Évolution de profils multi-attributs, par apprentissage automatique et adaptatif dans un système de recommandation pour l'aide à la décision

par Arnaud Martin

Thèse de doctorat en Intelligence artificielle

Sous la direction de Pascale Zaraté et de Guy Camilleri.

Soutenue en 2012

à Toulouse 3 .

  • Titre traduit

    Evolution of multi-attributes' profile by adaptative machine learinig in a recommender system for decision support


  • Pas de résumé disponible.


  • Résumé

    La prise en compte des profils utilisateurs ainsi que leurs évolutions, dans le domaine de l'aide à la décision, constitue actuellement dans la communauté des SIAD (Systèmes Interactifs d'Aide à la Décision) un enjeu important. En effet, la prise en compte du contexte lors de la décision est actuellement émergente pour les SIAD. Ces systèmes d'assistance offrent ainsi des conseils aux utilisateurs en se basant sur leur profil, qui représente leurs préférences à travers une liste de critères valués. Les principales contraintes viennent du fait qu'il est nécessaire que le système puisse amener de l'information pertinente de manière continue. Cela oblige donc à faire évoluer les profils des utilisateurs en fonction de leurs actions. Pour cela, le système ne doit pas seulement " comprendre " ce que l'utilisateur aime, mais également pourquoi. De plus, l'aide apportée aux utilisateurs évoluera donc dans le temps et également par rapport à l'utilisateur. Ainsi l'utilisateur aura à sa disposition une sorte d'assistant personnalisé. L'objectif du travail consiste à apporter une aide à l'activité de l'utilisateur en fonction de son profil. Pour cela, nous proposons de mettre en œuvre et de développer des algorithmes, basés sur des techniques issues du domaine de l'apprentissage, afin de faire évoluer le profil d'un utilisateur en fonction de ses actions. L'aide apportée à l'utilisateur par le système évoluera aussi en fonction de l'évolution de son profil. Le problème à traiter pour l'utilisateur est un problème de prise de décision. Pour ce problème, une assistance est apportée à l'utilisateur, et celle-ci se fait par un affinage des solutions potentielles. Cet affinage est effectué grâce à la mise en place d'un tri (ranking) évolutif des solutions qui sont présentées à l'utilisateur en fonction de son/ses profils. La réalisation d'un tel système nécessite l'articulation des trois principaux domaines de recherche ; qui sont l'Aide à la Décision multicritère, la Décomposition et Agrégation de préférence, et l'Apprentissage automatique. Les domaines de l'Aide à la Décision multicritère et de la Décomposition et Agrégation de préférence peuvent être aussi rassemblés en tant que Procédure d'Agrégation Multicritère (PAMC). Certaines méthodes d'Aide à la Décision multicritère sont mises en place ici et utilisent les données du profil afin d'apporter la meilleure aide possible à l'utilisateur. La décomposition est utilisée pour caractériser un objet afin de fournir à l'apprentissage les données nécessaires à son fonctionnement. L'agrégation quant à elle sert à obtenir une note sur un objet, et cela selon le profil de l'utilisateur, afin de pouvoir effectuer un classement (ranking). L'apprentissage sert à faire évoluer les profils des utilisateurs afin d'avoir toujours un profil représentant le plus fidèlement possible les préférences des utilisateurs. En effet les préférences des utilisateurs évoluant dans le temps, il est nécessaire de traiter ces changements afin d'adapter les réponses à apporter à l'utilisateur. Les contributions de cette thèse portent tout d'abord sur la définition, la construction et l'évolution d'un profil utilisateur (profiling évolutif) en fonction des actions explicites et implicites de l'utilisateur. Ce profiling évolutif est mis en œuvre au sein d'un système de recommandation utilisable sans base d'apprentissage, de manière synchrone et totalement incrémentale, et qui permet aux utilisateurs de changer rapidement de préférences et même d'être incohérents (rationalité limitée). Ce système, qui vient en complément d'un système de Recherche Information, a pour objectif d'établir un ordre total sur une liste d'éléments proposés à l'utilisateur (ranking), et ce en concordance avec les préférences de l'utilisateur. Ces contributions consistent également à la définition de techniques qui permettent d'apporter des parties de solutions à des verrous technologiques comme la désagrégation de critères et la prise en compte d'un nombre variable de critères dans le processus d'aide à la décision interactif, et ce sans définir au préalable de famille cohérente de critères sur laquelle est basée la décision. Plusieurs cadres applicatifs ont été définis afin d'évaluer le système par rapport à d'autres systèmes, mais également afin de tester ses performances de manière hors ligne avec des vraies données utilisateurs, ainsi qu'en ligne, en utilisant directement le système.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (209 p.)
  • Annexes : Bibliogr. p. 200-209

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2012 TOU3 0131
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.