Reconnaissance automatique du locuteur par des GMM à grande marge

par Reda Jourani

Thèse de doctorat en Image, information, hypermédia

Sous la direction de Régine André-Obrecht et de Driss Aboutajdine.

Soutenue en 2012

à Toulouse 3 en cotutelle avec l'Université Mohammed V-Agdal de Rabat .


  • Résumé

    Depuis plusieurs dizaines d'années, la reconnaissance automatique du locuteur (RAL) fait l'objet de travaux de recherche entrepris par de nombreuses équipes dans le monde. La majorité des systèmes actuels sont basés sur l'utilisation des Modèles de Mélange de lois Gaussiennes (GMM) et/ou des modèles discriminants SVM, i. E. , les machines à vecteurs de support. Nos travaux ont pour objectif général la proposition d'utiliser de nouveaux modèles GMM à grande marge pour la RAL qui soient une alternative aux modèles GMM génératifs classiques et à l'approche discriminante état de l'art GMM-SVM. Nous appelons ces modèles LM-dGMM pour Large Margin diagonal GMM. Nos modèles reposent sur une récente technique discriminante pour la séparation multi-classes, qui a été appliquée en reconnaissance de la parole. Exploitant les propriétés des systèmes GMM utilisés en RAL, nous présentons dans cette thèse des variantes d'algorithmes d'apprentissage discriminant des GMM minimisant une fonction de perte à grande marge. Des tests effectués sur les tâches de reconnaissance du locuteur de la campagne d'évaluation NIST-SRE 2006 démontrent l'intérêt de ces modèles en reconnaissance.

  • Titre traduit

    Speaker recognition using discriminative learning of large margin GMM


  • Résumé

    Most of state-of-the-art speaker recognition systems are based on Gaussian Mixture Models (GMM), trained using maximum likelihood estimation and maximum a posteriori (MAP) estimation. The generative training of the GMM does not however directly optimize the classification performance. For this reason, discriminative models, e. G. , Support Vector Machines (SVM), have been an interesting alternative since they address directly the classification problem, and they lead to good performances. Recently a new discriminative approach for multiway classification has been proposed, the Large Margin Gaussian mixture models (LM-GMM). As in SVM, the parameters of LM-GMM are trained by solving a convex optimization problem. However they differ from SVM by using ellipsoids to model the classes directly in the input space, instead of half-spaces in an extended high-dimensional space. While LM-GMM have been used in speech recognition, they have not been used in speaker recognition (to the best of our knowledge). In this thesis, we propose simplified, fast and more efficient versions of LM-GMM which exploit the properties and characteristics of speaker recognition applications and systems, the LM-dGMM models. In our LM-dGMM modeling, each class is initially modeled by a GMM trained by MAP adaptation of a Universal Background Model (UBM) or directly initialized by the UBM. The models mean vectors are then re-estimated under some Large Margin constraints. We carried out experiments on full speaker recognition tasks under the NIST-SRE 2006 core condition. The experimental results are very satisfactory and show that our Large Margin modeling approach is very promising.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (158 p.)
  • Annexes : Bibliogr. p. 133-146

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2012 TOU3 0092
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.