Maîtrise structurale de matériaux par fabrication additive en vue d'applications bio-médicales

par David Joguet

Thèse de doctorat en Matériaux

Sous la direction de Hanlin Liao et de Sophie Costil.

Soutenue le 15-02-2013

à Belfort-Montbéliard , dans le cadre de École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; Dijon ; Belfort) , en partenariat avec IRTES. LERMPS (laboratoire) .

Le président du jury était Dominique Grevey.

Le jury était composé de Hanlin Liao, Sophie Costil, Dominique Grevey, Alain Bernard, Hervé Pelletier, Francis Tourenne.

Les rapporteurs étaient Alain Bernard, Hervé Pelletier.


  • Résumé

    De nos jours, le domaine des implants est un des enjeux important pour notre civilisation pour permettre d’améliorer notre quotidien. Pour ce faire, une large offre de matériaux et de technologies existe offrant de nombreuses possibilités afin de répondre aux attentes chirurgicales. Plusieurs familles de matériaux coexistent : les polymères, les céramiques et les matériaux métalliques ainsi que différents procédés de mise en forme. Parmi ceux-ci, le procédé de micro fusion laser sur lit de poudre est un procédé prometteur permettant de réaliser des pièces de géométries complexes. C’est précisément cette technologie qui a été retenue. Pour cela, afin d’approfondir la connaissance du procédé et évaluer l’impact des paramètres sur les structures métallographiques, une orientation se tournant vers des matériaux métalliques tels que le CoCrMo et le titane T40 a été envisagée.Ainsi, les objectifs de la thèse ont été de générer un matériau possédant de bonnes caractéristiques mécaniques ainsi qu’en faciliter son intégration dans un milieu biologique (implants). Pour ce faire, une structure de porosité contrôlée (pour faciliter le développement tissulaire) avec des propriétés mécaniques adaptées aux sollicitations est nécessaire. Le premier travail effectué fut donc une recherche préliminaire afin d’approfondir la connaissance du procédé, en particulier d’un point de vue énergétique et thermique. Afin d’identifier et d’évaluer l’impact des paramètres sur le taux de porosité et donc les propriétés mécaniques de la pièce, une méthode statistique de type Taguchi a été utilisée. Au travers de cette analyse, il est apparu que 3 paramètres inhérents au procédé (la distance entre tache laser, temps d’exposition et le pas de balayage) expliquent prêt de 80% des résultats. De plus, il est mis en évidence que les propriétés mécaniques d’une structure (module de Young et résistance à la rupture) peuvent être maitrisées grâce au taux de porosité de cette dernière et permettre ainsi un rapprochement des propriétés mécaniques de l’os cortical. Pour ce faire, des caractérisations mécaniques ont donc été réalisées pour évaluer le module de Young et la résistance à la rupture des pièces avec différentes structures. Une maîtrise des propriétés peut donc être envisagée et peut même être adaptée en réalisant des structures mixtes alliant partie dense et partie poreuse.

  • Titre traduit

    Microstructural control of materials using additive manufacturing for biomedical application


  • Résumé

    Nowadays, the field of implants is one of the major challenges for our civilization to help improve our lives. To do this, a wide range of materials and technologies are offering many opportunities to meet the surgical needs. Several types of materials exist: polymers, ceramics and metal as well as different methods of shaping materials. Among them , the process of micro fusion laser powder bed is a promising method for producing parts with complex geometries. It is this technology that has been used. To do this, in order to deepen the knowledge of the process and evaluate the impact of parameters on the metallographic structures , guidance , turning to metallic materials such as CoCrMo and titanium T40 was considered.Thus, the objectives of the thesis were to generate a material with good mechanical properties as well as ease of integration in a biological medium ( implants) . To do this, a controlled pore structure (to facilitate tissue development ) with properties adapted to mechanical stress is required. The first work was therefore a preliminary research to deepen understanding of the process , particularly an energy and thermal point of view . To identify and assess the impact of parameters on the porosity and therefore the mechanical properties of the part , a statistical method of Taguchi type was used. Through this analysis, it appeared that three parameters inherent to the process ( the distance between laser spot exposure and no scanning time ) explain 80% loan results. Moreover, it is highlighted that the mechanical properties of a structure ( Young's modulus and tensile strength ) can be controlled through the porosity of the latter and thus permit reconciliation of the mechanical properties of cortical bone . To do this , mechanical characterizations were therefore conducted to evaluate the Young's modulus and tensile strength of parts with different structures. A control properties can be considered and can even be adapted by making composite structures combining dense part and porous part .


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?