assigns \nothing;
@ ensures \result != null ==>

@ \result == M.acc(m,(K)x);

@*/

V get(Object x);

/*@ requires k != null;

@ assigns m;

@ ensures m == M.upd(\old(m),k,v);
@*/

void put(K k, V v);

}

Figure 8.25: Specification of the HashMap class

functions is axiomatized by the two axioms in Figure 8.24, which makes use of the equal-
ity predicate on keys. It has to be noticed that specifying the proper equality relation
on keys is one of the issues in this specification, and our proposal to use parameterized
theories addresses this issue.

The resulting specification of the generic java.util.HashMap class is shown in Fig-

131

Chapter 8. Modular specification of generic Java methods and classes

public class Object

/*@ <T><H instantiating HashableTheory<T> > */ {

/*@ requires this instanceof T && o instanceof T;

@ ensures \result == true <==>

@ H.eq((T)this,(T)o);

@*/

public boolean equals(Object o) { ... }

/*@ requires this instanceof T;

@ ensures \result == H.hash((T)this);

@*/

public int hashCode(){ ... }

}

Figure 8.26: Specification of two methods in the Object class

theory HashableInteger

instantiates HashableTheory<Integer> {

predicate eq{L}(Integer x, Integer y) =

\at(x.value == y.value, L);

logic integer hash{L}(Integer x) =

\at(x.value, L);

}

Figure 8.27: Theory of equality and hashing of Integers

ure 8.25. Since the type variable K of keys in HashMap<K><V> implicitly extends Object,
it inherits the equals and hashCode methods defined in the java.lang.Object class.
These two methods should be specified in the Object class with some theory instantiat-
ing HashableTheory<K>, as shown in Figure 8.26. A new issue arises here from dynamic
dispatch: the instance of Object satisfying the HashableTheory is not known yet. Our
proposal is to introduce another type parameter T in the specification, to be bound later.
To ensure that the theory given as argument to HashMap class is an HashableTheory on
the right type, a constraint is posed (Figure 8.25) on the type K. Notice also the use of
local naming of a particular instance of a theory: the name M is given to the theory of
Maps instantiated on the type of keys and on its theory of equality and hashing.

8.4.3 Instantiating generic hash maps

The generic HashMap class being specified, we can use it in the Fib class. The first step is
to provide an instance of the theory of equality and hashing on Integers. This is done in
Figure 8.27. A proper implementation of the Integer class is then given in Figure 8.28.

In order to prove the fib postcondition, it is mandatory to provide a class invariant
which, informally, states that for any pair (x, y) stored in the memo map, y = F (x). The
class invariant for the Fib class can be written as in Figure 8.29.

132

8.4. Generic hashmaps

class Integer extends Object

/*@ <Integer><HashableInteger> */ {

boolean equals(Object o) {

if (o instanceof Integer)

return this.value == ((Integer)o).value;

return false;

}

int hashCode() { return this.value; }

}

Figure 8.28: Implementation of hashable Integers

class Fib {

HashMap<Integer,Long> /*@ <HashableInteger> */ memo;

/*@ invariant memo_fib: memo != null &&

@ \forall Integer x, Long y;

@ x != null && y == memo.M.acc(memo,x) &&

@ y != null ==>

@ y.value == math_fib(x.value);

@*/

... // fib as specified in Section 4.1

}

Figure 8.29: Class invariant of the Fib class

8.4.4 Verification conditions for soundness

Verification conditions come first from the instantiates declaration of Figure 8.27. It
should be proved that the given definitions satisfy the axioms given in HashableTheory<T>

(Figure 8.23), when the type variable T is instantiated with Integer, which is straightfor-
ward. The constraint of Figure 8.25 comes immediately from the declaration of Integer
class.

Other verification conditions come classically: invariant should be established by the
Fib() constructor, which comes from a simple specification of HashMap() left to the
reader; it should be preserved by any call to fib(), which comes from a simple reasoning
by case distinction. The preconditions to calls to get() and put() are straightforward,
and the postcondition of fib() follows from the invariant. However, one verification
condition cannot be discharged, the one from the assigns clause: the contract says that
there are no side-effects at all, whereas in reality the private memo hash map can be
modified.

133

Chapter 8. Modular specification of generic Java methods and classes

8.5 Summary

We have described the specification language KML for the Java programming language.
The sorting algorithm by selection is proved by using a hybrid function which takes an ar-
ray as a parameter and returns a bag. A bag is a collection without order. Given an array,
this function returns the bag of its elements. We have expressed that the output array is a
permutation of the input array by writing that the corresponding bags are the same. The
works in [FM99] and [Mar09] suggest to define an inductive predicate to axiomatize the
property that the output array is a permutation of the input array. Specifying with bags
is another way to prove this property. But this new way of specifying a sorting algorithm
leads to some difficulties. For instance, the swap method cannot be proved automatically
without additional assertions and one lemma which itself is unprovable without induction.
These assertions are required by provers to succeed their proofs.

134

Chapter 9

Conclusion and Perspectives

Contents

9.1 Conclusion . 135

9.2 Perspectives . 136

9.1 Conclusion

In this thesis we have addressed problems related to the development of tools used in the
verification of software-based systems. We have been mostly interested in the design of de-
cision procedures specified as inference systems. We have used a rewriting-based approach
that allows building satisfiability procedures in a flexible way by using a general calculus
for automated deduction, namely the paramodulation calculus. This calculus provides a
decision procedure for the theory of interest if one can show that it terminates on every
input composed of the finitely many axioms and any set of ground literals. Of course this
process is error-prone. To reason on the derivations computed by paramodulation, the
schematic paramodulation [LM02] calculus has been designed. It is an automated method
of proving that the standard paramodulation calculus can be used to decide the satisfi-
ability problem in the considered theories. In this thesis we have presented a rule-based
system implementing a complete many-sorted schematic paramodulation calculus for non-
unit theories. This environment, based on the theoretical studies in [LM02, LRRT11], is
the first implementation of schematic paramodulation calculus. It has been implemented
from scratch on the firm basis provided by Maude. Some automated deduction tools are
already implemented in Maude, for instance a Church-Rosser checker [DM10a], a coher-
ence checker [DM10b], etc. Our tool is a new contribution to this collection of tools.
Thanks to this implementation and our experiments we have improved the schematic
paramodulation calculus that takes now in a more satisfactory way the constants into
account.

