Optimization of memory management on distributed machine

par Viet Hai Ha

Thèse de doctorat en Informatique

Sous la direction de Éric Renault.

  • Titre traduit

    Optimisation de la gestion mémoire sur machines distribuées


  • Résumé

    Afin d'exploiter les capacités des architectures parallèles telles que les grappes, les grilles, les systèmes multi-processeurs, et plus récemment les nuages et les systèmes multi-cœurs, un langage de programmation universel et facile à utiliser reste à développer. Du point de vue du programmeur, OpenMP est très facile à utiliser en grande partie grâce à sa capacité à supporter une parallélisation incrémentale, la possibilité de définir dynamiquement le nombre de fils d'exécution, et aussi grâce à ses stratégies d'ordonnancement. Cependant, comme il a été initialement conçu pour des systèmes à mémoire partagée, OpenMP est généralement très limité pour effectuer des calculs sur des systèmes à mémoire distribuée. De nombreuses solutions ont été essayées pour faire tourner OpenMP sur des systèmes à mémoire distribuée. Les approches les plus abouties se concentrent sur l’exploitation d’une architecture réseau spéciale et donc ne peuvent fournir une solution ouverte. D'autres sont basées sur une solution logicielle déjà disponible telle que DMS, MPI ou Global Array, et par conséquent rencontrent des difficultés pour fournir une implémentation d'OpenMP complètement conforme et à haute performance. CAPE — pour Checkpointing Aided Parallel Execution — est une solution alternative permettant de développer une implémentation conforme d'OpenMP pour les systèmes à mémoire distribuée. L'idée est la suivante : en arrivant à une section parallèle, l'image du thread maître est sauvegardé et est envoyée aux esclaves ; puis, chaque esclave exécute l'un des threads ; à la fin de la section parallèle, chaque threads esclaves extraient une liste de toutes modifications ayant été effectuées localement et la renvoie au thread maître ; le thread maître intègre ces modifications et reprend son exécution. Afin de prouver la faisabilité de cette approche, la première version de CAPE a été implémentée en utilisant des points de reprise complets. Cependant, une analyse préliminaire a montré que la grande quantité de données transmises entre les threads et l’extraction de la liste des modifications depuis les points de reprise complets conduit à de faibles performances. De plus, cette version est limitée à des problèmes parallèles satisfaisant les conditions de Bernstein, autrement dit, il ne permet pas de prendre en compte les données partagées. L'objectif de cette thèse est de proposer de nouvelles approches pour améliorer les performances de CAPE et dépasser les restrictions sur les données partagées. Tout d'abord, nous avons développé DICKPT (Discontinuous Incremental ChecKPoinTing), une technique points de reprise incrémentaux qui supporte la possibilité de prendre des points de reprise discontinue lors de l'exécution d'un processus. Basé sur DICKPT, la vitesse d'exécution de la nouvelle version de CAPE a été considérablement augmenté. Par exemple, le temps de calculer une grande multiplication matrice-matrice sur un cluster des ordinateurs bureaux est devenu très similaire à la durée d'exécution d'un programme MPI optimisé. En outre, l'accélération associée à cette nouvelle version pour divers nombre de threads est assez linéaire pour différentes tailles du problème. Pour des données partagées, nous avons proposé UHLRC (Updated Home-based Lazy Relaxed Consistency), une version modifiée de la HLRC (Home-based Lazy Relaxed Consistency) modèle de mémoire, pour le rendre plus adapté aux caractéristiques de CAPE. Les prototypes et les algorithmes à mettre en œuvre la synchronisation des données et des directives et clauses de données partagées sont également précisées. Ces deux travaux garantit la possibilité pour CAPE de respecter des demandes de données partagées d'OpenMP


  • Résumé

    In order to explore further the capabilities of parallel computing architectures such as grids, clusters, multi-processors and more recently, clouds and multi-cores, an easy-to-use parallel language is an important challenging issue. From the programmer's point of view, OpenMP is very easy to use with its ability to support incremental parallelization, features for dynamically setting the number of threads and scheduling strategies. However, as initially designed for shared memory systems, OpenMP is usually limited on distributed memory systems to intra-nodes' computations. Many attempts have tried to port OpenMP on distributed systems. The most emerged approaches mainly focus on exploiting the capabilities of a special network architecture and therefore cannot provide an open solution. Others are based on an already available software solution such as DMS, MPI or Global Array and, as a consequence, they meet difficulties to become a fully-compliant and high-performance implementation of OpenMP. As yet another attempt to built an OpenMP compliant implementation for distributed memory systems, CAPE − which stands for Checkpointing Aide Parallel Execution − has been developed which with the following idea: when reaching a parallel section, the master thread is dumped and its image is sent to slaves; then, each slave executes a different thread; at the end of the parallel section, slave threads extract and return to the master thread the list of all modifications that has been locally performed; the master includes these modifications and resumes its execution. In order to prove the feasibility of this paradigm, the first version of CAPE was implemented using complete checkpoints. However, preliminary analysis showed that the large amount of data transferred between threads and the extraction of the list of modifications from complete checkpoints lead to weak performance. Furthermore, this version was restricted to parallel problems satisfying the Bernstein's conditions, i.e. it did not solve the requirements of shared data. This thesis aims at presenting the approaches we proposed to improve CAPE' performance and to overcome the restrictions on shared data. First, we developed DICKPT which stands for Discontinuous Incremental Checkpointing, an incremental checkpointing technique that supports the ability to save incremental checkpoints discontinuously during the execution of a process. Based on the DICKPT, the execution speed of the new version of CAPE was significantly increased. For example, the time to compute a large matrix-matrix product on a desktop cluster has become very similar to the execution time of the same optimized MPI program. Moreover, the speedup associated with this new version for various number of threads is quite linear for different problem sizes. In the side of shared data, we proposed UHLRC, which stands for Updated Home-based Lazy Release Consistency, a modified version of the Home-based Lazy Release Consistency (HLRC) memory model, to make it more appropriate to the characteristics of CAPE. Prototypes and algorithms to implement the synchronization and OpenMP data-sharing clauses and directives are also specified. These two works ensures the ability for CAPE to respect shared-data behavior


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Télécom SudParis & Télécom Ecole de Management. Médiathèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.