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"Nothing in life is to be feared, it is only to be understood. Now is the time to understand
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1 Repeat associated diseases

Diseases caused by unstable repeated DNA sequences represent a group of more than
40 inherited neurological, neurodegenerative or neuromuscular disorders. The diseases are
caused by the abnormal expansion of repeats of varying sequence and size, depending on the
disorder considered. Indeed, penta-, tetra- or tri-nucleotides, or even mini- or megasatellites
have been implicated in diseases. In addition, those abnormal repeats can be located in
different positions within genes, including 5’ or 3’ untranslated regions (5’ or 3’ UTR), introns
and exons. These various mutations result in different pathomechanisms, ranging from loss-of-
function mechanisms, due to silencing of the mutated gene (e.g. Fragile X syndrome (FXS) or
Friedreich ataxia (FRDA) to gain-of-function mechanisms, due to the production of toxic mRNA
(e.g. myotonic dystrophy type 1; DM1) or toxic mutant protein (e.g. Huntington’s disease; HD)
(Lopez Castel et al., 2010; McMurray, 2010; Pearson et al., 2005). Table 1 recapitulates the
main repeat associated disorders and their mutation characteristics (Guyenet SJ, 2005; Lopez

Castel et al., 2010; Pearson et al., 2005).

1.1 Trinucleotide repeat diseases

The most common subgroup of repeat-associated diseases is the trinucleotide repeat
(TNR) group, which accounts for more than 20 different diseases. The repetitive sequence
consists of CAG, CTG, GAA, CGG, or GAC trinucleotidic units, some examples are listed
hereafter.

The larger family of TNR disorders is the so-called group of polyglutamine (polyQ)
diseases, which are caused by expansion of CAG repeats in the coding region of the affected
genes, thereby encoding for a polyQ expansion in the corresponding proteins. To date, nine

polyQ diseases have been identified, including several dominant spinocerebellar ataxias (SCA 1,
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2, 3, 6, 7 and 17), Spinal Bulbar Muscular Atrophy (SBMA), DentatoRubral-PallidoLuysian
atrophy (DRPLA), and HD, the most frequent disease within the polyQ disorder group, with a
prevalence of 1/10000 (Roos, 2010).

CTG expansion at the 3" UTR of the DMPK gene causes DM1, a disease characterized by
a 1/8000 overall worldwide prevalence (Suominen et al., 2011). CTG repeats located in 3’ UTR
regions also lead to Huntington's disease-like 2 (HDL2) and SCA 8. In both diseases, bidirectional
expression of the CAG/CTG repeat expansion has been observed in patients, resulting in
expression of a non-translated CUG-containing mRNA and a polyQ-containing protein or
peptide. Both toxic entities are susceptible to contribute to pathogeneses (lkeda et al., 2008;
Moseley et al., 2006; Wilburn et al., 2011).

Expansion of GAA repeats in intron-1 of the frataxin gene causes FRDA, the most
common recessive ataxia, with a prevalence estimated to 1/50.000 in Caucasian populations
(Cossee et al., 1997). Expansion of CGG repeats in the 5" UTR of the FRAXA locus is involved in
FXS with a prevalence of 1/2500 in males (Hagerman, 2008), but also in fragile X tremor ataxia
syndrome (FXTAS), depending on the repeat length (Cohen et al., 2006). FXS is one of the most
common X-linked disease and one of the first trinucleotide mutations identified at the FMR1
locus with pre/postnatal genetic testing available (Arveiler et al., 1988; Heilig et al., 1988;
Oberle et al., 1991; Rousseau et al., 1991).

1.2 Toxicity of TNR

Repeat expansions resultin gain- or loss-of-function mechanisms. In HD and other polyQ
disorders, the polyQ expansion confers to mutant proteins a toxic gain of function. PolyQ
proteins form toxic aggregates, sequestering specific proteins and impairing specific cellular
pathways (Hands and Wyttenbach, 2011). Moreover, the aggregation of polyQ proteins induces
a toxic cellular stress (Bertoni et al., 2011; Cowan et al., 2003; Merienne et al., 2003). Finally,

the polyQ expansion may modify the affinity for some protein partners, affecting specific
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pathways (Gil and Rego, 2008; Han et al., 2010). For instance, in HD the mutant protein -called
Huntingtin (HTT)- is known to form large insoluble nuclear aggregates where some transcription
factors, including CREB-binding protein (CBP), are recruited, resulting in transcriptional
alteration of specific genes (Nucifora et al., 2001). Additionaly, mutant polyQ may influence
binding of these proteins to partners. For instance, HTT was described to interact with HAP1 to
promote axonal transport (Gunawardena et al.,, 2003; Li et al.,, 1995), disruption of the
efficiency of which in the case of HD, is probably caused by modification of this interaction by
the mutation, leading probably to the altered transport and neuropil aggregates observed in HD
models (Gauthier et al., 2004; Gunawardena and Goldstein, 2005; Zala et al., 2008). Recently, it
has proposed that the observed variations of interaction of HTT with its partners might be a
consequence of the aggregation properties of the mutant protein (Davranche et al., 2011).

Moreover, expanded RNA can also be a toxic entity. RNA associated gain-of-function has
been largely described in DM1. The mutant DMPK mRNA with CUG expansions forms RNA foci,
which aberrantly interact with RNA-binding proteins such as Muscleblind-like (MBNL). This in
turn results in upregulation of CELF proteins, including CUG binding protein 1 (CUGBP1). These
alterations lead to splicing and transcription dysregulation in DMPK expressing cells (O'Rourke
and Swanson, 2009; Ranum and Cooper, 2006; Wheeler and Thornton, 2007). Upregulation of
MBNL was also reported for a SCA3 Drosophila model, where RNA with toxic CAG repeats
conferred neuronal degeneration (Li et al., 2008). Flies expressing toxic ataxin-3 RNAs showed
an increase in Hsp70 expression, a polyQ suppressor, which limited the RNAs toxicity,
suggesting a possible dual action at the toxic RNA and protein level (Bonini, 2002; Shieh and
Bonini, 2011; Warrick et al., 1999).

Interestingly, in SCA 8, both protein and RNA gain of function mechanisms may
contribute to pathogenesis, due to bidirectional expression at the level of the SCA 8 locus (lkeda
et al., 2008). Transcription in the CTG direction leads to the production of RNA foci that
sequester MBNL1, while the transcript expressed in the CAG direction is translated into a small
polyQ-containing protein forming ubiquitinated aggregates (Daughters et al., 2009). Antisense
transcripts spanning CAG/CTG repeats have been described in SCA 7, HD, HDL2 and DM1 (Cho
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et al., 2005; Chung et al., 2011; Sopher et al., 2011; Wilburn et al., 2011), suggesting that the
SCA 8 situation may not be unique.

Furthermore, the recent study from Zu et al. raises the possibility for additional levels of
toxicity (Zu et al., 2010). Recently, non-ATG initiation of translation (RAN), leading to production
of protein tracts with different repetitive aminoacids, has been observed for DM1 and SCA 8.
These additional toxic entities may act synergistically on pathogenesis (Zu et al., 2010). These
examples highlight that the effects of CAG/CTG expansions are complex and warrant further
investigation.

Finally, loss-of-function mechanism is also involved in TNR diseases. In FRDA, the
intronic GAA expansion results in the transcriptional silencing of the frataxin gene (Campuzano
et al., 1996). Similarly loss-of-function by transcriptional silencing has been associated to FXS

(Sutcliffe et al., 1992).

1.3 Pathogenic threshold length of TNR

The size of the alleles implicated in TNR disorders is polymorphic in the normal
population; however, the numbers of trinucleotide repeats does not exceed a specific threshold
length. For most TNR diseases, a threshold length of 30 to 50 repeats needs to be reached to
lead to pathogenesis (Gatchel and Zoghbi, 2005; Lopez Castel et al., 2010). Polyalanine (polyA)
diseases, including OPMD, HOXA13 and HOXD13, as well as SCA 6, a polyQ disorder, represent
an exception to this rule, with a toxic threshold of 7 to 20 GCG repeats (Brais et al., 1998;
Goodman et al., 2000; Innis et al., 2004; Kato et al., 2000; Matsuyama et al., 1997; Mortlock et
al., 1996; Muragaki et al., 1996; Takiyama et al., 1998).

The numbers of TNR found in patients is variable between diseases. Thousands of
repeats can be transmitted to patients with DM1, FRDA or FRX. In contrast, in polyQ and polyA
diseases, the maximum repeat size is relatively short, likely due to the high toxicity of polyQ and
polyA proteins. For instance, in HD, while the normal repeat size ranges between 6 and 35 CAG

units, the pathological size rarely exceeds a hundred of repeats. Most HD patients carry 40 to
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50 CAG repeats, resulting in an onset during mid-life. Patients with larger repeats can develop a
juvenile form of the disease, characterized by an onset during childhood and very rapid
progression of symptoms (Duyao et al., 1993; Ranen et al., 1995; Zuhlke et al., 1993).

An interesting feature of some TNR loci is the existence of premutation alleles, as
opposed to alleles carrying a full length mutation, and characterized by an intermediate toxic
size. With this respect, the FRAXA locus is particularly interesting, as CGG expansions at the
FRAXA locus results in FRX or FXTAS, depending on the size of the repeat (Pirozzi et al., 2011). A
size of repeats between 56 and 200 lead to FXTAS results from a toxic gain of function of the
mutant CGG-containing RNA (Fu et al., 1991; Jin et al., 2003; Sellier et al., 2010; Sofola et al.,
2007), while FXS is caused by a CGG expansion greater than 200 units. In FXS, the expansion is
methylated, leading to suppression of Fmrl expression and a loss-of-function pathogenic

mechanism.

2 Instability of TNR

A hallmark of all TNR diseases is the instability of the expanded repeat, resulting in
contractions or expansions in both the germline and the somatic cells. TNR mutations are
therefore dynamic mutations, inducing a continuous change of mutant allele size in successive
generations through instability of germ cells and throughout patients’ life through instability of
somatic cells. (Table 1)

The level of TNR instability varies between diseases. For instance, somatic instability
occurs during development in the case of FRX, whereas in HD, it is observed in adulthood (HD)
and in DML1, it is observed during both development and adulthood. The tissues (and cells) that
undergo instability are selective and specific to each disease, though an overlap can exist. For
instance, the pattern of tissue selectivity of somatic instability is rather similar in all polyQ
diseases. Thus, the dual axis of “when and where” TNR instability occurs is variable among

diseases.
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Table 1. Main repeat associated disorders and their mutation characteristics.

