Continuité des *- représentations et opérateurs de Hankel

par Wael Al homsi

Thèse de doctorat en Mathématiques

Sous la direction de El Hassan Youssfi.

Le président du jury était Friedrich Haslinger.

Le jury était composé de Omar El Fallah, Alexander Borichev.

Les rapporteurs étaient Friedrich Haslinger, Mohamed Zarrabi.


  • Résumé

    Continuité des *-représentations et opérateurs de Hankel Cette thèse est comporte deux parties indépendantes. Dans le première partie de ce travail, nous établissons une condition nécessaire et suffisante pour qu'une *-représentation d'un *-semi-groupe abélien topologique S est continu à l'identité e de S. Les résultats sont obtenus moyennant un théorème de représentation intégrale par rapport à une mesure portée par les semi caractères continus. Nous donnons ensuite diverses applications de ces résultats. La deuxième partie de cette thèse traite les opérateurs de Hankel de symboles anti-méromorphes sur les couronne. Dans un premier lieu on met en place le cadre de la théorie générale des opérateurs de Hankel associée à un espace de Hilbert de fonctions holomorphes A^2(µ) de carré intégrable par rapport à une mesure admettant des moments d'indice relatif. Ensuite, nous montrons que l'espace des polynômes de Laurent est dense dans A^2(µ) cela nous permet de définir de façon claire les opérateurs de Hankel et étudier leurs propriétés spectrales. En particulier, pour de nombreux exemples, nous établissons des conditions nécessaires et suffisantes, en termes des moments, garantissant la continuité, la compacité et l'appartenance aux classes de Schatten de ces opérateurs de Hankel.

  • Titre traduit

    continuity of *-representation and Hankel operators


  • Résumé

    Continuity of *-representation and Hankel operators This thesis consists of two independent parts. In the first part of this work, we establish a necessary and sufficient condition for a *-representation a *-semigroup abelian topological S is continuous at the identity e of S. The results are obtained by means of a theorem of integral representation with respect to a measure supported by continuous semi characters. We then give several applications of these results. The second part of this thesis deals with Hankel operators anti-meromorphic symbols on an annulus. In the first place we put in place the framework of the general theory of Hankel operators associated with a Hilbert space of holomorphic functions A^2(μ) of square integrable with respect to a measure admitting relative index times. Next, we show that the space of Laurent polynomials is dense in A ^ 2 ( μ ) it allows us to clearly define the Hankel operators and study their spectral properties. In particular, many examples, we establish necessary and sufficient conditions, in terms of time, ensuring continuity compactness and Schatten classes of membership of the Hankel operators.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?