The authors of [NRR09c] has presented the paramodulation calculus for theories shar-
ing Integer Offsets. Our environment has helped us to design a schematic calculus in-
tegrating the axioms of the Integer Offsets theory into a framework based on schematic

135

Chapter 9. Conclusion and Perspectives

paramodulation. This calculus allows us to automatically decide the satisfiability problem
for some theory sharing Integer Offsets. Since the theory of Integer Offsets allows us to
build arithmetic expressions of the form sn(t) for n > 0, we have proposed to schematize
this exponent by the term of the form s+(t). In this context, introducing the s+ operator
together with rewriting rules for terms containing s+ fits well with automatic verification
needs. Indeed, similar abstractions have been successfully used to verify cryptographic
protocols with algebraic properties [BHK06], and to prove properties of Java Bytecode
programs [BGJLR07]. Moreover, like in [BGJLR07], our schematization can be used for
fine-tuning the precision of the analysis. We have presented the first extension of the
notion of schematic paramodulation dedicated to a paramodulation calculus modulo a
built-in theory. This study has led to new automatic proof techniques that are different
from those performed manually in [NRR09c]. The assumptions we have used to apply our
proof techniques are easy to satisfy for equational theories of practical interest.

The correctness of our tool is validated by checking the decidability of classical theories
such as the theory of lists, the theory of records, the theory of possibly empty lists,
the theory of array and the theory of recursive data structures. For all these theories
paramodulation is known to terminate, and thanks to our tool we have proved decidability
automatically. We have also automatically proved the termination of paramodulation
modulo Integer Offsets for data structures equipped with counting operators, such as the
theory of lists with length, the theory of lists with integer elements and the theory of
records with increment.

Regarding the question of modular specification of generic Java classes and methods,
we have proposed extensions to the Krakatoa Modeling Language, a part of the Why
platform for proving that a Java or C program is a correct implementation of some speci-
fication. We have explained that in order to formally specify generic methods and classes,
it is necessary to extend the notion of theory existing in specification languages like KML.
It is not only mandatory to add type parametricity in theories, but also to provide a no-
tion of parametricity of theories and a corresponding notion of theory instantiation. The
extensions we have proposed are essentially inspired by existing notions of languages im-
plementing higher-order logic, namely the notion of modules and functors as they exist
for example in Coq, or the notion of type classes [SO08]. During this work the support
of theories and its definition have been implemented within the Why platform. Since I
stopped working on this question, our proposed extensions have not been integrated in
Krakatoa implementation. However, the concept of theories and substitution/instantia-
tion appeared in the logic language of Why3, and its notion of “cloning” of a theory.

9.2 Perspectives

The work carried out during the thesis opens several interesting research and development
directions. All these directions are divided into three parts.

Short-term work. In Chapter 5 we have designed a new schematic paramodulation
calculus that deals with non-disjoint extensions of Integer Offsets. This calculus provides
automated proofs of termination and modular termination of decision procedures. Other

136

9.2. Perspectives

properties of schematic saturations can be checked, for instance deduction completeness
and stably infiniteness which are key properties for the combination of decision procedures
by the Nelson-Oppen method. This is a short term work that requires a bit of time.

More challenging issue is to design a general paramodulation calculus modulo Integer
Offsets for arbitrary theories. It is still an open problem. When this problem is solved,
we could study a related schematic calculus. These calculi would be very useful to study
some extensions of the theory of arrays which plays a very important role in computer
science and in verification.

Decision procedures for some extensions of the theory of arrays already exist (see,
e.g. [BMS06, GNRZ07]) but our approach would additionally provide automated proofs
of decidability. In this direction, we would have to find a less restrictive assumption to
guarantee termination, possibly via a criterion involving the simplification ordering on
terms extended to clauses.

When extending the schematic paramodulation calculus to the non-unit theories, the
question of modular termination of arbitrary theories sharing Integer Offsets comes by
itself. Other theories of counter arithmetic such as the theory of Increment can be con-
sidered in this framework [NRR10].

Mid-term work. Another interesting research direction is to consider theories that ex-
tend the theory of Abelian Groups (AG). The theory AG is clearly more expressive than
the theory of Integer Offsets, and can provide more interesting examples. The paramodu-
lation calculus with built-in Abelian groups has been developed in [GN04, NRR09a]. This
calculus is more complicated than the standard one, since a semantic AG-unification is
used instead of syntactic one. Following this direction, we are interested in developing a
new schematic paramodulation calculus for AG that will allow us to automatically prove
termination.

Also it will be interesting to study the problem of modular termination for theories
sharing AG in a way similar to [RS11] for theories sharing counter arithmetic.

A non-disjoint combination method for theories modeling data structures with a count-
ing operator and fragments of arithmetic has been proposed in [NRR09b]. At that point,
a natural question arises: is it possible a non-disjoint combination method for data struc-
tures modulo AG plus some theories of arithmetic.

Long-term work. In [LM02], the authors use the schematic paramodulation to deter-
mine a bound on the number of clauses generated in a saturation by the paramodulation
calculus. We also plan to apply our schematic paramodulation calculi to the complexity
analysis.

Another research direction consists in studying other interesting fragments of arith-
metic to consider as built-in theories in the paramodulation calculus. Moreover, since
the schematic paramodulation calculus can be defined for particular cases, such as Inte-
ger Offsets, Abelian Groups, could we imagine a more general way to define schematic
calculi?

Currently, the modular termination is considered for some specific shared theories.
The modular termination for a more general setting for a class of shared theories is still

137

Chapter 9. Conclusion and Perspectives

an open problem.
Another future work consists in integrating paramodulation-based procedures into

SMT solvers, and moreover their non-disjoint combinations. Also, our decision proce-
dures can be applied to Model-Checking Modulo Theories [GR10], a fully declarative and
deductive symbolic model checker for safety properties of infinite state systems whose
state variables are arrays.

Notice that all presented perspectives require further developments within our rule-
based system.

138

Résumé étendu

Les ordinateurs font désormais partie de notre vie quotidienne. Qu’il s’agisse des trans-
ports, de la finance, de l’industrie, de l’aéronautique ou des appareils électroniques que
nous utilisons au quotidien. Les pannes et les plantages peuvent engendrer des dommages
matériels et financiers considérables, mais également des morts. Entre 1985 et 1987, un
logiciel défectueux qui contrôlait la machine de radiothérapie Thérac-25 envoyait des doses
bien trop importantes aux patients. Ce dysfonctionnement provoqua au moins 3 décès
connus. En 1993, un plantage du logiciel de contrôle en vol d’un avion de chasse sué-
dois engendra des problèmes de navigation qui conduisirent au crash de l’appareil. Un
sous-traitant de la Nasa qui travaillait sur le projet Mars Orbiter a confondu le système
métrique avec les unités de mesures anglo-saxonnes. La sonde s’est écrasée dès son arrivée
sur Mars en 1999, réduisant à néant des années de travail et un projet qui avait couté plus
de 327 millions de dollars au gouvernement américain. Certains plantages causent des
problèmes d’importance secondaire. Mais pour d’autres, l’erreur n’est tout simplement
pas envisageable. Ces systèmes doivent donc opérer de façon parfaitement fiable. Il existe
plusieurs méthodes pour déterminer la fiabilité d’un logiciel.