[According to (Lopez Castel et al., 2010)]
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Table 1. Main repeat associated disorders and their mutation characteristics. (continued)

[According to (Lopez Castel et al., 2010)]
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2.1 TNR instability: where and when?
2.1.1 Germline instability of TNR

TNR diseases display repeat instability at the germ cell level, most ofte n resulting in
further expansion of the TNR size, though contractions are also observed (Aziz et al., 2011; De
Michele et al., 1998; Monckton et al., 1995; Moseley et al., 2000). Interestingly, depending on
the disease, paternal or maternal biases are observed, suggesting the involvement of disease-
specific processes related to spermatogenesis or oogenesis (Pearson et al., 2005). Germline
expansion can lead to an anticipation effect, corresponding to worsening of the disease in
successive generations, reported also as the “Sherman paradox” for FXS (Sherman et al., 1985;
Sherman et al., 1984). For instance, in HD, transmission by fathers of the mutation to offspring
tends to lead to increased severity of the disease, with an earlier onset and a more rapid
progression of symptoms. This is due to the production of mutant protein with a longer polyQ,
and therefore with increased toxicity.

Most polyQ diseases are actually characterized by a paternal expansion bias occurring
during spermatogenesis and exhibiting a mosaicism of repeat sizes in sperm. Precisely,
expansion bias was observed in patients suffering from DRPLA (lkeuchi et al., 1995b; Takiyama
et al., 1999), HD (Andrew et al., 1993; Duyao et al., 1993; Leeflang et al., 1995; Snell et al., 1993;
Telenius et al., 1995), and several SCAs [SCA 1 (Chung et al., 1993), SCA 2 (Riess et al., 1997),
SCA 3 (lkeuchi et al., 1995a; Takiyama et al., 1997), SCA 7 (David et al., 1998; Gouw et al., 1998;
Monckton et al., 1999). For instance, in HD, small size increases of one to a few repeats are
typically observed during both paternal and maternal transmission (Duyao et al., 1993).
However, in a subset of male transmissions, larger increase occur to produce extreme HD
alleles, resulting in anticipation phenomenon and causing juvenile form of the disease (Duyao
et al., 1993). It has been shown that CAG expansion upon paternal transmission occurs before
meiosis begins, during spermatogonial stem mitotic divisions (Yoon et al., 2003). It is believed
that the great number of mitotic divisions for male gametogenesis contributes to the paternal

expansion bias, suggesting that replication plays a role in the instability of the male germline.
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The age does not appear to play a role in determining HD CAG instability in male germline (Aziz
et al., 2011; Wheeler et al., 2007).

DM1 germline instability was described for both sexes, but the parent-of-origin effect
differed depending on the mutation length. A paternal expansion bias is associated to repeat
length <100, paternal and maternal expansion bias are observed for middle repeat lengths
(200-600) and a maternal expansion bias is described for repeat length >600 repeats, resulting
in extreme DM1 alleles of 1000 to 4000 repeats (Jansen et al., 1994; Lenzi et al., 2005; Martorell
et al., 2000). It is suggested that each parent-of-origin mutation bias is driven by mechanisms
specific to sperm or oocyte development. Both pre-meiotic and post-zygotic events likely
contribute to the large DM1 CTG expansion upon maternal transmission (De Temmerman et al.,
2004; Lenzi et al., 2005). It is believed that the highly extended time for oogenic meiosis
contributes to pre-meiotic instability (De Michele et al., 1998; Kaytor et al., 1997; Sato et al.,
1999).

Extensive maternal expansion bias is also observed for FRAXA fetuses during oogenesis
or post-zygotically, whereas male patients show a paternal contraction bias leading to
unmethylated alleles of premutation size (Malter et al., 1997; Moutou et al., 1997; Nolin et al.,
1999; Reyniers et al., 1993).

A paternal contraction bias has been reported for SCA 8 (Moseley et al., 2000), FRDA (De
Michele et al., 1998; Delatycki et al., 1998; Monros et al., 1997), DM1 (Monckton et al., 1995),
and FRAXA (Ashley-Koch et al., 1998).

2.1.2 Somatic instability of TNR is tissue-selective

Somatic instability of TNR is tissue- or cell-specific, resulting in repeat tract length
variation between or within tissues. The timing, pattern and tissue selectivity of somatic
instability is variable between TNR diseases. For instance, in HD and other polyQ disorders,
including SBMA, somatic CAG instability is not observed during development, but is detected in

the adult (Benitez et al., 1995; Jedele et al., 1998). Conversely, in FXS, somatic CGG instability
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only occurs in fetal tissues, but not postnataly (Devys et al., 1992). In DM1, somatic CTG
instability is detected both in fetal and adult tissues (Martorell et al., 1997; Thornton et al.,
1994; Zatz et al., 1995).

Somatic instability of TNR is tissue selective, but this tissue selectivity varies between
diseases. In HD and some polyQ disorders, both the striatum and the cortex show increased
instability, while instability is minimal in the cerebellum (Chong et al., 1995b; Hashida et al.,
2001; Kennedy and Shelbourne, 2000; Lopes-Cendes et al., 1996; Shelbourne et al., 2007
Telenius et al., 1994). However, this pattern of somatic instability is not shared by all polyQ
diseases. In SBMA, the CAG tract is stable in the central nervous system, but unstable in the
muscle (Tanaka et al., 1999; Tanaka et al., 1996). In DM1, the tissues presenting high levels of
instability include the heart, skeletal muscle and cortex, the cerebellum showing a reduced
level of instability (Anvret et al., 1993; Ishii et al., 1996; Thornton et al., 1994). In FRDA, somatic
GAA instability is elevated in the cerebellum and dorsal root ganglia (Clark et al., 2007).

In HD and other polyQ disorders, somatic instability is usually greatest in the central
nervous system (Pearson et al., 2005). More specifically, it has been shown that neurons
present a higher propensity for instability, when compared to non neuronal cells such as glial
cells, indicating that replication-independent mechanisms contribute to CAG instability in polyQ
diseases (Shelbourne et al., 2007).

In HD, DM1, and FRDA somatic instability is most prevalent in the affected tissues,
suggesting that instability contributes to disease progression. In the case of HD, somatic
instability is most extensive in the striatum, corresponding to the tissue that preferentially
degenerates. It is believed that somatic expansion in the striatum significantly accelerates HD
pathology, by leading to the production of increasingly toxic mutant proteins, and therefore

acts as a disease-modifier (Gonitel et al., 2008; Shelbourne et al., 2007).
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2.1.3 Somatic instability of TNR is age-dependent

Repeat instability evolves with age. Heterogeneity of the repeat tract was reported to
correlate with age and to progress with age in blood cells of DM1 patients (Martorell et al.,
1995; Martorell et al., 1998; Wong et al., 1995). Additionally, the difference of the size of the
repeat expansions in muscle, an unstable tissue, with the size of the expansion in lymphocytes,
a relatively stable tissue, in DM1 young and adult patients revealed higher differences in older
subjects suggesting that somatic repeat instability is age-dependent (Zatz et al., 1995). In a
similar manner somatic instability was suggested to increase with age in FRDA and DRPLA
patients (De Biase et al., 2007a; De Biase et al., 2007b; Takano et al., 1996). The age of onset of
disease was described to correlate with repeat length in DM1 and HD (Duyao et al., 1993;
Harper, 1992; Swami et al., 2009). Mouse models of TNR diseases also showed variation of
somatic instability with age (Fortune et al., 2000; Gonitel et al., 2008; Ishiguro et al., 2001;
Kovtun et al., 2007; Lia et al., 1998; Sato et al., 1999). An exception to this tendency is FXS
where instability of the repeat tract is present at embryonic levels whereas repeats are stable

postnataly (Sato et al., 1999).

2.1.4. Somatic instability of TNR is repeat length-dependent

The length of repeats inlfuences the instability process. The length of repeats correlated
with the level of somatic instability in SBMA, DM1 and HD patients (Kahlem and Djian, 2000;
Martorell et al., 1995; Tanaka et al., 1999). Similar correlation was found for FMR1 gene (Eichler
etal., 1994).
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2.1.5. Conclusions

Most TNR diseases show repeat instability. TNR loci are located in different positions in
the corresponding genes and therefore the position and/or the sequence of repeats might have
a role in instability. Repeat instability is involved in intergenerational variability of disease onset
and severity and manifests as intergenerational and somatic instability. Somatic instability is
tissue-selective and, in some diseases, including HD, DM1 and FRDA, the tissues or cells that are
most vulnerable regarding pathogensis are also those presenting highest TNR instability.
Therefore it is important to examine the implication of instability in disease evolution, since

instability may lead to production of increasingly toxic mutant gene products with time.

2.2 Mechanisms implicated in TNR instability
2.2.1 Structure of TNR
2.2.1.1 DNA structure of TNR

The models proposed to explain TNR instability involve the formation of stable
secondary DNA structures, which would be aberrantly processed by mechanisms associated to
DNA physiology, including replication, DNA repair, transcription and recombination (Pearson et
al., 2005). In vitro experiments have indeed shown that TNR sequences can adopt several
structures (Mirkin, 2007). Single stranded DNA with CNG repeats, where “N” is one of the four
desoxynucleotides, can form stable slipped strand DNA structures (or hairpin structures),
adopting a mismatched base pair conformation (Gacy et al., 1995; Pearson and Sinden, 1996).
The stability of the secondary structures depends on the thermodynamic energy of the base
pair mismatch. The propensity to form stable hairpins ranks as follows: CCG=CAG<CTG<CGG. It
was further shown that slipped-out CAG and slipped-out CTG repeats are predominantly in the
random coil and hairpin conformation, respectively (Pearson et al., 2002). Accordingly, several
studies propose that CTG repeats have a higher propensity to form stable hairpin, compared to

CAG repeats (Hou et al., 2009; Mitas et al., 1995; Panigrahi et al., 2005). In addition, increasing
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the length of CNG repeats augments the stability as well as the complexity of the secondary
structures, longer repeats being more stable and presenting alternative DNA structures with
more complex patterns (Gacy et al., 1995; Pearson and Sinden, 1996; Pearson et al., 1998b).
More specifically, alternative structures of more than 10 repeats can show a pattern, involving
multiple loops or hairpins (Panigrahi et al., 2010; Pearson et al., 1998b). Accordingly, the
stability of the secondary structures is dependent upon the purity of the CNG tract, as CAT or
AGG interruptions within CAG or CGG tracts, respectively, have both qualitative and
guantitative effects on slipped strand formation (Pearson et al., 1998a). Finally, tetrahelical
structures have been observed for CGG and CCG repeats (Fry and Loeb, 1994; Usdin and
Woodford, 1995), which are stabilized by G quartet motifs (Zheng et al., 1996).

