Cyclic vectors in some spaces of analytic functions.

par Abdelouahab Hanine

Thèse de doctorat en Mathematiques

Sous la direction de Alexander Borichev et de Omar El Fallah.

Le président du jury était John B. Conway.

Le jury était composé de Karim Kellay, Alfonso Montes-Rodriguez, El Hassan Zerouali, El Hassan Youssfi.

Les rapporteurs étaient Azzedine Baalal, Pascal Thomas.


  • Résumé

    Cette thèse est consacrée à l'étude du problème de la cyclicité dans certains espaces de fonctions analytiques sur le disque unité. Nous nous intéressons aux espaces de type Bergman et aux espaces de type Korenblum. Dans la première partie, nous étudions les fonctions cycliques dans les espaces de type Korenblum en utilisant la notion des prémesures. Cette notion a été introduite et développée par B. Korenblum au début des années 1970s. En particulier, nous donnons une réponse positive à une conjecture énoncée par C. Deninger. Dans la deuxième partie, nous utilisons la méthode de la résolvante pour étudier la cyclicité des fonctions intérieures singulières associées aux mesures de Dirac dans les espaces de type Bergman à poids.


  • Résumé

    In this thesis, we study the cyclicity problem in some spaces of analytic functions on the open unit disc. We focus our attention on Korenblum type spaces and on weighted Bergman type spaces. First, we use the technique of premeasures, introduced and developed by Korenblum in the 1970-s and the 1980-s, to give a characterization of cyclic functions in the Korenblum type spaces. In particular, we give a positive answer to a conjecture by Deninger. Second, we use the so called resolvent transform method to study the cyclicity of the one point mass singular inner function in weighted Bergman type spaces, especially with weights depending on the distance to a subset of the unit circle.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.