De nombreux bugs peuvent être éliminés grâce aux tests. Mais ce genre de méthodes ne
peut pas prouver que le système, l’algorithme ou le programme soit exempt d’erreurs ou de
défauts, ou encore qu’il satisfasse une certaine propriété. Le nombre de situations possibles
est si important que seul un petit nombre d’entre elles peut être testé. Une autre méthode
consiste à procéder à une vérification formelle qui donne une preuve mathématique que
le programme est correct et répond à une certaine propriété. Un programme vérifié de
façon formelle fonctionnera correctement pour chaque donnée.

La vérification déductive constitue une approche de la vérification formelle. Durant la
dernière décennie, des progrès considérables ont été enregistrés dans le domaine de la véri-
fication des programmes. Désormais, les langages de programmation les plus populaires
comme Java, C# et C ont leur propre langage de spécification formelle. Par exemple,
Java Modelling Language [LKP07] a été créé pour les programmes Java. Spec# [BDF+05]
a été créé pour C# et ACSL [BFM+09] a été créé pour C. Dans cette configuration, les
fonctions et les méthodes ont des pré-conditions et des post-conditions inscrites dans le
langage de spécification. Si la pré-condition est remplie et si la méthode se termine,
alors elle établit la post-condition. Why [FM07] est une plateforme pour la vérification
déductive des codes sources. Elle extrait les conditions de vérification d’un programme
source annoté par les spécifications et les transmet aux prouveurs de théorèmes comme
les solveurs SMT (Simplify, Z3, CVC3, Yices, Alt-Ergo, etc) ou les assistants de preuves
(Coq, Isabelle/HOL, PVS, etc).

139

Résumé étendu

La Satisfiabilité Modulo une Théorie (SMT) consiste a décider de la satisfaisabilité
d’une formule du premier ordre par rapport à une théorie. Une procédure de satisfais-
abilité est une procédure de décision pour le problème de satisfaisabilité, c’est-à-dire un
algorithme qui se termine toujours par une réponse “oui” si la formule est satisfaite ou
par la réponse “non” dans le cas contraire. Dans le contexte de cette thèse, lorsque nous
considérons une procédure de décision, nous considérons en réalité une procédure de sat-
isfaisabilité. Nous nous concentrerons sur les procédures de décision spécifiées comme des
systèmes d’inférence, qui sont des ensembles de règles d’inférence. Une règle d’inférence
relie des prémisses à une conclusion. Par exemple, si u = c et u′ = c, alors nous pouvons
conclure que u = u′. La conception et l’implémentation de ces procédures de décision
demeurent des tâches extrêmement complexes. Pour faire gagner du temps au chercheur,
une approche importante fondée sur la réécriture a été étudiée durant la dernière dé-
cennie [ARR01, ARR03, ABRS09]. Cette approche permet d’élaborer des procédures de
satisfaisabilité de façon flexible en utilisant un calcul général pour le raisonnement équa-
tionnel, nommé Paramodulation (PC) [NR01] (appelé aussi superposition). En général,
une application exhaustive des règles de PC conduit à une procédure de semi-décision qui
s’arrête si les données sont contradictoires (une clause vide est alors générée). Cepen-
dant, elle peut diverger sur des données non contradictoires. Heureusement, elles peuvent
aussi se terminer pour certaines théories, et de ce fait devenir une procédure de décision.
Dans [ARR01, ARR03, ABRS09], il est montré de quelle manière un système d’inférence
basé sur la paramodulation peut être utilisé comme une procédure de décision pour dif-
férentes théories, notamment des listes, des tableaux, des enregistrements ou de leurs
combinaisons.

Par souci d’efficacité, il est utile d’avoir des axiomes intégrés dans les calculs et de
pouvoir créer des calculs de paramodulation modulo une theorie. Cela est particulièrement
important pour les fragments arithmétiques, en raison de l’ubiquité de l’arithmétique dans
l’application des méthodes formelles. Par exemple, le calcul de paramodulation standard
a été étendu dans [NRR09c] de façon à prendre en compte les axiomes de la théorie des
Integer Offsets, qui est une forme d’arithmétique de comptage. De nouvelles méthodes
de combinaison à la Nelson-Oppen ont été développées pour considérer l’union de ces
théories qui partagent des fragments d’arithmétique. Cela ouvre la voie à l’utilisation de
méthodes de combinaison de théories non-disjointes au sein de solveurs SMT.

Pour raisonner sur le calcul de paramodulation standard, un calcul de paramodulation
schématique (SPC) [LM02] a été étudié pour prouver automatiquement la terminaison.
L’avantage de SPC est que s’il s’arrête pour une donnée abstraite, alors PC s’arrête
pour toutes les données concrètes correspondantes. Plus généralement, SPC est un outil
automatique qui vérifie les propriétés de PC comme la terminaison, la stable infinité et la
complétude vis-à-vis de la déduction. Des améliorations de la première présentation de
SPC ont été proposées dans [LT07, LRRT11]. Les auteurs de ces articles ont étudié la
décidabilité automatique mais également la combinabilité automatique.

Jusqu’à présent, aucune schématisation de la paramodulation modulo la théorie des
Integer Offsets n’a été créé. De ce fait, il existe un réel besoin pour une méthode ca-
pable de prouver qu’une théorie donnée admet une procédure de décision basée sur la
paramodulation modulo les Integer Offsets.

Les contributions de cette thèse concernent des résultats à la fois pratiques et théoriques:

140

1. La contribution principale de cette thèse est un système de règles qui met en œu-
vre un calcul de la paramodulation schématique complet et multi-sorté pour des
théories arbitraires. Cet outil nous permet de vérifier automatiquement si le calcul
de la paramodulation termine pour les théories définies par des clauses arbitraires et
si les procédures de décision qui y sont associées sont combinables. L’outil peut aussi
être utilisé pour vérifier la terminaison modulaire quand on considère une combi-
naison de théories à signatures disjointes ou des théories dont les signatures ne sont
pas disjointes. De plus, cette mise en œuvre de paramodulation schématique fournit
une trace pour chacune des règles appliquées, ce qui est très utile pour valider ou
invalider les preuves de saturation décrites précédemment dans la littérature. La
validité de cet outil est démontrée en vérifiant la décidabilité de théories classiques
comme la théorie des listes (avec ou sans extensionnalité), la théorie des enreg-
istrements sans extensionnalité, la théorie des listes possiblement vides, la théorie
des tableaux et la théorie des structures de données récursives pour lesquels on sait
que la paramodulation termine [ABRS09, NRR09c, LRRT11].

2. Le calcul de la paramodulation schématique a été amélioré grâce à notre expérimen-
tation. En fait, le calcul de la paramodulation schématique proposé dans [LRRT11]
ne prend pas en compte les constantes dans la signature de la théorie. Par exem-
ple, la signature de la théorie des listes possiblement vides contient une constante
“nil”. Le calcul de la paramodulation schématique présenté dans cette thèse prend
en compte ces constantes.