Unconventional DNA structures have also been described for GAA repeats (Bidichandani
et al., 1998; LeProust et al., 2000). Unlike CNG repeats, GAA repeats can form triplex or sticky
DNA structures, likely contributing to both GAA instability and silencing of frataxin expression
(Gacy et al., 1998; Grabczyk and Usdin, 2000a, b; Heidenfelder et al., 2003; Sakamoto et al.,
1999).

Thus, the propensity of TNR for forming stable secondary structures has been clearly
shown using in vitro approaches, supporting their role in TNR instability; yet, the existence of
such structures in vivo needs to be demonstrated. (Figure: 1: Unusual DNA structures formed

by TNR repeats, examples.)
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Figure 1. Unusual DNA structures formed by TNR repeats, examples.

The structure-prone strand of the repetitive run is shown in red, its complementary strand in
green, and flanking DNA in beige. a, An imperfect hairpin formed by (CNG), repeats. b, A
slipped-stranded structure formed by the (CTG), (CAG), repeat. ¢, A quadruplex-like structure
formed by the (CGG), repeat. Brown rectangles indicate G quartets. d, sticky DNA formed by
the (GAA), (TTC), repeat. [According to (Mirkin, 2007)]

2.2.1.2 RNA structure of TNR

mRNA transcribed from the genes containing TNR mutation are also prone to formation
of stable secondary structures, which can be toxic and contribute to pathogenesis. CUG repeats
of the DMPK transcript can adopt imperfect mismatch hairpin structures, the stability of which
increases with repeat length (Napierala and Krzyzosiak, 1997). By using chemical and enzymatic
assays, it has been shown that RNA with CNG repeats form stable hairpins, the stability of
which ranks as follows: CAG<KCCG<CUG<CGG (Sobczak et al., 2003). In addition, the CGG repeats
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in FXTAS mRNA also form stable hairpin structures, contributing to pathogenesis (Hoem et al.,

2011; Kiliszek et al., 2011; Solvsten and Nielsen, 2011; Zumwalt et al., 2007).

2.2.2 DNA repair
2.2.2.1 Base Excision Repair pathway (BER) and TNR instability
2.2.2.1.1 BER: a repair mechanism divided in two subpathways

2.2.2.1.1.1 Lesions repaired by BER

BER is involved in the elimination of DNA damages caused by spontaneous base
hydrolysis, by reactive oxygen species (ROS) and by alkylating agents (Lindahl, 1993, 2000).
Base oxidation, one most common cause of DNA damage, is caused by ROS, which are either
endogenously produced by the cellular metabolism or have exogenous origins. One of the most
common oxidant damages is the modification of guanine into 8-oxodesoxyguanine (8-oxodG).
Other examples of oxidant damage are 8-oxodesoxyadenine, 5-hydroxycytosine (50HC), 5-
hydroxyuracile (50HU), etc. (Muller et al., 1998; Wagner et al., 1992). Other types of damages
include spontaneous hydrolysis, resulting in depurination and depyrimidation and to formation
of AP sites (Lindahl, 1993, 2000), and base alkylation by exogenous factors, resulting in 3-
methyladenine (3meA), 7-methylguanine (7-meG), 2-methylcytosine (2-meC) etc (Seeberg et

al., 1995). (Figure 2: DNA bases and examples of common modifications)

2.2.2.1.1.2 DNA glycosylases involved in BER

DNA glycosylases are the initiating enzymes of BER that specifically detect and excise
the modified base by incising the N-glycosidic bond of the base to the sugar-phosphate DNA
strand, generating thus an AP site (apuric/apyrimidic (AP)). At that point the DNA strand is
incised in 5’ by an AP-lyase activity generating a single-strand break (SSB) (Fortini and Dogliotti,
2007).
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The DNA glycosylases can be monofunctional enzymes, such as uracil-DNA glycosylase
(UDG) and 3-methyladenine DNA glycosylase (AAG), which only recognize and excise the
damaged base, i.e. uracil for UDG and 3-meA, xanthine and to a lesser extent 8-oxodG for AAG
(Engelward et al., 1997; Mol et al., 1995; O'Brien and Ellenberger, 2003; Savva et al., 1995). The
step of SSB formation is catalyzed by the AP-endonuclease 1 (APE1), which generates 3’-OH and
5’-deoxyribose phosphate (5'dRP) extremities at the damaged site (Wilson and Barsky, 2001).
However, there are also bifunctional DNA glycosylases, including 8-oxoguanine DNA glycosylase
(OGG1) and endonuclease Il (NTH1), which not only recognize and excise the damaged base,
but also dispose an AP-lyase activity that incises at 3’ of the AP site generating a 3'-q,B,
unsaturated aldehyde or a 3'dRP (Boiteux and Radicella, 1999, 2000). The endonucleases VIII-
likel and 2 (NEIL1 and NEIL2, respectively) are also bifunctional, but lead to formation of a SSB
that harbors a 3’-phosphate extremity (Das et al., 2006; Hazra et al., 2002a; Hazra et al., 2002b).
OGG1 is the main enzyme that recognizes 8-oxodG modification and FapyG, NTH1 recognizes
mainly 50HC, thymidine glycol (Tg), 50HU, urea and formamide pyrimidine guanine (FapyG)
modifications. NEIL1 repairs the same lesions than NTH1 and, in addition, formamide
pyrimidine adenine (FapyA) modification and Neil2 recognizes AP sites and 50HU damages (lde
and Kotera, 2004). (see Table 2: DNA glycosylase function and targeted lesion)

Therefore the DNA glycosylases have overlapping functions but different damage
specificities. They either recognize specifically one modification -e.g. UDG that recognizes
uracil-, or they recognize a group of modifications but with a different specificity for each lesion
-e.g. 0GG1 is an enzyme that mainly recognizes 8-oxodG, but also recognizes other lesions with

less affinity.
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Figure 2. DNA bases and examples of common modifications. A. nucleic bases, B. common

oxidized or reduced bases, C. common alkylated bases [Adapted by (Seeberg et al., 1995;
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Slupphaug et al., 2003), http://library.thinkquest.org/27819/ch6 3.shtml and

http://www.jyi.org/research/re.php?id=1602]

Table 2. DNA glycosylase function and targeted lesion

Glycosylase
1soe . Glycosylase Targeted lesion
categorie
meonofunctional LG uracil
AAG I-med, zanthine, §-oxod3
MYH S-oxodG
Bifunctional 0661 S-oxodG, Fapyi
MTHL SOHC, Tg, 50HU, FapyG
NEILL 50HC, Tg, SOHU, FapyG, FapyA
MEILZ AP site, SOHU

2.2.2.1.1.3 Processing of the AP site: SN- and LP-BER

The subsequent repair of SSB requires the presence of 3’-OH and 5’-phosphate
extremities. To this purpose, PolB due to its 5'-dRP-lyase activity excises the 5’dRP (Matsumoto
and Kim, 1995). The 3’-dRP and 3’-a,[3, unsaturated aldehyde extremities formed following the
OGG1 and NTH1 cleavage are directly excised by APE1 (lzumi et al., 2000; Klungland et al.,
1999; Parsons et al., 2004; Wiederhold et al., 2004), whereas the 3’-phosphate extremity
following Neill and Neil2 cleavage is processed by PNK (Das et al., 2006; Wiederhold et al.,
2004).

In order to fill the gap between the two opposite DNA extremities on the DNA strand, a
number of nucleotides can be added. The number of nucleotides incorporated at the lesion site
determines the repair pathway that is used. When a single nucleotide is incorporated, the
single nucleotide BER (SN-BER) pathway is used, whereas when several nucleotides are

incorporated, the lesion is processed via Long-Patch BER (LP-BER). During SN-BER, Pol (PolA
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and maybe Pol6 (Braithwaite et al., 2010; Prasad et al., 2009)) incorporates the missing
nucleotide and promotes the recruitment of DNA Ligase Il (Lig3) to seal the nick, and of X-ray
repair complementing defective repair in Chinese hamster cells 1 (XRCC1) which interacts with
both PolB and Lig3 allowing efficient BER (Dianova et al., 2004; Parsons et al., 2005). On the
other hand, LP-BER is used when the 5’-dRP is refractory to excision by PolB lyase activity. In
this pathway, several DNA Polymerases, including PolB, Pol and Pole (all of them participating
also in replication), as well as PolA, Polt and Pol6 can be used for multinucleotide incorporation
(Yoshimura et al., 2006). The processivity of DNA polymerases is promoted by proliferating cell
nuclear antigen (PCNA). The incorporation of multiple nucleotides results in displacement of
the adjacent 5’ strand, which forms a 5’ flappy strand that is excised by the flap endonuclease
FEN1. The two edges are finally sealed by DNA Ligase | (Ligl). (see Figure3: BER pathway and
interplay between SN- and LP-BER)

The different proteins implicated in repair interact between each other, which enhances
their repair activities. The role of DNA Polf in strand displacement synthesis and in controlling
the size of the excised flap was suggested by Dianov and coworkers (Dianov et al., 1999). Using
reconstituted repair assays, DNA Pol was reported not only to cooperate with FEN1 but also to
influence the length of the incorporated nucleotides in the lesion depending on the relative
concentration of those two proteins (Prasad et al., 2000). Later, the coordination of those two
proteins during LP-BER was shown to function through a “Hit and Run” mechanism, with the
two proteins acting alternatively during repair in reconstituted assays (Liu et al., 2005). The
notion of PolB/DNA binary complexes and its association to APE1 which stimulated the PolB
gap-filling and lyase activity argued rather for a coordination and interaction of BER proteins
(Liu et al., 2007). Several other BER actors were shown to interplay. For instance, PCNA was
shown to interact with DNA Ligase |, Polé and Pole in LP-BER. DNA Ligase | specific implication in
LP-BER was also argued by its interaction with the Rad9-Rad1-Hus1 complex (9-1-1) (Wang et
al., 2006), a PCNA analogue, and its interaction with FEN1 (Smirnova et al., 2005). More
recently, DNA polymerases B and A were reported to interact with DNA glycosylases in mouse
embryonic fibroblasts, suggesting an early coordination between repair proteins already from

the initiating steps of repair (Braithwaite et al., 2010). Although DNA Ligase Ill and DNA Ligase |
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are preferentially associated to SN- and LP-BER, respectively, this distinction seems to be more
shaded as DNA Ligase | can be also partially involved in SN-BER (Pascucci et al., 2002).

