Mécanique du mouvement rapide de la plante carnivore Dionée : mesures élasto-hydrodynamiques à l'échelle de la cellule et du tissu - conséquences pour le mécanisme de fermeture

par Mathieu Colombani

Thèse de doctorat en Mécanique et Physique des Fluides

Sous la direction de Yoël Forterre.

Le président du jury était Emmanuel de Langre.

Les rapporteurs étaient Xavier Noblin, Arezki Boudaoud.


  • Résumé

    Bien qu’elles ne disposent pas de muscles, les plantes ont réussi à développer un nombre remarquable de mécanismes permettant de créer des mouvements rapides, du repliement rapide des feuilles de mimosa pudica à la dispersion de graines par explosion. Parmi ces exemples spectaculaires qui ont depuis longtemps fasciné les scientifiques, la plante carnivore dionée, dont les feuilles se referment en une fraction de secondes pour capturer des insectes, fait figure de paradigme. Récemment, nous avons montré que ce mouvement met en jeu une instabilité de flambage élastique, due à la forme de coque mince des feuilles du piège. Cependant, l’origine microscopique du mouvement qui permet à la plante de franchir le seuil d’instabilité et de changer activement sa courbure reste méconnue. Dans cette thèse nous étudions ce mouvement actif en utilisant un dispositif micro-fluidique, la sonde de pression, qui donne accès directement aux paramètres élastiques et hydrodynamiques à l’échelle de la cellule (pression osmotique, perméabilité cellulaire, élasticité de la paroi, ...). Nos résultats remettent en question le rôle des flux d’eau d’origine osmotique souvent mis en avant pour expliquer la fermeture active du piège de la dionée. De plus, nous développons un dispositif de micro indentation original utilisant un rhéomètre, pour mesurer la réponse locale des tissus et les propriétés mécaniques des épidermes interne et externe. Nous mesurons une signature claire du mouvement actif de la dionée, et fournissons ainsi de nouveaux arguments pour discuter le mécanisme de fermeture, et plus généralement les mouvements rapides dans les plantes.

  • Titre traduit

    Mechanics of rapid motion in the Venus Flytrap


  • Résumé

    Although they lack muscle, plants have evolved a remarkable range of mechanisms to create rapid motion, from the rapid folding of sensitive plants to seed dispersal. Of these spectacular examples that have long fascinated scientists, the carnivorous plant Venus flytrap, whose leaves snap together in a fraction of second to capture insects, has long been a paradigm for study. Recently, we have shown that this motion involves a snap-buckling instability due to the shell-like geometry of the leaves of the trap. However, the origin of the movement that allows the plant to cross the instability threshold and actively bend remains largely unknown. In this study, we investigate this active motion using a micro-fluidic pressure probe that gives direct hydraulic and mechanical measurements at the cellular level (osmotic pressure, cell membrane permeability, cell wall elasticity). Our results challenge the role of osmotically-driven water flows usually put forward to explain Venus flytrap’s active closure. Moreover, we developp a micro-indentation original setup using a rheometer, to measure the local tissue response and mechanical properties of the lower and upper epidermis. Then, we detect a clear signature of the active movement in the Venus Flytrap, and thus provide new arguments to discuss this mechanism, and more generally the movements in plants.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?