3. Un nouveau calcul de la paramodulation schématique pour décrire les saturations
modulo les Integer Offsets est présenté dans cette thèse. Ce calcul est validé grâce
à notre outil. Notre approche requiert une nouvelle forme de schématisation de
façon à prendre en compte les expressions arithmétiques. L’intérêt de la paramod-
ulation schématique réside dans la correspondance entre une dérivation utilisant
la paramodulation concrète et une dérivation utilisant la paramodulation schéma-
tique : de façon simple, l’ensemble de dérivations obtenu grâce à la paramodula-
tion schématique vient sur-approximer l’ensemble de dérivations obtenu grâce à la
paramodulation concrète. Nous montrons sous quelles conditions la terminaison de
la paramodulation schématique implique la terminaison de la paramodulation con-
crète. A nouveau, le fait de considérer les Integer Offsets requiert des arguments de
preuve spécifiques. Grâce à ce calcul schématique, nous pouvons automatiquement
vérifier si la paramodulation modulo les Integer Offsets est une procédure de déci-
sion pour l’union de deux théories non disjointes partageant la théorie des Integer
Offsets.

4. Au début de cette thèse, nous avons participé à une étude sur la spécification mod-
ulaire de classes et de méthodes Java génériques, sous la supervision de Claude
Marché, Alain Giorgetti et Olga Kouchnarenko. Nous avons proposé des extensions
du Krakatoa Modelling Language, une partie de la plateforme Why pour prouver
qu’un programme Java ou C est une implémentation correcte de certaines spécifi-
cations. Les nouvelles constructions que nous proposons pour la spécification des

141

Résumé étendu

programmes Java génériques sont présentées à travers deux exemples particulière-
ment significatifs: la spécification de la méthode générique pour trier des tableaux
provenant de la classe java.util.Arrays dans l’API Java, et la spécification de
la classe java.util.Hashmap définissant une hash map générique. Les principales
caractéristiques sont l’introduction de la paramétricité à la fois pour les types et pour
les théories, ainsi qu’une relation d’instantiation entre les théories. Nous discuterons
des conditions de correction et de leur vérification.

Dans cette thèse, nous nous sommes intéressés à des problèmes liés au développe-
ment d’outils utilisés dans la vérification des systèmes basés sur des logiciels. Nous nous
sommes tout particulièrement intéressés à la création de procédures de décision spécifiées
comme des systèmes d’inférence. Nous avons utilisé une approche fondée sur la réécriture
qui permet de construire des procédures de satisfaisabilité de façon flexible, en utilisant
un calcul général pour le raisonnement équationnel, nommé paramodulation. Ce calcul
fournit une procédure de décision pour la théorie étudiée si l’on peut démontrer qu’il
se termine pour chaque donnée composée d’un ensemble fini d’axiomes et d’un ensem-
ble de littéraux plats. Le calcul de paramodulation schématique [LM02] a été créé pour
raisonner sur les dérivations générées par la paramodulation. Il s’agit d’une méthode qui
prouve automatiquement que le calcul de la paramodulation standard peut être utilisé
pour décider les problèmes de satisfaisabilité dans les théories étudiées.

Dans cette thèse, nous avons présenté un système fondé sur des règles qui met en
œuvre un calcul de la paramodulation schématique complet et ordonné pour les théories
non-unitaires. Cet environnement, basé sur les études théoriques de [LM02, LRRT11],
constitue la première mise en œuvre du calcul de paramodulation schématique. Il a
été créé from scratch, sur les bases fournies par Maude. Certains outils de déduction
automatique sont déjà mis en œuvre dans Maude, par exemple un vérificateur de la
propriété de Church-Rosser [DM10a], un vérificateur de cohérence [DM10b], etc. Notre
outil offre une contribution supplémentaire à la panoplie existante. Grâce à cette mise
en œuvre et à nos expérimentations, nous avons grandement amélioré le calcul de la
paramodulation schématique qui prend désormais en compte les constantes de façon bien
plus satisfaisante.

Les auteurs de [NRR09c] ont présenté un calcul de paramodulation pour les exten-
sions de la théorie des Integer Offsets. Notre environnement nous a aidé à créer un calcul
schématique intégrant les axiomes de la théorie des Integer Offsets dans un cadre basé
sur la paramodulation schématique. Ce calcul nous permet de décider automatiquement
le problème de satisfaisabilité de certaines extensions de la théorie des Integer Offsets.
Dans la mesure ou la théorie des Integer Offsets nous permet de construire des expres-
sions arithmétiques de la forme s(t) pour n > 0, nous avons proposé de schématiser cet
exposant sous la forme s+(t). Dans ce contexte, introduire l’opérateur s+ avec des règles
de réécriture pour les termes contenant s+ s’accorde bien avec les besoins de la vérification
automatique. En effet, des abstractions similaires avaient déjà été utilisées avec succès
pour vérifier des protocoles cryptograhiques avec des propriétés algébriques [BHK06] et
pour prouver des propriétés de programmes Java Bytecode [BGJLR07]. De plus, comme
dans [BGJLR07], notre schématisation peut être utilisée pour améliorer la précision de
l’analyse. Nous avons présenté la première extension de la notion de paramodulation sché-

142

matique dédiée à un calcul de paramodulation modulo une théorie. Cette étude a conduit
a de nouvelles techniques de preuves automatiques qui sont différentes de celles opérées
manuellement dans [NRR09c]. Les hypothèses que nous avons utilisées pour appliquer
nos techniques de preuve sont faciles à satisfaire pour des théories équationnelles d’intérêt
pratique.

La validité de notre instrument est attesté par les vérifications de décidabilité de
théories classiques comme la théorie des listes, la théorie des enregistrements, la théorie
des listes possiblement vides, la théorie des tableaux ou encore la théorie des structures
de données récursives. Pour toutes ces théories, la paramodulation a la bonne propriété
de terminer et grâce à notre outil nous l’avons prouvé de façon automatique. Nous avons
également prouvé la terminaison de la paramodulation modulo les Integer Offsets pour
les structures de données équipées avec des opérateurs de comptage, comme la théorie
des listes avec longueur, la théorie des listes avec éléments entiers et la théorie des enreg-
istrements avec incrément.