While SN- and LP-BER can be both reconstituted in vitro, the definitive demonstration of
the in vivo existence of both pathways is more recent. Studies based on repair of uracil and
oxidant damages such as 8-oxodG and Tg by E.coli and mammal cell extracts indicated that SN-
BER mainly drives repair in cells (Dianov et al., 1998; Dianov et al., 1992; Dianov et al., 2000).
SN-BER in cells was suggested to be DNA PolB-dependent. Interestingly, mouse fibroblasts
deficient for Polf still had the ability to perform SN-BER in a slower repair reaction by using
Pol6 and € (Stucki et al., 1998). However, the rate of lesions processed by SN-BER was
decreased compared to cells with PolB, whereas the rate of lesions processed by LP-BER was
increased (Dianov et al., 1998). LP-BER was observed using mouse embryonic fibroblasts
extracts to repair methylation-induced damage (Horton et al., 2000) or AP sites (Dogliotti et al.,
2001). Repair of AP sites using human lymphoid cells also involved LP-BER (Podlutsky et al.,
2001). In post-mitotic cells, the use of LP-BER was sustained by the increased level of Polf, §, or
€ inrat neurons (Hubscher et al., 1977; Raji et al., 2002). Interestingly, a study revealed a PolB-
dependent but PCNA-independent LP-BER mechanism specific to post-mitotic neurons in rat
brain (Wei and Englander, 2008). Those results suggest that LP-BER can be used in cells.

Few mechanisms have been implicated in BER subpathway selection. Repair of oxidized
or reduced AP sites requires FEN1, suggesting the preferential use of LP-BER under those
conditions (Klungland and Lindahl, 1997). Another determinant of subpathway selection is the
relative ATP availability (Petermann et al., 2003). A low level of ATP stimulates the use of LP-
BER in a PolB and PARP1-dependent reaction, which allowed regeneration of ATP required for
ligation. Finally, in this assay, XRCC1 and DNA Ligase Ill influenced the choice of BER
subpathway (Petermann et al., 2006). In fact, XRCC1 stimulated the strand displacement
activity of Pol B in case of ATP shortage, and thus the use of LP-BER. However, in the presence
of ATP, XRCC1 effect was counteracted by stimulation of DNA Ligase Ill activity, thus promoting
the use of SN-BER. Those results give some important clues for the preferential use of SN- or
LP-BER in vitro; nevertheless what is influencing the final subpathway choice in vivo needs

further investigation.
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Figure 3. BER pathway and interplay between SN- and LP-BER. A DNA damage is excised by a
monofunctional DNA glycosylase and APE1 leads to production of 3’0OH and 5-dRP extremities.
On the other site 3'dRP or 3’-phosphate (P) extremities generated by some bifunctional
glycosylases, are processed by APE1 or PNK. In SN-BER a DNA polymerase incorporates 1
nucleotide and DNA ligase IlI/XRCC1 or DNA ligase | seals the nick. Addition of >1 nucleotide by
DNA polymerase lead to formation of a 5’ flappy strand excised by FEN1, in the case of LP-BER.
Ligation of the nick is performed by DNA ligase |. PARP1 is a nick sensor, repair protein recruiter
and coordinator; PCNA, 9-1-1 are repair proteins coordinators. [Adapted from (Fan and Wilson,

2005)]
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2.2.2.1.1.4 Cofactors involved in BER

BER can be influenced by several cofactors. One of them is the high-mobility group box
1 protein (HMGB1), which was characterized as a DNA “bending” molecule to facilitate
interaction of DNA with repair proteins. HMGB1 specifically interacts with the dRP intermediate
substrate and stimulates APE1 and FEN1 activity during LP-BER (Prasad et al., 2007) and inhibits
SN-BER (Liu et al., 2010b). Another BER cofactor is PARP-1, which recognizes SSB extremities,
homodimerizes or heterodimerizes with PARP-2, and following this activation forms a poly-ADP
ribose polymer (PAR) that produces ATP, recruits repair factors at the lesion, and then
dissociates from the DNA. It has been proposed that in case of energy depletion, synthesis of
PAR is stimulated and repair through LP-BER is promoted as PARP-1 stimulates Polp nucleotide
incorporation and interacts with DNA Ligase Il and XRCC1 (Caldecott et al., 1996; Petermann et
al., 2003). It is therefore suggested that PARP-1 is mainly used upon ATP shortage to regenerate
ATP, which is necessary during ligation (Oei and Ziegler, 2000; Petermann et al., 2003). In
accordance with those results, PARP-1 was shown to interact with PolB and regulate its activity
by interfering with APE1 and FEN1 (Sukhanova et al., 2010; Sukhanova et al., 2005). Upon PAR
synthesis, PolB synthesis is enhanced and LP-BER is stimulated (Sukhanova et al., 2010).

The complex formed of Rad9-Radl-Husl proteins (9-1-1) is another sensor of DNA
damage. It was shown to co-localize with its analogue PCNA in DNA damage foci (Bai et al.,
2010). 9-1-1 interacts with MYH glycosylase, APE1, DNA polymerase B, FEN1, DNA ligase |, and
was shown to promote LP-BER by stimulating APE1 and PolB strand-displacement activity
(Gembka et al., 2007), as well as DNA ligase | (Smirnova et al., 2005; Wang et al., 2006), in a “Hit
and Run” mechanism (Balakrishnan et al., 2009). Therefore, BER is regulated by a whole budge
of proteins, suggesting that their site- and time-specific availability could influence BER

coordination and activity in vivo.
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2.2.2.1.2 Contribution of BER to instability of CAG/CTG repeats
2.2.2.1.2.1 Yeast genetics show that players of BER are involved in CAG/CTG instability

Yeast studies were the first evidences that allowed gaining insight into the involvement
of BER in TNR instability. Precisely, instability was prevented in yeast strains with wild-type or
functional rad27, the homolog of mammalian FEN1 (Liu et al., 2004). Deficiency of this protein
in yeast led to length-dependent CAG/CTG expansion and instability (Freudenreich et al., 1998).
Similarly, haploinsufficiency of rad27 promoted expansion of long repeat tracts in a repeat
length-dependent manner, suggesting a rate limiting effect of rad27 depending on the repeat
length (Yang and Freudenreich, 2007). On the other side, it is the overexpression of DNA ligase |
homolog in yeast (cdc9) that yielded longer repeat tracts (Subramanian et al., 2005). Strikingly,
inactive DNA ligase | possessing a functional binding site for PCNA led to similar results
(Subramanian et al., 2005). Taking into account that the PCNA-binding site is mutually exclusive
between cdc9 and rad27, those results suggest that it is the protein level as well as the
interplay between several repair factors that influence repeat instability. DNA polymerases are
another group of proteins that have been involved in TNR instability. Mutations in DNA Pol a, §
and € led to destabilization of the repeat tract (Schweitzer and Livingston, 1999), whereas other
polymerases such as pol T (the rev7 homolog) and pol n (the rad30 homolog) had minor effect
on repeat instability (Dixon and Lahue, 2002). FEN1, Ligase | and the DNA polymerases are
involved in both DNA repair and replication. Yeast studies did not allow discriminating if DNA

repair and/or replication contributed to TNR instability.

2.2.2.1.2.2 Inactivation of Oggl in HD transgenic mice reduces somatic CAG/CTG instability

Inactivation of Oggl in HD R6/1 transgenic mice, which express the first exon of HTT
with a CAG/CTG expansion, showed a reduced age-dependent repeat instability in brain and

liver, suggesting a role for oxidative DNA damage and BER in repeat instability (Kovtun et al.,
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2007). In fact, the 8-oxoguanine modification accumulated in the ageing brain of HD mice.
Several other oxidant lesions -such as 5’-hydroxyuracile (5’-OH-U), 5’-hydroxycytosine (5’-OHC)
and formamidopyrimidine (FAPY)- were also tested and accumulated in the ageing brain of
R6/1 mice. On the opposite, the level of other lesions such as uracil or 3-meA did not change.
Interestingly, the CAG/CTG instability of R6/1 mice deficient for Nth1 was similar to that of R6/1
mice. In a similar manner, deficiency of Aag had no effect on somatic instability. Those data
suggest that although several types of DNA damage may accumulate in the brain of HD mice,
not all of them play a role in repeat instability.

Assuming that BER and MMR (see §2.2.2.2) interact, Kovtun et al. proposed the
following “toxic oxidation cycle” model (Kovtun et al., 2007). In this model, an oxidant DNA
damage on the CAG/CTG repeats initiates BER. After excision of the damaged base and
formation of a single stranded break by APE1, DNA Polf is incorporating nucleotides in the gap.
DNA PolB would slip on the repeats, facilitating the formation of repeat hairpin structures,
which would then be stabilized by MutSB complex (Msh2-Msh3). This hairpin structure, which
would be refractory to excision by FEN1, would be incorporated into the repeat tract, leading to
repeat expansion. The load of oxidant DNA damage in tissues may increase with age, leading to
the age-dependent increase of somatic CAG/CTG instability. (see Figure 4: The toxic oxidation
cycle model)

The “toxic oxidation cycle” model implies that oxidant DNA damage at CAG/CTG repeats
is increasing with age. Kovtun et al. showed that 8-oxodG and 5’-OH-U lesions accumulate in
the ageing brain in both wild-type and R6/1 mice (Kovtun et al., 2007). However, those data do
not specify if this accumulation is tissue-specific. Do the lesions accumulate more in the
striatum that shows an important CAG/CTG instability as compared to tissues exhibiting more
limited CAG/CTG instability? In addition, the results did not examine whether the lesions
specifically accumulated with time at the CAG/CTG repeats in the HTT gene.

