Quasi stationary distributions when infinity is an entrance boundary : optimal conditions for phase transition in one dimensional Ising model by Peierls argument and its consequences

par Jorge Andrés Littin Curinao

Thèse de doctorat en Mathématiques

Sous la direction de Pierre Picco et de Servet Martinez Aguilera.

Le président du jury était Jaime San Martín.

Le jury était composé de Enrique Andjel.

  • Titre traduit

    Distributions quasi-stationnaires quand l'infini est une frontière d'entrée : conditions optimales pour une transition de phase dans le modèle d'Ising en une dimension par un argument de Peierls et diverses conséquences


  • Résumé

    Cette thèse comporte deux chapitres principaux. Deux problèmes indépendants de Modélisation Mathématique y sont étudiés. Au chapitre 1, on étudiera le problème de l’existence et de l’unicité des distributions quasi-stationnaires (DQS) pour un mouvement Brownien avec dérive, tué en zéro dans le cas où la frontière d’entrée est l’infini et la frontière de sortie est zéro selon la classification de Feller.Ce travail est lié à l’article pionnier dans ce sujet  par Cattiaux, Collet, Lambert, Martínez, Méléard, San Martín; où certaines conditions suffisantes ont été établies pour prouver l’existence et l’unicité de DQS dans le contexte d’une famille de Modèles de Dynamique des Populations.Dans ce chapitre, nous généralisons les théorèmes les plus importants de ce travail pionnier, la partie technique est basée dans la théorie de Sturm-Liouville sur la demi-droite positive. Au chapitre 2, on étudiera le problème d’obtenir des bornes inférieures optimales sur l’Hamiltonien du Modèle d’Ising avec interactions à longue portée, l’interaction entre deux spins situés à distance d décroissant comme d^(2-a), où a ϵ[0,1).Ce travail est lié à l’article publié en 2005 par Cassandro, Ferrari, Merola, Presutti où les bornes inférieures optimales sont obtenues dans le cas où a est dans [0,(log3/log2)-1) en termes de structures hiérarchiques appelées triangles et contours.Les principaux théorèmes obtenus dans cette thèse peuvent être résumés de la façon suivante:1. Il n’existe pas de borne inférieure optimale pour l’Hamiltonien en termes de triangles pour a dans ϵ[log2/log3,1). 2. Il existe une borne optimale pour l’Hamiltonien en termes de contours pour a dans a ϵ [0,1).


  • Résumé

    This thesis contains two main Chapters, where we study two independent problems of Mathematical Modelling : In Chapter 1, we study the existence and uniqueness of Quasi Stationary Distributions (QSD) for a drifted Browian Motion killed at zero, when $+infty$ is an entrance Boundary and zero is an exit Boundary according to Feller's classification. The work is related to the previous paper published in 2009 by { Cattiaux, P., Collet, P., Lambert, A., Martínez, S., Méléard, S., San Martín, where some sufficient conditions were provided to prove the existence and uniqueness of QSD in the context of a family of Population Dynamic Models. This work generalizes the most important theorems of this work, since no extra conditions are imposed to get the existence, uniqueness of QSD and the existence of a Yaglom limit. The technical part is based on the Sturm Liouville theory on the half line. In Chapter 2, we study the problem of getting quasi additive bounds on the Hamiltonian for the Long Range Ising Model when the interaction term decays according to d^{2-a}, a ϵ[0,1). This work is based on the previous paper written by Cassandro, Ferrari, Merola, Presutti, where quasi-additive bounds for the Hamiltonian were obtained for a in [0,(log3/log2)-1) in terms of hierarchical structures called triangles and Contours. The main theorems of this work can be summarized as follows: 1 There does not exist a quasi additive bound for the Hamiltonian in terms of triangles when a ϵ [0,(log3/log2)-1), 2. There exists a quasi additive bound for the Hamiltonian in terms of Contours for a in [0,1).


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.