Pour la question de la spécification modulaire des classes et des méthodes Java génériques,
nous avons proposé l’extension du Krakatoa Modelling Language, une partie de la plate-
forme Why, pour prouver qu’un programme Java ou C est une implémentation correcte
de certaines spécifications. Nous avons montré que pour spécifier formellement les méth-
odes et les classes génériques, il est nécessaire d’étendre la notion de théorie existant
dans les langages de spécification comme KML. Il est non seulement obligatoire d’ajouter
une paramétricité du type dans les théories, mais il faut également fournir une notion de
paramétricité des théories et une notion correspondante de l’instantiation de la théorie.
Les extensions que nous avons proposées sont essentiellement inspirées de notions exis-
tantes, à savoir la notion de modules et de foncteurs tels qu’ils existent par exemple dans
Coq, ou encore les notions de type classes [SO08]. Depuis que j’ai arrêté de travailler sur
cette question, les extensions que nous avions proposées n’ont pas été intégrées dans la
mise en œuvre de Krakatoa. Néanmoins, le concept des théories et de la substitution/in-
stantiation apparait dans la logique du language de Why3, et sa notion de “clonage” d’une
théorie.

Le travail effectué dans cette thèse ouvre plusieurs directions de recherche et de
développement particulièrement intéressantes. Ces directions se divisent en trois parties :

• Travail à court terme.

Nous avons créé un nouveau calcul de paramodulation schématique qui traite des
extensions non-disjointes des Integer Offsets. Ce calcul fournit des preuves au-
tomatisées de terminaison et de terminaison modulaire des procédures de décision.
D’autres propriétés peuvent être vérifiées par saturation schématique , par exemple
la complétude vis-à-vis de la déduction ou la stable infinité qui sont des propriétés
clés pour la combinaison de procédures de décision par la méthode de Nelson-Oppen.
Il s’agit d’un travail sur le court terme qui ne nécessite que peu de temps.

Un objectif plus complexe consiste à créer un calcul général de paramodulation
modulo les Integer Offsets pour des théories arbitraires. Cela reste un problème
ouvert. Quand le problème sera réglé, nous pourrions étudier un calcul schématique
correspondant. Ces calculs seraient très utiles pour étudier quelques extensions de

143

Résumé étendu

la théorie des tableaux qui une structure de données importante, notamment en
vérification pour représenter la mémoire.

Des procédures de décision pour certaines extensions de la théorie des tableaux exis-
tent déjà (voir e.g. [BMS06, GNRZ07]), mais notre approche va fournir de nouvelles
preuves automatiques de décidabilité. A cette fin, nous devrions trouver des hy-
pothèses moins restrictives pour garantir la termination, possiblement à travers un
critère impliquant un ordre de simplification sur les termes étendus aux clauses.

En étendant le calcul de la paramodulation schématique aux théories non-unitaires,
la question de la terminaison modulaire des théories arbitraires partageant les Inte-
ger Offsets se pose d’elle-même. D’autres théories arithmétiques, comme la théorie
de l’Incrément, peuvent également être considérées dans ce cadre [NRR10].

• Travail à moyen terme.

Une autre direction de recherche particulièrement intéressante est de considérer les
théories qui étendent la théorie des Groupes Abéliens (AG). La théorie AG est
clairement plus expressive que la théorie des Integer Offsets, et elle peut fournir
des exemples nettement plus intéressants. Un calcul de paramodulation modulo
AG a été utilisé dans [GN04, NRR09a]. Ce calcul est plus compliqué que le cal-
cul standard, dans la mesure ou une unificatio modulo AG est utilisée au lieu de
l’unification syntaxique. En suivant cette direction, nous aimerions développer un
nouveau calcul de paramodulation schématique pour AG qui nous permettrait de
prouver automatiquement la terminaison.

Il serait également intéressant d’étudier le problème de la terminaison modulaire
pour les théories partageant AG de la même façon que dans [RS11] pour les théories
partageant l’arithmétique de comptage.

Une méthode de combinaison non-disjointe pour les théories modélisant les struc-
tures de données avec un opérateur de comptage et des fragments d’arithmétique a
été proposée dans [NRR09b]. A ce stade, une question se pose alors tout naturelle-
ment: Est-il possible d’avoir une méthode de combinaison non-disjointe pour les
structures de données modulo AG avec quelques théories d’arithmétique ?

• Travail à long terme.

Dans [LM02], les auteurs utilisent la paramodulation schématique pour déterminer
le nombre de clauses générées dans une saturation par le calcul de la paramodulation.
Nous comptons également appliquer notre calcul de la paramodulation schématique
à l’analyse de complexité.

Une autre direction de recherche consiste à intégrer d’autres fragments intéressants
d’arithmétique dans le calcul de paramodulation. De plus, dans la mesure ou des
calculs de paramodulation schématique peuvent être définis pour des cas partic-
uliers comme les Integer Offsets ou les Groupes Abéliens, peut-être pourrions-nous
imaginer une méthode plus générale pour définir les calculs schématiques ?

A l’heure actuelle, la terminaison modulaire est utilisée pour certaines théories spé-
cifiques partagées. La terminaison modulaire pour une classe de théories partagées

144

est encore un problème ouvert.

Un autre travail futur consistera à intégrer les procédures basées sur la paramodu-
lation dans les solveurs SMT ainsi que leurs combinaisons non-disjointes. Ainsi, nos
procédures de décision peuvent être utilisées dans le cadre du Model Checking Mod-
ulo Theories [GR10], un vérificateur symbolique de modèle entièrement déclaratif et
déductif pour les propriétés de sûreté des systèmes d’états infinis dont les variables
sont des tableaux.

Veuillez remarquer que toutes les perspectives présentées ici demandent davantage de
développements de notre système basée sur les règles.

145

Résumé étendu

146

Bibliography

[ABK+02] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P.D. Mosses,
D. Sannella, and A. Tarlecki. CASL: the Common Algebraic Specification
Language. Theor. Comput. Sci., 286(2):153–196, 2002.

[Abr05] J.-R. Abrial. The B-book - assigning programs to meanings. Cambridge
University Press, 2005.

[ABRS05] A. Armando, M.P. Bonacina, S. Ranise, and S. Schulz. On a Rewriting
Approach to Satisfiability Procedures: Extension, Combination of Theories
and an Experimental Appraisal. In B. Gramlich, editor, Proc. of the 5th
Int. Workshop on Frontiers of Combining Systems (FroCoS’2005), volume
3717 of LNCS, pages 65–80, Vienna, Austria, 2005. Springer.

[ABRS09] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on
rewrite-based satisfiability procedures. ACM Trans. Comput. Log., 10(1):1
– 51, 2009.

[ARR01] A. Armando, S. Ranise, and M. Rusinowitch. Uniform Derivation of De-
cision Procedures by Superposition. In L. Fribourg, editor, Proc. of the
15th Int. Workshop on Computer Science Logic (CSL’2001), volume 2142
of LNCS, pages 513–527, London, UK, 2001. Springer.

[ARR03] A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to
satisfiability procedures. J. Inf. Comput, 183(2):140 – 164, 2003.

[BCC+05] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M.
Leino, and E. Poll. An overview of JML tools and applications. STTT,
7(3):212–232, 2005.