The “toxic oxidation cycle” model also suggests that LB-BER is involved in the somatic
repeat instability as PolB would incorporate multiple nucleotides during BER. In vitro, the
amount of incorporated nucleotides in CAG substrates was more elevated when increasing DNA

PolB concentration (Kovtun et al., 2007). However no data on tissue-specific amount of DNA
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PolB are reported in order to support the involvement of DNA PolB in the tissue-specific or age-
dependent TNR instability.

Finally, the “toxic oxidation cycle” model presumes that BER promotes the formation of
stable CAG/CTG secondary structures, rather than being involved in repair of the secondary
structures. Whether BER promotes formation of those stable secondary structures remains an

open question.

2.2.2.1.2.3 Reduction of FEN1 or DNA Ligase | in HD or DM1 mice does not affect somatic

CAG/CTG instability

FEN1 and Ligase | are both involved in LP-BER. Although those two enzymes are involved
in DNA repair, one has to keep in mind that they are also playing a role in replication in the
lagging strand during the maturation processing of Okazaki fragment (Rossi et al., 2008).

Expansion of TNR is thought to result from polymerase slippage and formation of
hairpin structures that are refractory to excision by FEN1 (Henricksen et al., 2000; Spiro et al.,
1999). In order to assess the role of FEN1 in TNR instability, mouse and cell models for HD and
DM1 were crossed with mice haploinsufficient for Fenl, as the complete loss of Fenl is
embryonic lethal (Kucherlapati et al., 2002). Somatic CAG/CTG instability was comparable in HD
mice heterozygous for Fenl and in HD mice, regardless of the tissues analyzed, which included
liver, spleen and postmitotic brain tissues (Spiro and McMurray, 2003). Interestingly, Fenl
haploinsufficiency led to reduction of repeat deletions in the germ line, suggesting a role for
FEN1 in germline instability. In addition, transfection of wild-type human cells with a mutant
FEN1, resulting in inhibition of flap strand cleavage activity, led to contraction of TNR repeats,
supporting a role for FEN1 in repeat stability (Spiro and McMurray, 2003).

Alike in HD mice, somatic CTG/CAG instability was unchanged in DM1 mice
heterozygous for Fenl (van den Broek et al., 2006). In addition, the analysis of early DM1
mouse embryos did not reveal any effect of the deficiency or haploinsufficiency of Fenl in

CTG/CAG instability (van den Broek et al., 2006).
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The final step of LP-BER is DNA sealing of the nick by DNA ligase | (Levin et al., 2000). To
address the role of DNA Ligase | in vivo, DM1 mice were crossed with knock-in mice carrying a
DNA Ligase | mutation (Harrison et al., 2002; Tome et al.,, 2011). In fact the DNA Ligase |
mutation was from a patient with growth retardation, sun sensitivity and immunodeficiencies
(Barnes et al., 1992; Webster et al., 1992) that results in 3-5% residual ligase activity in cells.
Somatic CTG/CAG instability in DM1 mice expressing the Ligase | mutant was similar to that in
DM1 mice (Tome et al., 2011). However, DM1 mice mutant for Ligase | showed a maternal
instability bias, leading to increased contractions and decreased expansions. This effect was
observed for both the heterozygous or homozygous states, suggesting a rate-limiting effect of
Ligase | level on instability.

These surprising results suggest that in vivo FEN1 and Ligase | do not play a major role in
repeat somatic CAG/CTG instability. However, the complete inactivation of Fen1 and DNA Ligl
could not be achieved in mice due to embryonic lethality of full knock-outs (Bentley et al., 1996;
Kucherlapati et al., 2002; Larsen et al., 2003). Thus, we cannot exclude that the residual
activities or protein levels of FEN1 and Ligase | in HD or DM1 mice are sufficient to induce
CAG/CTG instability. In general, assessing the role of BER proteins in CAG/CTG instability using
mouse genetics is a difficult task as inactivation of the main BER genes, including Pol8 (Cabelof
et al., 2003; Sobol et al., 1996), Apel (Xanthoudakis et al., 1996), Xrcc1 (Tebbs et al., 1999),
Fenl or DNA Ligl is embryonic lethal.

2.2.2.1.2.4 In vitro and cell-based studies to gain into mechanistic insights

2.2.2.1.2.4.1 Accessibility of oxidative lesions at repeats

CAG repeats form stable hairpin structures in vitro (Owen et al., 2005). Since the toxic
oxidation model by Kovtun et al. proposes that oxidative DNA damage accumulates at CAG/CTG
repeats (Kovtun et al., 2007), Jarem et al. tested the hypothesis that oxidative lesions at CAG
hairpins might be refractory to excision by OGG1 (Jarem et al., 2009). To this end, Jarem et al.

used peroxynitrite to induce 8-oxodG lesions on CAG hairpin substrates (Jarem et al., 2009).
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Interestingly, they reported that CAG hairpins represent a hot spot for oxidation as they were
more prone to this damage compared to CAG/CTG duplexes. In addition, CAG hairpins were
much less efficiently (700-fold) repaired by human OGG1 than CAG/CTG duplexes in
reconstituted assays. Noteworthy, further in vitro studies reported that hOGG1 binding and
activity are comparable between random sequence and repeated sequence duplexes,
suggesting that the initiation of repair is similar despite the duplexes DNA sequence but that
binding and repair of hairpin structures is less efficient (Jarem et al., 2011). However, APE1

stimulated repair more efficiently in random sequences compared to repeated sequences.

2.2.2.1.2.4.2 Role of FEN1 in CAG/CTG instability

FEN1 processes the excision of the 3’ flap strand generated during repair or replication.
However, not all DNA structures can be processed by this enzyme as secondary structures
formed by CAG/CTG repeats are refractory to excision and this in a length-dependent manner
(Spiro et al., 1999). More recent studies report that CTG hairpin structures or CGG repeats are
also less efficiently repaired than unstructured flaps in vitro (Vallur and Maizels, 2010),
suggesting that those structured repeats can be incorporated in DNA and thus increase the

expansion size and therefore the instability level.

2.2.2.1.2.4.3 Role of Liglin CAG/CTG instability

DNA ligase | seals the final step in repair or replication. In order to address the role of
DNA ligase | in repeat instability, Lopez Castel at al. used extracts of a human cell line deficient
for this ligase, which was derived from a patient with a mutation resulting in 3-5% residual
activity (Lopez Castel et al., 2009; Webster et al., 1992). As a control, they transfected the wild-
type cDNA of Ligase | in the Ligase deficient cells. The different cell types were then transfected

with a circular plasmid containing a CAG or CTG slip-out and harboring a nick upstream or
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downstream of the repeats with respect to slip-out. Interestingly, incorporation of nucleotides
spread in a very long region above the nick and was dependent on the Ligase | background.
Repair of the substrates was less efficient for cells transfected with the Ligase | cDNA compared
to the Ligase | deficient cells. CTG slipped-out substrates were globally less efficiently repaired
by the different cell lines extracts compared to CAG slipped-out substrates, suggesting a role for
the higher stability of CTG slip-outs compared to CAGs. In contrast to the results obtained in
mice, these results suggest a role for DNA ligase | in repair of CAG/CTG substrates and in
CAG/CTG instability.

In these experiments, the modification used for repair assays is a nick and not an
oxidant damage. Thus, other repair mechanisms than BER might be involved in the processing
of the CAG or CTG slipped-out substrates used in the assay. Other repair mechanisms such as
MMR also necessitate the presence of DNA ligase I. In addition, MMR has been involved in
repair of the above repeat-containing plasmid substrates (Panigrahi et al., 2010). Finally those
results point out to the importance of the relative level of the repair proteins, as the

concentration of DNA Ligase | was critical for the repair outcome.

2.2.2.1.2.4.4 Role of LP-BER in CAG/CTG instability

The role of LP-BER in CAG/CTG instability was explored in partially reconstituted assays
(Liu et al., 2009). CAG/CTG containing oligonucleotides harboring an 8-oxodG or THF -an AP site
analog- modifications were incubated with cell extracts complemented with selected BER
recombinant proteins depending on the specific assay. Random sequence oligonucleotides did
not show any expanded products following repair, while repair of CAG/CTG substrates resulted
in production of expanded products. The production of longer oligonucleotidic products for the
CAG/CTG substrates depended on the level of DNA polymerase B, FEN1 and HMGB1, which was
shown to promote CAG/CTG repeat expansion probably by stabilizing repeat hairpins formed

during BER (Liu et al., 2010b). Increased levels of DNA polymerase B and HMGB1 led to longer
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expansion products. Strikingly, increased levels of FEN1 led to production of similar expansion
products. Variation of the relative levels of DNA polymerase B and FEN1 showed that the
balance between those two proteins regulates repair outcome and formation of expansion
products.

These in vitro results indicate that the relative levels of BER proteins may be critical in
regulating the propensity of TNR for instability. These results indicate that repair of oxidant
lesions at CAG/CTG repeats is performed via LP-BER, as proposed by Kovtun et al. (Kovtun et al.,
2007).

2.2.2.1.3 Conclusions

Despite many important studies, the mechanism by which BER contributes to TNR
instability is still unclear. Precisely, we do not know yet which exact lesions contribute to repeat
instability. The study by Kovtun at al. showed that 8-oxodG as well as other oxidant lesions
accumulate in the ageing brain (Kovtun et al., 2007). However, only the deficiency of Oggl
results in reduction of repeat instability in HD mice. Those results raise the question of the
functional overlapping between the cellular DNA glycosylases, and the question of the relative
level and the relevance of the different lesions on DNA. Another point is that although some
oxidant lesions increased with age in the HD mice brain, no information is known about the
level and identity of oxidant lesions at the repeats compared to random genomic sequences.
Also, whether specific lesions accumulate with ageing in the tissues presenting high somatic
CAG/CTG instability is unknown.

