Prévisions hydrologiques d’ensemble : développements pour améliorer la qualité des prévisions et estimer leur utilité

par Ioanna Zalachori

Thèse de doctorat en Hydrologie

Sous la direction de Cécile Loumagne et de Maria Helena Domingues Ramos.

Le président du jury était Cyril Kao.

Le jury était composé de Maria Helena Domingues Ramos, Cyril Kao, Jocelyn Gaudet, Éric Martin, Rémy Garçon.

Les rapporteurs étaient Anne-Catherine Favre Pugin, Massimiliano Zappa.


  • Résumé

    La dernière décennie a vu l'émergence de la prévision probabiliste de débits en tant qu'approche plus adaptée pour l'anticipation des risques et la mise en vigilance pour lasécurité des personnes et des biens. Cependant, au delà du gain en sécurité, la valeur ajoutée de l'information probabiliste se traduit également en gains économiques ou en une gestion optimale de la ressource en eau disponible pour les activités économiques qui en dépendent. Dans la chaîne de prévision de débits, l'incertitude des modèles météorologiques de prévision de pluies joue un rôle important. Pour pouvoir aller au-delà des limites de prévisibilité classiques, les services météorologiques font appel aux systèmes de prévision d'ensemble,générés sur la base de variations imposées dans les conditions initiales des modèlesnumériques et de variations stochastiques de leur paramétrisation. Des scénarioséquiprobables de l'évolution de l'atmosphère pour des horizons de prévision pouvant aller jusqu'à 10-15 jours sont ainsi proposés. L'intégration des prévisions météorologiques d'ensemble dans la chaîne de prévision hydrologique se présente comme une approche séduisante pour produire des prévisions probabilistes de débits et quantifier l'incertitude prédictive totale en hydrologie.

  • Titre traduit

    Hydrological ensemble forecasts : developments to improve their quality and estimate their utility.


  • Résumé

    The last decade has seen the emergence of streamflow probabilistic forecasting as the most suitable approach to anticipate risks and provide warnings for public safety and property protection. However, beyond the gains in security, the added‐value of probabilistic information also translates into economic benefits or an optimal management of water resources for economic activities that depend on it.In streamflow forecasting, the uncertainty associated with rainfall predictions from numerical weather prediction models plays an important role. To go beyond the limits of classical predictability, meteorological services developed ensemble prediction systems, which are generated on the basis of perturbations of the initial conditions of the models and stochastic variations in their parameterization. Equally probable scenarios of the evolution of the atmosphere are proposed for forecasting horizons up to 10‐15 days.The integration of weather ensemble predictions in the hydrological forecasting chain is an interesting approach to produce probabilistic streamflow forecasts and quantify the total predictive uncertainty in hydrology. Last and final summary in the thesis.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : AgroParisTech. Centre de Paris Claude Bernard. Bibliothèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.