[BDF+05] M. Barnett, R. DeLine, M. Fähndrich, B. Jacobs, K. R. M. Leino,
W. Schulte, and H. Venter. The Spec# Programming System: Challenges
and Directions. In B. Meyer and J. Woodcock, editors, VSTTE, volume
4171 of LNCS, pages 144–152, Zurich, Switzerland, 2005. Springer.

[BFM+09] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto.
ACSL: ANSI/ISO C Specification Language, version 1.4, 2009. http://

frama-c.cea.fr/acsl.html.

147

Bibliography

[BG79] R. M. Burstall and J. A. Goguen. The Semantics of CLEAR, A Speci-
fication Language. In D. Bjørner, editor, Proc. of the Abstract Software
Specifications, 1979 Copenhagen Winter School, volume 86 of LNCS, pages
292–332, London, UK, 1979. Springer.

[BG90] L. Bachmair and H. Ganzinger. On Restrictions of Ordered Paramodulation
with Simplification. In M. E. Stickel, editor, Proc. of 10th Int. Conference
on Automated Deduction (CADE’1990), volume 449 of LNCS, pages 427–
441, Kaiserslautern, Germany, 1990. Springer.

[BGJLR07] Y. Boichut, T. Genet, T. P. Jensen, and L. Le Roux. Rewriting Approx-
imations for Fast Prototyping of Static Analyzers. In F. Baader, editor,
Proc. of 18th International Conference on Term Rewriting and Applica-
tions (RTA,2007), volume 4533 of LNCS, pages 48–62, Paris, France, 2007.
Springer.

[BGLS95] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodula-
tion. Inf. Comput., 121(2):172–192, 1995.

[BHK06] Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Handling Algebraic Prop-
erties in Automatic Analysis of Security Protocols. In K. Barkaoui, A. Cav-
alcanti, and A. Cerone, editors, Proc. of 3rd Int. Colloquium on Theoretical
Aspects of Computing (ICTAC’2006), volume 4281 of LNCS, pages 153–167,
Tunis, Tunisia, 2006. Springer.

[BMS06] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s Decidable About Ar-
rays? In E. Allen Emerson and Kedar S. Namjoshi, editors, Proc. of 7th
Int. Conference on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI’2006), volume 3855 of LNCS, pages 427–442, Charleston, SC,
USA, 2006. Springer.

[BN98] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge Univer-
sity Press, New York, NY, USA, 1998.

[Bra75] D. Brand. Proving Theorems with the Modification Method. SIAM J.
Comput., 4(4):412–430, 1975.

[CDE+03] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and
C. Talcott. The Maude 2.0 System. In R. Nieuwenhuis, editor, Proc. of 14th
Int. Conference on Rewriting Techniques and Applications (RTA’2003), vol-
ume 2706 of LNCS, pages 76–87, Valencia, Spain, 2003. Springer.

[CDE+09] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet,
J. Meseguer, and C. L. Talcott. Unification and Narrowing in Maude 2.4.
In R. Treinen, editor, Proc. of 20th Int. Conference on Rewriting Tech-
niques and Applications (RTA’2009), volume 5595 of LNCS, pages 380–390,
Brasília, Brazil, 2009. Springer.

148

[CM96a] M. Clavel and J. Meseguer. Axiomatizing Reflective Logics and Languages.
In Proc. of Reflection’96, pages 263–288, 1996.

[CM96b] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic.
Electr. Notes Theor. Comput. Sci., 4:126–148, 1996.

[CMP07] M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equa-
tional logic, many-sorted equational logic, Horn logic with equality, and
rewriting logic. Theor. Comput. Sci., 373(1-2):70–91, 2007.

[Der82] N. Dershowitz. Orderings for Term-Rewriting Systems. Theor. Comput.
Sci., 17:279–301, 1982.

[DGS93] R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modular-
isation. In Papers presented at the 2nd annual Workshop on Logical envi-
ronments, pages 83–130, New York, NY, USA, 1993. Cambridge University
Press.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In Handbook of
Theor. Comput. Sci., Volume B: Formal Models and Sematics (B), pages
243–320. Elsevier, 1990.

[DM10a] F. Durán and J. Meseguer. A Church-Rosser Checker Tool for Condi-
tional Order-Sorted Equational Maude Specifications. In P.C. Ölveczky,
editor, Proc. of 8th Int. Workshop on Rewriting Logic and Its Applications
(WRLA’10), volume 6381 of LNCS, pages 69–85, Paphos, Cyprus, March
2010. Springer.

[DM10b] F. Durán and J. Meseguer. A Maude Coherence Checker Tool for Condi-
tional Order-Sorted Rewrite Theories. In P.C. Ölveczky, editor, Proc. of 8th
Int. Workshop on Rewriting Logic and Its Applications (WRLA’10), volume
6381 of LNCS, pages 86–103, Paphos, Cyprus, March 2010. Springer.

[EMOMV07] St. Eker, N. Martí-Oliet, J. Meseguer, and A. Verdejo. Deduction, Strate-
gies, and Rewriting. Electr. Notes Theor. Comput. Sci., 174(11):3–25, 2007.

[FM99] J.-C. Filliâtre and N. Magaud. Certification of Sorting Algorithms in the
Coq System. In Theorem Proving in Higher Order Logics: Emerging Trends,
1999.

[FM07] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus Platform for
Deductive Program Verification. In W. Damm and H. Hermanns, edi-
tors, Proc. of 19th International Conference on Computer Aided Verification
(CAV’2007), volume 4590 of LNCS, pages 173–177, Berlin, Germany, 2007.
Springer.

[GN04] G. Godoy and R. Nieuwenhuis. Superposition with completely built-in
Abelian Groups. J. Symb. Comput., 37(1):1–33, 2004.

149

Bibliography

[GNRZ07] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for
extensions of the theory of arrays. Ann. Math. Artif. Intell., 50(3-4):231–
254, 2007.

[GR10] S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories.
In J. Giesl and R. Hähnle, editors, Proc. of 5th Int. Joint Conference on
Automated Reasoning (IJCAR’2010), volume 6173 of LNCS, pages 22–29,
Edinburgh, UK, 2010. Springer.

[HR91] J. Hsiang and M. Rusinowitch. Proving refutational completeness of
theorem-proving strategies: the transfinite semantic tree method. J. ACM,
38(3):558–586, July 1991.

[Kap92] D. Kapur, editor. Automated Deduction - CADE-11, 11th International
Conference on Automated Deduction, Saratoga Springs, NY, USA, June
15-18, 1992, Proceedings, volume 607 of LNCS. Springer, 1992.

[KK06] C Kirchner and H. Kirchner. Rewriting Solving Proving. LORIA, INRIA
and CNRS, 2006. Available from www.loria.fr/~ckirchne/=rsp/rsp.

pdf.

[KL80] S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path
ordering. Unpublished manuscript, 1980.

[LC06] G. T. Leavens and Y. Cheon. Design by Contract with JML. Available from
http://www.jmlspecs.org, 2006.