Several studies suggest that the relative levels of repair proteins influence repair and
repeat instability. However downregulation of two essential LP-BER enzymes FEN1 or DNA
ligase | in HD and DM1 mice does not have an important effect on somatic CAG/CTG instability.
Those results suggest that in vivo, in mammalian organisms, those proteins are not relevant for
repeat instability, or that there are other proteins with overlapping functions that encounter

the deficiency of Fenl and Ligase I, or that the residual level of those proteins in cells is
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sufficient to drive efficient repair. Thus, whether BER and more specifically LP-BER is involved in
vivo in the processing of oxidative lesions at repeats remains unclear. A clue arguing for the
involvement of BER in repeat instability is that oxidant lesions occur with a higher propensity in
CAG hairpin structures compared to DNA duplexes. Those hairpin-located damages are very
slowly processed by DNA glycosylases and lead to impairment of the recruitment and
coordination of the following BER steps, suggesting a role for oxidant lesions occurring at
repeats in instability. Those hairpin structures were proposed to form spontaneously at CAG
repeats but also to be formed during BER following DNA polymerase slippage. The hairpin
repeat structures were also shown to be stabilized in vitro by Msh2-Msh3 complexes (Owen et

al., 2005). (see Figure 4. The “toxic oxidation cycle” model.)
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Figure 4. The “toxic oxidation cycle” model. An oxidant damage occurs at the CAG repeats and
is processed by the BER machinery: a DNA glycosylase, e.g. 0GG1, and APE1. A DNA polymerase
due to strand displacement activity leads to incorporation of several nucleotides and adjacent
to them to formation of a repeat hairpin —which can also be spontaneously formed. This hairpin
structure is further stabilized by Msh2 and Msh3 complex and is refractory to excision from

FEN1. DNA ligase | seals the nick leading to strand expansion. Oxidant damages are thought to

increase with age leading to this error-prone repair and repeat instability.




2.2.2.2 MMR and TNR instability
2.2.2.2.1 MMR contributes to instability of CAG/CTG repeats

The Mismatch repair pathway (MMR) has a role in CAG/CTG repeat instability. It has
been shown that inactivation of genes involved in this pathway prevents instability. Both
germline and somatic instability are decreased in HD and DM1 mouse models deficient for
MMR genes. Precisely, deficiency of Msh2 in HD transgenic mice carrying the first exon of HTT
with a CAG/CTG expansion, prevents repeat instability in all tissues, including the brain and
germ cells, demonstrating that MSH2 contributes to CAG/CTG instability (Kovtun and
McMurray, 2001; Manley et al., 1999). Furthermore, decreased somatic instability in the brain
was associated with the delayed appearance of nuclear inclusions in a knock-in (KI) model of
HD, suggesting that reducing somatic CAG/CTG instability is beneficial (Wheeler et al., 2003).

As MSH2 forms heterodimers with MSH3 or MSH6, resulting in MutSB or MutSa
complexes respectively (Acharya et al.,, 1996), the role of MSH3 and MSH6 in CAG/CTG
instability in HD has been investigated (Dragileva et al., 2009). Inactivation of Msh3 in HD Kl
mice inhibits somatic instability, and this correlates in the brain with the delayed appearance of
nuclear inclusions. In addition, paternal intergenerational instability is decreased, but maternal
intergenerational instability is not significantly changed. Somatic CAG/CTG instability is not
changed in HD KI mice deficient for MSH6, but intergenerational instability is reduced.

Similar studies have been done in DM1 transgenic mice carrying a CTG/CAG repeat
expansion and deficient in Msh2, Msh3 or Msh6. As in HD mice, inactivation of Msh2 and Msh3
reduces somatic and germline instability (in the case of a maternal or paternal transmission of
the mutant allele) (Foiry et al., 2006; Savouret et al., 2004; van den Broek et al., 2002), whereas
inactivation of Msh6 in DM1 mice slightly increases somatic instability, has no effect on
intergenerational instability and slightly decreases maternal intergenerational instability. The
reduced levels of MSH2 and MSH3 proteins in DM1 Mshé6 deficient mice could account for the
effect on maternal intergenerational instability. Thus, MutSB rather than MutSa contributes to

CAG/CTG instability.
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So far, the role of MMR in GAA/TTC repeat expansion, which is implicated in FRDA, has
been investigated using bacteria- and yeast-based models. In E. Coli, MMR has a mitigated
effect on GAA/TTC, increasing the frequency of small length changes and decreasing the
frequency of large length changes (Schmidt et al., 2000). In yeast, MMR machinery increases
fragility of GAA/TTC repeats, resulting in increased double-strand breaks and chromosomal
rearrangements. MutSB and MutlLa, a downstream player involved in MMR, contribute to this
process (Kim et al., 2008). The role of MMR in GAA/TTC instability remains to be investigated

using mammalian models.

2.2.2.2.2 Mechanism of action of MMR in TNR instability
2.2.2.2.2.1. Muts8 binds stable secondary structures formed by CAG/CTG repeats

CAG/CTG repeats form stable secondary structures as described in §2.2.1.1., resulting in
bulky A*A mismatch base pairs in the stem of structured CAGs (Gacy et al., 1995) or T*T pairs
within structures CTGs. The propensity of CAG/CTG repeats to form stable slip-out structures
increases with the repeat length (Gacy et al., 1995; Pearson and Sinden, 1996). CAG/CTG
repeats form in vitro short and large slip-outs (Pearson et al., 1998b; Petruska et al., 1996;
Zheng et al., 1996). In vitro, Msh2 binds to CAG/CTG slipped-strand structures in a repeat
length-dependent manner, and with a higher affinity for CAG repeats, introducing thus the
concept of asymmetric recognition of the repeats (Pearson et al., 1997). In addition, MutSpB
(MSH2/MSH3 dimer) binds to CAG/CTG slippled-strand (or hairpin) structures (Owen et al.,
2005). These data support a role for MutSB in CAG/CTG repeat instability.
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2.2.2.2.2.2. Does TNR instability require a functional MMR?

The study by Owen et al. shows MSH2-MSH3 stabilizes CAG/CTG hairpins, and MSH2-
MSH3 ATPase activity is inhibited, raising the possibility that CAG/CTG instability results from
the stabilization of hairpin structures due to inhibition of MutSB activity at CAG/CTG repeats
(Owen et al., 2005). However, a more recent study shows that the binding of MutSB on CAG
hairpins does not modify the biochemical properties of the protein complex and the repeat-
containing hairpins are efficiently repaired by cell extracts (Tian et al., 2009). In addition,
Proliferating cell nuclear antigen (PCNA), a protein required at the initiating step of nick-
directed mismatch repair (Umar et al., 1996), is necessary for efficient incision of CAG or CTG
hairpins (Hou et al., 2009). If CAG hairpins inhibit the activity of MutSB, one would expect that
inactivation of the ATPase activity of MutSB or suppression of MMR proteins implicated
downstream of MutSB would have no effect on CAG/CTG instability. Mutation of the ATPase
domain of Msh2 in a DM1 mouse model leads to contraction of CTG repeats similar to Msh2
and Msh3 deficiencies, suggesting that a functional MSH2 or MMR is required for instability to
occur at CAG/CTG repeats (Tome et al., 2009). Additionally, deficiency of Pms2, a downstream
component of the MMR machinery recruited by MutS complexes, results in the reduction of
expansion and induction of large contractions in a DM1 mouse model (Gomes-Pereira et al.,

2004), further suggesting that the instability of CAG/CTG repeats requires a functional MMR.

2.2.2.2.2.3. What lesions are targeted by MMR at TNR?

DNA structure plays an important role in MMR. MutSa and MutSB both repair base-pair
mismatches. However, repair of some mispaired DNA does not depend upon MMR (Corrette-
Bennett et al., 2001; Littman et al., 1999; McCulloch et al., 2003; Umar et al., 1994). MutSa is
involved in repair of non-repetitive insertion/deletion loops (ID) with 1-3 excess nucleotides,

whereas MutSP enhances repair of longer ID (<12 nucleotides) (Genschel et al., 1998; Littman
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et al., 1999; Tian et al., 2009). Larger loops are repaired through MMR-independent pathways
(Genschel et al., 1998; Littman et al., 1999; McCulloch et al., 2003; Umar et al., 1994).

In vitro, the propensity for hairpin structure formation and the structural complexity of
hairpins increases with the length of CAG/CTG repeats (Gacy et al., 1995; Pearson and Sinden,
1996; Pearson et al., 1998b). Specifically, (CTG)so/(CAG)so repeats form two distinct populations
of slipped structures, those with less than 10 repeats per slippage, and those involving more
than 10 repeats, with a complex structural pattern (Pearson et al., 1998b). Long CAG/CTG slip-
outs are poorly processed by MutSB, and can be repaired by a MMR-independent pathway
(Hou et al., 2009; Panigrahi et al., 2005; Panigrahi et al., 2010). In contrast, short slip-outs (1-3
nucleotides) are efficiently processed by MutSB; however, multiple short slip-outs escape
repair, possibly due to interference in MMR (Panigrahi et al., 2010). Taken together, the data
suggest that MMR contributes to CAG/CTG instability due to the inefficient processing of

multiple short slip-outs (see Figure 5. MMR and TNR instability model.).
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Figure 5. MMR and TNR instability model. CAG/CTG repeats form multiple slip-outs which may
initiate repair process but lead to expansion product following error-pone repair. Some initiated
repair could be arrested, leading to strand slippage, strand displacement and finally

incorporation of structured repeats.
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2.2.2.3 Role of Nucleotide Excision Repair pathway (NER) and transcription in regulating TNR
instability
2.2.2.3.1 Transcription-coupled NER contributes to instability of CAG/CTG repeats

NER is a DNA repair mechanism involved in the repair of DNA helix distorting damages such as
bulky DNA adducts, DNA cross-links, methylated bases as well as DNA loops (Huang et al., 1994;
Kirkpatrick and Petes, 1997; Sancar, 1996; Shuck et al., 2008). Transcription coupled NER (TC-
NER), as opposed to global genome NER (GG-NER), is involved in the repair of distorting DNA
damage in transcribed regions of the genome, and is coupled to active transcription (Venema et
al., 1990). The hallmark of TC-NER is the accelerated repair of DNA lesions that block the
elongating RNA Polymerase Il (RNA Pol IlI). While common factors are involved in lesion
processing in both GG-NER and TC-NER, specific factors contribute to lesion recognition (Figure
7. NER subpathways: GG-NER and TC-NER.). It is assumed that RNA Pol Il stalled at a DNA lesion
triggers the recruitment of TC-NER factors, including CSA, CSB, XAB2 and HMGN1, whereas in
GG-NER the damage-induced DNA distortion is recognized by the UV-DDB (DDB1-DDB2-
containing E3-ubiquitin ligase complex) and XPC-RAD23B protein complexes. NER and more
precisely TC-NER contribute to TNR instability.