[LKP07] G. T. Leavens, J. R. Kiniry, and E. Poll. A JML Tutorial: Modular Speci-
fication and Verification of Functional Behavior for Java. In W. Damm and
H. Hermanns, editors, Proc. of 19th International Conference on Computer
Aided Verification (CAV’2007), volume 4590 of LNCS, page 37, Berlin, Ger-
many, 2007. Springer.

[LM02] C. Lynch and B. Morawska. Automatic Decidability. In Proc. of 17th
IEEE Symposium on Logic in Computer Science (LICS’2002), pages 7–16,
Copenhagen, Denmark, July 2002. IEEE Computer Society.

[LP08] K.R.M. Leino and Müller P. Using the Spec# Language, Methodology,
and Tools to Write Bug-Free Programs. In Peter Müller, editor, LASER
Summer School, volume 6029 of LNCS, pages 91–139. Springer, 2008.

[LRRT11] C. Lynch, S. Ranise, C. Ringeissen, and D.-K. Tran. Automatic Decidability
and Combinability. J. Inf. Comput, 209(7):1026–1047, 2011.

[LT07] C. Lynch and D.K. Tran. Automatic Decidability and Combinability Revis-
ited. In Frank Pfenning, editor, Proc. of 21st International Conference on
Automated Deduction (CADE’2007), volume 4603 of LNCS, pages 328–344,
Bremen, Germany, 2007. Springer.

150

[Mar07] C. Marché. Towards Modular Algebraic Specifications for Pointer Programs:
a Case Study. In Rewriting, Computation and Proof, volume 4600 of LNCS,
pages 235–258. Springer, 2007.

[Mar09] C. Marché. The Krakatoa tool for Deductive Verification of Java Programs.
Winter School on Object-Oriented Verification, Viinistu, Estonia, January
2009. http://krakatoa.lri.fr/ws/.

[MOMV05] N. Martí-Oliet, J. Meseguer, and A. Verdejo. Towards a Strategy Language
for Maude. Electr. Notes Theor. Comput. Sci., 117:417–441, January 2005.

[MZ02] Z. Manna and C.G. Zarba. Combining Decision Procedures. In B.K. Aich-
ernig and T. S. E. Maibaum, editors, 10th Anniversary Colloquium of UN-
U/IIST, volume 2757 of LNCS, pages 381–422, Lisbon, Portugal, 2002.
Springer.

[NO79] N. Nelson and D. C. Oppen. Simplification by cooperating decision proce-
dures. ACM Trans. Program. Lang. Syst., 1:245–257, 1979.

[NR92] R Nieuwenhuis and A. Rubio. Theorem Proving with Ordering Constrained
Clauses. In Kapur [Kap92], pages 477–491.

[NR01] R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving.
In J. A. Robinson and A. Voronkov, editors, Handbook of Automated Rea-
soning, pages 371–443. Elsevier and MIT Press, 2001.

[NRR09a] E. Nicolini, C. Ringeissen, and M. Rusinowitch. Combinable Extensions
of Abelian Groups. In R. A. Schmidt, editor, Proc. of 22nd International
Conference on Automated Deduction (CADE’2009), volume 5663 of LNCS,
pages 51–66, Montreal, Canada, 2009. Springer.

[NRR09b] E. Nicolini, C. Ringeissen, and M. Rusinowitch. Data Structures with
Arithmetic Constraints: A Non-disjoint Combination. In S. Ghilardi and
R. Sebastiani, editors, Proc. of 7th International Symposium on Frontiers of
Combining Systems (FroCos’2009), volume 5749 of LNCS, pages 319–334.
Springer, 2009.

[NRR09c] E. Nicolini, C. Ringeissen, and M. Rusinowitch. Satisfiability Procedures
for Combination of Theories Sharing Integer Offsets. In S. Kowalewski and
A. Philippou, editors, Proc. of 15th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’2009),
volume 5505 of LNCS, pages 428–442, York, UK, 2009. Springer.

[NRR10] E. Nicolini, C. Ringeissen, and M. Rusinowitch. Combining Satisfiability
Procedures for Unions of Theories with a Shared Counting Operator. Fun-
dam. Inform., 105(1-2):163–187, 2010.

[Pet83] G.E. Peterson. A Technique for Establishing Completeness Results in The-
orem Proving with Equality. SIAM J. Comput., 12(1):82–100, 1983.

151

Bibliography

[Rob65] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Prin-
ciple. J. ACM, 12(1):23–41, 1965.

[RS11] C. Ringeissen and V. Senni. Modular Termination and Combinability for
Superposition Modulo Counter Arithmetic. In C. Tinelli and V. Sofronie-
Stokkermans, editors, Proc. of 8th International Symposium on Frontiers of
Combining Systems (FroCoS’2011), volume 6989 of LNCS, pages 211–226,
Saarbrücken, Germany, 2011. Springer.

[Rus91] M. Rusinowitch. Theorem-Proving with Resolution and Superposition. J.
Symb. Comput., 11(1/2):21–49, 1991.

[RV01] A. Riazanov and A. Voronkov. Splitting Without Backtracking. In B. Nebel,
editor, Proc. of 17th Int. Joint Conference on Artificial Intelligence (IJ-
CAI’2001), pages 611–617, Seattle, Washington, USA, 2001. Morgan Kauf-
mann.

[RW69] G. Robinson and L. Wos. Paramodulation and theorem proving in first-
order theories with equality. Machine Intelligence, (4):135–160, 1969.

[Sch02] S. Schulz. E - a brainiac theorem prover. AI Commun., 15(2-3):111–126,
2002.

[SO08] M. Sozeau and N. Oury. First-Class Type Classes. In Otmane Aït Mo-
hamed, César A. Muñoz, and Sofiène Tahar, editors, Proc. of 21st Int.
Conference on Theorem Proving in Higher Order Logics (TPHOLs’2008),
volume 5170 of LNCS, pages 278–293, Montreal, Canada, 2008. Springer.

[Spi92] J.M. Spivey. Z Notation - a reference manual (2. ed.). Prentice Hall Inter-
national Series in Computer Science. Prentice Hall, 1992.

[TCDT06] The Coq Development Team. The Coq Proof Assistant Reference Manual
– Version V8.1, 2006. http://coq.inria.fr.

[TGRK12] E. Tushkanova, A. Giorgetti, C. Ringeissen, and O. Kouchnarenko. A Rule-
Based Framework for Building Superposition-Based Decision Procedures.
In F. Durán, editor, Proc. of 9th Int. Workshop on Rewriting Logic and Its
Applications (WRLA’2012), volume 7571 of LNCS, pages 221–239, Tallinn,
Estonia, 2012. Springer.

[Tra07] D.-K. Tran. Conception de Procédure de Décision par Combinaison et Sat-
uration. PhD thesis, LORIA – Université Henri Poincaré, Nancy, France,
2007.