In E. coli, NER is mediated by few proteins, including UvrA and UvrB, which process
distorting DNA damages (Sancar, 1996). Studies in E.coli revealed that deficiency of UvrA, but
not UvrB, increases CAG/CTG repeat instability (mostly leading to deletions) in an orientation-
dependent manner (Kang et al., 1995; Parniewski et al., 1999). Interestingly, instability of
CAG/CTG repeats was greater when the CAG strand was transcribed as compared to the CTG
strand and was length-dependent (Kang et al., 1995; Oussatcheva et al., 2001; Parniewski et al.,
1999). As a result, the authors propose that transcription transiently dissociates the triplet
repeat complementary strands enabling the non-transcribed strand to fold into a hairpin
conformation, which is sufficiently stable that replication by-passes the hairpin to give large

deletions.
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Figure 7. NER subpathways: GG-NER and TC-NER. Main factors participating in each pathway
are illustrated. GG-NER: XPC-Rad23B and XPE recognize the damage. TC-NER: the damage
induces RNAP Il arrest which associates with CSB and CSA that recruit other repair factors. XPA,
RPA and TFIIH open DNA and XPG and XPF-ERCC1 excise the damaged strand. Then the DNA pol
6/« fil the gap. [Adapted by (Fousteri and Mullenders, 2008)]

The role of NER was also assessed in eukaryotes, including in mammalian systems.
Repeat instability of CAG/CTGs was assessed in human cells by selective measure of CAG repeat
contractions (Lin et al., 2006; Lin and Wilson, 2007). To this purpose, the HPRT minigene, driven
by the Tet-ON inducible promoter, was modified to contain 95 CAG repeats, resulting in HPRT
HelLa cells. Contraction to <39 CAG repeats permit cells to survive HPRT" selection. Knock-down
of XPA, a central component of NER, by siRNA led to reduced contraction frequency, whereas
siRNA against XPC, a GGR component, did not alter the contraction rate (Lin et al., 2006). siRNA

of ERCC1 and XPG decreased contraction frequencies, similar to XPA siRNA (Lin and Wilson,
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2007). Finally, knock-down of CSB, which is involved in TC-NER, also decreased CAG/CTG
instability (Lin and Wilson, 2007). Those data suggest that NER and specifically TC-NER are
involved in CAG/CTG instability in HeLa cells. Interestingly, knock-down of MMR factors such as
Msh2 and Msh3 also resulted in repeat stabilization. Noteworthy, decreasing the expression of
both Msh2 and XPA did not further stabilize CAG/CTG repeats, suggesting that MMR and NER
act in a same pathway.

Studies in SCA3 Drosophila melanogaster models showed that inactivation of Mutp, the
orthologue of the human Rad2/XPG, resulted in reduction of the instability level in the
germline, further suggesting that NER is involved TNR instability (Jung and Bonini, 2007).

Xpc deficiency did not affect germline and somatic instability of CAG/CTG repeats in HD
knock-in mice (Dragileva et al., 2009), suggesting that GG-NER does not play a predominant role
in TNR instability in mice. Xpa deficiency did not alter germline repeat instability in SCA1 mice
with a CAG/CTG expansion at the murine SCA 1 locus (Hubert et al., 2011). Similarly, repeat
instability in somatic tissues, such as the kidney and liver, was not affected by Xpa deficiency.
However, neuronal tissues, such as the striatum, hippocampus and cortex, showed an
important decrease of repeat instability. Those results suggest that NER regulates TNR
instability in post-mitotic tissues. In addition, knock-out of Csb in R6/1 HD mice resulted in
limited repeat instability in brain and germline (Kovtun et al., 2011). Apart from a role in TC-
NER, it has been reported that CSB is involved in oxidant damage processing (Osterod et al.,
2002; Sunesen et al., 2002; Thorslund et al., 2005; Trapp et al., 2007; Tuo et al., 2002; Tuo et al.,
2001). Interestingly, R6/1 mice deficient for both Csb and Oggl led to opposite effects than
0OGG1 and CSB deficiencies separately, and thus to exacerbation of instability in brain and liver,
suggesting that CSB does not participate in repeat instability by oxidant lesions processing
(Kovtun et al., 2011). Taken together those results suggest that TC-NER is involved in somatic
TNR instability.
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2.2.2.3.2 Transcription and TNR instability

All TNR loci are located in transcribed regions, suggesting that transcription might
influence repeat instability. Evidence of the involvement of transcription in CAG/CTG repeat
instability was first described in E. coli where untranscribed tracts were stable, whereas
transcribed tracts were unstable (Bowater et al.,, 1997; Schumacher et al., 2001). In both
conditions, when the CTG repeat strand was used as leading-strand synthesis template -defined
as orientation | during replication-, the repeats were more stable compared to when the CAG
repeat strand was used as leading-strand template -defined as orientation Il-, suggesting that
the role of transcription in the increase of repeat instability is orientation-dependent (Kang et
al., 1995; Mochmann and Wells, 2004; Parniewski et al., 1999). In a D. melanogaster model of
SCA 3, transcription of CAG/CTG repeats led to increased repeat instability (Jung and Bonini,
2007). Cell-based models also suggest a role for transcription in TNR instability. Study based on
a Hela cell-based model allowing for detection of contraction events at CAG/CTG repeats
showed that the transcription elongation factor TFIIS contributes to repeat instability (Lin and
Wilson, 2007). Furthermore, inhibition of the proteasome and downregulation of
BRCA1/BARD1 proteins, which modulate RNA Pol Il activity, decreased CAG/CTG instability (Lin
and Wilson, 2007). Finally, in mice, a role for transcription in TNR instability is also suggested.
Somatic CAG instability is only seen in HD R6 transgenic mouse lines that express the HD
transgene. CAG expansion is stable in the R6/0 line, which does not express the HD transgene
(Mangiarini et al., 1997).

Transcription contributes to TNR instability in cell models and in lower organisms.
However, the level of expressed of expanded genes does not correlate with the level of repeat
instability in somatic tissues in DM1 and HD mice (Guiraud-Dogan et al., 2007; Lia et al., 1998;
Seznec et al., 2000). Studies in human fibroblasts transformed to contain 800 CTG repeats
showed that one-way transcription through repeats increased the repeat instability rate and
bidirectional transcription exacerbated this effect (Nakamori et al., 2011). Bidirectional
transcription has been proved for DM1, SCA 8, SCA 7, HD and FRAXA (Cho et al., 2005; Chung et
al., 2011; lkeda et al., 2008; Ladd et al., 2007; Loesch et al., 2011; Nemes et al., 2000; Sopher et
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al., 2011). To which extent bidirectional transcription is involved in instability in vivo needs to
be explored. Additionally, whether bidirectional transcription contributes to toxicity of
expanded repeats needs investigation, since stalling of RNAPII/RPA at repeats induced the ATR
signaling pathway, leading to apoptosis in a cell-based model (Lin et al., 2010b).

GC rich DNA sequences were shown to induce transcription blockage by formation of
stable DNA:RNA hybrids or R-loops (Belotserkovskii et al., 2010). Using cell-based models, it was
shown that stable R-loops also form at transcribed TNR repeats (Lin et al., 2010a; Reddy et al.,
2010). The propensity to form R-loops at TNR was sequence- and length-dependent (Reddy et
al., 2010). Although interrupted CGG or CAG repeats did not hinder loop formation,
interruptions in GAA repeats led to reduced transcription inhibition (Reddy et al., 2010;
Sakamoto et al., 2001a; Sakamoto et al., 2001b). Additionally, it was shown that R-loops
contribute to TNR instability. Specifically knocking-down RNAses H, which removes R-loops,

reduced TNR instability in a cell-based model (Chon et al., 2009; Itaya, 1990; Lin et al., 2010a).

2.2.3.3.3 Mechanistic model for a role of transcription and TC-NER in CAG/CTG instability

The following model, which takes into account the data presented above, has been
proposed (Figure 8. Transcription induced repeat instability.). Strand dissociation during
transcription would promote formation of secondary structures such as hairpins or slip-outs.
Transcription may also lead to formation of stable R-loops. The intrastrand secondary
structures -potentially further stabilized by MutSB- as well as R-loops may impede RNAP Il
progression and transcription elongation (Lin and Wilson, 2007; Salinas-Rios et al., 2011). Arrest
of RNAP Il at non canonical DNA structures may result in gratuitous TC-NER, as proposed
(Hanawalt and Spivak, 2008), thereby leading to TNR instability. In addition, TC-NER and MMR

possibly interplay to promote TNR instability. (Figure 8. Transcription induced TNR instability)
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Figure 8. Transcription induced TNR instability. Initiation of the transcription facilitates the
formation of stable secondary structures —hairpins and slip-outs- by loosening the DNA
structure. Those structures promote arrest of RNAP Il processing thus inducing its backtracking
by TFIIS, its ubicuitination by BRCA1/BARD1 or recruitment of ATR-dependent apoptosis
factors. Stable R-loops form at the repeats and also promote RNAP Il arrest. During
transcription TOP | and TDP1 are involved in the regulation of the relaxation of supercoilings. R-
loops, TFIIS, BRCA1/BARD1, TOP | and TD1 action results in recruitment of repair factors of TC-
NER, MMR and BER and leads to differential instability levels. Damages present at the repeats

during transcription may exacerbate the repair mechanisms and instability.