[TRRK10] D.-K Tran, C. Ringeissen, S. Ranise, and H. Kirchner. Combination of
convex theories: Modularity, deduction completeness, and explanation. J.
Symb. Comput., 45(2):261–286, 2010.

152

[WDF+09] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wis-
chnewski. SPASS Version 3.5. In R. Schmidt, editor, Proc. of 22nd Inter-
national Conference on Automated Deduction, (CADE’09), volume 5663 of
LNAI, pages 140–145, Montreal (Canada), 2009. Springer.

153

Bibliography

154

Résumé

Dans cette thèse, on étudie des problèmes liés à la vérification de systèmes (logiciels). On s’intéresse
plus particulièrement à la conception sûre de procédures de décision utilisées en vérification. De plus, on
considère également un problème de modularité pour un langage de modélisation utilisé dans la plateforme
de vérification Why.

De nombreux problèmes de vérification peuvent se réduire à un problème de satisfaisabilité modulo
des théories (SMT). Pour construire des procédures de satisfaisabilité, Armando et al. ont proposé en
2001 une approche basée sur la réécriture. Cette approche utilise un calcul général pour le raisonnement
équationnel appelé paramodulation. En général, une application équitable et exhaustive des règles du
calcul de paramodulation (PC) conduit à une procédure de semi-décision qui termine sur les entrées
insatisfaisables (la clause vide est alors engendrée), mais qui peut diverger sur les entrées satisfaisables.
Mais ce calcul peut aussi terminer pour des théories intéressantes en vérification, et devient ainsi une
procédure de décision. Pour raisonner sur ce calcul, un calcul de paramodulation schématique (SPC)
a été étudié, en particulier pour prouver automatiquement la décidabilité de théories particulières et
de leurs combinaisons. L’avantage de ce calcul SPC est que s’il termine sur une seule entrée abstraite,
alors PC termine pour toutes les entrées concrètes correspondantes. Plus généralement, SPC est un
outil automatique pour vérifier des propriétés de PC telles que la terminaison, la stable infinité et la
complétude de déduction.

Une contribution majeure de cette thèse est un environnement de prototypage pour la conception et
la vérification de procédures de décision. Cet environnement, basé sur des fondements théoriques, est
la première implantation du calcul de paramodulation schématique. Il a été complètement implanté sur
la base solide fournie par le système Maude mettant en œuvre la logique de réécriture. Nous montrons
que ce prototype est très utile pour dériver la décidabilité et la combinabilité de théories intéressantes en
pratique pour la vérification.

Cet environnement est appliqué à la conception d’un calcul de paramodulation schématique dédié à
une arithmétique de comptage. Cette contribution est la première extension de la notion de paramodu-
lation schématique à une théorie prédéfinie. Cette étude a conduit à de nouvelles techniques de preuve
automatique qui sont différentes de celles utilisées manuellement dans la littérature. Les hypothèses per-
mettant d’appliquer nos techniques de preuves sont faciles à satisfaire pour les théories équationnelles
avec opérateurs de comptage. Nous illustrons notre contribution théorique sur des théories représentant
des extensions de structures de données classiques comme les listes ou les enregistrements.

Nous avons également contribué au problème de la spécification modulaire pour les classes et méthodes
Java génériques. Nous proposons des extensions du language de modélisation Krakatoa, faisant partie
de la plateforme Why qui permet de prouver qu’un programme C ou Java est correct par rapport à sa
spécification. Les caractéristiques essentielles de notre apport sont l’introduction de la paramétricité à la
fois pour les types et les théories, ainsi qu’une relation d’instantiation entre les théories. Les extensions
proposées sont illustrées sur deux exemples significatifs: tri de tableaux et fonctions de hachage.

Les deux problèmes traités dans cette thèse ont pour point commun les solveurs SMT. Les procé-
dures de décision sont les moteurs des solveurs SMT, et la plateforme Why engendre des conditions de
vérification dérivées d’un programme source annoté, qu’elle transmet aux solveurs SMT (ou assistants de
preuve) pour vérifier la correction du programme.

Mots-clés: Procédures de décision, Paramodulation, Saturation Schématique, Combinaison

Abstract

In this thesis we address problems related to the verification of software-based systems. We are
mostly interested in the (safe) design of decision procedures used in verification. In addition, we also
consider a modularity problem for a modeling language used in the Why verification platform.

Many verification problems can be reduced to a satisfiability problem modulo theories (SMT). In order
to build satisfiability procedures Armando et al. have proposed in 2001 an approach based on rewriting.
This approach uses a general calculus for equational reasoning named paramodulation. In general, a
fair and exhaustive application of the rules of paramodulation calculus (PC) leads to a semi-decision
procedure that halts on unsatisfiable inputs (the empty clause is then generated) but may diverge on
satisfiable ones. Fortunately, it may also terminate for some theories of interest in verification, and thus
it becomes a decision procedure. To reason on the paramodulation calculus, a schematic paramodulation
calculus (SPC) has been studied, notably to automatically prove decidability of single theories and of
their combinations. The advantage of SPC is that if it halts for one given abstract input, then PC halts
for all the corresponding concrete inputs. More generally, SPC is an automated tool to check properties
of PC like termination, stable infiniteness and deduction completeness.

A major contribution of this thesis is a prototyping environment for designing and verifying deci-
sion procedures. This environment, based on the theoretical studies, is the first implementation of the
schematic paramodulation calculus. It has been implemented from scratch on the firm basis provided by
the Maude system based on rewriting logic. We show that this prototype is very useful to derive decid-
ability and combinability of theories of practical interest in verification. It helps testing new saturation
strategies and experimenting new extensions of the original (schematic) paramodulation calculus.

This environment has been applied for the design of a schematic paramodulation calculus dedicated to
the theory of Integer Offsets. This contribution is the first extension of the notion of schematic paramod-
ulation to a built-in theory. This study has led to new automatic proof techniques that are different from
those performed manually in the literature. The assumptions to apply our proof techniques are easy
to satisfy for equational theories with counting operators. We illustrate our theoretical contribution on
theories representing extensions of classical data structures such as lists and records.

We have also addressed the problem of modular specification of generic Java classes and methods.
We propose extensions to the Krakatoa Modeling Language, a part of the Why platform for proving
that a Java or C program is a correct implementation of some specification. The key features are
the introduction of parametricity both for types and for theories and an instantiation relation between
theories. The proposed extensions are illustrated on two significant examples: the specification of the
generic method for sorting arrays and for generic hash map.

Both problems considered in this thesis are related to SMT solvers. Firstly, decision procedures are
at the core of SMT solvers. Secondly, the Why platform extracts verification conditions from a source
program annotated by specifications, and then transmits them to SMT solvers or proof assistants to check
the program correctness.

Keywords: Decision procedures, Paramodulation, Schematic Saturation, Combination