2.2.2.4. Double strand break repair, recombination and TNR instability

Double strand breaks repair (DSBR) is another mechanism that has been implicated in
TNR instability. Double strand break are repaired through homologous recombination (HR) or
non homologous end-joining (NHEJ). Those two mechanisms share some repair proteins;
however HR uses the sister chromatide as DNA template, which is available during the S and G2
phases of the cell cycle, whereas NHEJ uses single-stranded overhangs on the ends of double
strand breaks (Lieber, 2008; Mao et al., 2008; Thompson and Schild, 2001; Weterings and Chen,
2008).

In E.coli, DSBR was shown to increase CAG/CTG repeat instability by intermolecular
repair in an orientation-dependent manner (Hebert et al., 2004; Hebert and Wells, 2005).
Deficient DSBR at GAA/TTC repeats also led to increase of repeat instability, however in repeat
length- and orientation-independent manners (Pollard et al., 2008). Using yeast models, it has
been shown that deficiency in recombination factors, including Rad51 or Rad52, suppresses
TNR instability (Kerrest et al., 2009). Additionally, overexpression of the MRE11/RAD50/XRS2
complex or deficiency of Mrel1l/Sae2/Tell led to fragilization of repeat sites and repeat

instability, supporting a role for DSBR in TNR instability in yeast (Richard et al., 2000;
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Sundararajan et al., 2010). Double strand breaks were suggested to be generated at TNR in a
repeat length-dependent manner during replication, resulting in repeat instability
(Freudenreich et al., 1998; Richard et al., 1999; Richard et al., 2000). DSBR during meiosis might
also contribute to TNR instability, as shown in yeast (Jankowski et al., 2000). In COS cells, DSBR
led to increased instability of CAG/CTG repeats by preferential deletion of repeats. This
polarized effect was further enhanced in presence of intrastrand slipped structures (Marcadier
and Pearson, 2003). In a similar manner, double strand breaks directed to CAG/CTG repeats led
to increased repeat contractions in CHO cells (Mittelman et al., 2009). Whether DSBR is an

important player of TNR instability in mammals remains to be demonstrated.

2.2.3. Replication and TNR instability

DNA replication has also been involved in TNR instability (Lopez Castel et al., 2010;
McMurray, 2010; Pearson et al., 2005). Several studies in yeast have shown that mutations in
replication proteins, including DNA ligase | and FEN1, both implicated in Okasaki fragment
processing, affect CAG/CTG instability (Callahan et al.,, 2003; Freudenreich et al.,, 1998).
Moreover, replication inhibitors modulate the instability of CTG/CAG repeats in cells (Liu et al.,
2010a; Yang et al., 2003). The location of replication origins, with respect to distance and
orientation of CAG/CTG repeats, also modulates instability in cell model systems (Cleary et al.,
2002; Liu et al., 2010a). Replication-dependent instability is believed to arise during lagging
strand synthesis via DNA slippage during Okasaki fragments processing. A recent study further
showed that replication fork progression towards CTG/CAG repeats varies between tissues in
DM1 mice and CTCF sites contribute to pausing, favoring a fork-shift model of replication-
mediated instability (Cleary et al., 2010). Interestingly, decreased pausing occurred with aging
in animal testes, correlating with increased instability with time. However, the correlation
between the rate of replication fork progression and the level of instability in somatic tissues
was not obvious, suggesting that other mechanisms are critical (likely transcription and/or DNA

repair).
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Figure 9: Current models implicating replication origin to the TNR instability. i) Origin-swift
model: the replication origin orientation relative to the repeats suggests an influence on the
repeat instability, ii) Origin-shift model: the distance of the origin replication relative to the
repeats influences the repeats stability, iii) Fork-shift model: the presence of cis-elements (e.g.
CTCF binding sites) between the replication origin and the repeats might influence repeat
instability. (ori: replication origin, OI1Z: Okazaki initiation zone) [Adapted by (Cleary and Pearson,
2005)]

2.2.4 Epigenetics and TNR instability

Chromatin is classically subdivided in the transcriptionally active euchromatin and the
transcriptionally silent, condensed heterochromatin. However the chromatin structure at a
specific locus is not frozen and changes during development and cell differentiation. TNR

instability would result from abnormal processing of stable secondary structures formed by
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repeats (i.e. hairpins, slip-outs). Whether chromatin structure or chromatin regulators
contribute to TNR instability, modulating formation and/or processing of those secondary

structures, is an emerging issue.

2.2.4.1 Chromatin structure and remodelers and TNR

2.2.4.1.1 Nucleosome assembly and TNR

Nucleosome assembly is essential for functional organization of chromatin (Kaplan et al.,
2009; Segal et al., 2006; Valouev et al., 2011). Euchromatic regions (especially active promoters)
show lower nuclosome spacing compared to heterochromatic regions (Valouev et al., 2011).
Additionaly, CG rich regions were shown to promote nucleosome occupancy in vitro, but in vivo
CpG islands showed low nucleosome coverage (Hughes and Rando, 2009; Valouev et al., 2011).

Interestingly, the length and methylation state of CGG repeats was shown to regulate
nucleosome assembly in vitro (Godde et al., 1996). Methylation of non-pathological CGG repeat
size promotes nucleosome assembly compared to unmethylated repeats, whereas methylation
of longer CGG trackts reduces the efficiency of nucleosome assembly in vitro (Godde et al.,
1996; Wang and Griffith, 1996). In contrast, the efficiency of nucleosome formation increased
with CTG repeats length (Wang et al., 1994). Additionaly, CTG repeats -even as short as found in
vivo- stabilized the repeats-nucleosome interaction in a repeat length-independent manner in
vitro (Godde and Wolffe, 1996). Noteworthy, interruption of CAG repeats by CAT repeats
decreased nucleosome assembly, whereas AGG interruption of CGG repeats did not affect it
(Mulvihill et al., 2005). Hyperacetylated histones led to increased nucleosome assembly in AGG
interrupted repeats compared to pure tracts, and the effect was abolished upon CpG
methylation. Those results suggest TNR sequences have a direct effect on chromatin structure.
Additionnaly, interrupted repeats showed a nucleosome assembly more similar to random
sequences when compared to pure tracts, suggesting nucleosome assembly dynamics might
play a role in repeat instability (Mulvihill et al., 2005). Mice containing identical CGG repeat

number within a FMR1 transgene presented lower repeat instability in absence of SV40ori/EPR,
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a nucleosome excluding sequence, further supporting the role of nucleosome assembly
dynamics in repeat instability (Baskaran etal., 2002; Datta etal., 2011).

TNR sequences also directly influence the propensity for methylation. For instance,
CGG/CCG repeats, which form CpG islands, appear strongly methylated, and this was associated
with heterochromatinization of FRAXA locus and gene silencing (Hornstra et al., 1993; Oberle et

al., 1991; Sutcliffe et al., 1992).

2.2.4.1.2 Heterochromatinization at TNR loci

Some TNR diseases have been associated with altered histone modifications. Histone
deacetylation has been associated with transcriptional inactivity (Lorincz et al., 2004). In FRAXA
the diseased allele is silenced whereas the premutation allele is more expressed than the wild-
type allele. Interestingly, lower levels of acetylated H3 and H4 were observed at the FMR1 5’
region in FRAXA patient cells, the H4 acetylation level being inversely correlated with the CGG
length (Coffee et al., 2002; Coffee et al., 1999). The FMR1 5’ region was also associated with
decreased methylation of H3K4 and increased methylation of H3K9, suggesting a switch from
euchromatin to heterochromatin (Coffee et al., 2002). Those results suggest that the chromatin
condensation level differs according to repeat length. Additionally, in cells from premutation
carriers, acetylation of histones was increased at the FMR1 locus compared to control cell lines,
in accordance with increased FRM1 mRNA levels (Todd et al., 2010). In accordance with those
results, overexpression of histone deacetylases (HDAC) or treatment with histone
acetyltransferase (HAT) inhibitors in a D. melanogaster or a cell model for premutation FRAXA
induced transcriptional silencing of FMR1 and suppressed CGG repeat-induced
neurodegeneration (Todd et al., 2010). Similarly, inhibition of the HDAC SIRT1 reactivated FMR1
transcription (Biacsi et al., 2008).

Increase of H3K9 di- and tri-methylation and decrease of acetylation of H3 and H4 was
also observed downstream of FXN GAA repeats in FRDA cell lines, suggesting

heterochromatinization of the expanded FXN locus (Greene et al., 2007; Herman et al., 2006;
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Soragni et al., 2008). The decreased H3k9 acetylation levels and increased H3K9 methylation
levels were also found in brain of FRDA patients and in a FRDA mouse model (Al-Mahdawi et al.,
2008). Consistent with heterochromatinization of FXN locus, the levels of H3K4me3 and
initiating RNA Pol 1l, which are associated with transcription initiation, and the levels of
H3K36me3, which is associated with transcription elongation, were lower in FRDA alleles
(Kumari et al.,, 2011). Similar to FRAXA studies, the use of HDAC inhibitors in patients’
lymphocytes reactivated FXN transcription, and, when used on a FRDA mouse model, partially
corrected FXN deficit (Herman et al., 2006; Rai et al., 2008; Sandi et al., 2011).
Heterochromatinization has also been associated with DM1 (Cho et al., 2005). Finally, HDAC
inhibitors were shown to prevent repeat instability in a D. melanogaster SCA 3 model (Jung and
Bonini, 2007). This might suggest that heterochromatinization of TNR loci protects from
instability. However, the relationship between heterochromatinization and instability at TNR

loci remains elusive and warrants further investigations.

2.2.4.1.3 CTCF sites and TNR instability

The DNA sequences flanking the repeats might also have a role in repeat instability,
providing specific chromatin context and binding to specific chromatin modifiers. CTCF is a
chromatin insulator zing-finger protein that contains a consensus binding site and associates
with CG-rich regions (Filippova et al., 1996). Consensus CTCF binding sites frequently flank TNR
loci, including DM1, HD, FRAXA, SCA 2, SCA 7 and DRPLA loci (Filippova et al., 2001; Ladd et al.,
2007). The role of CTCF sites on TNR instability was clearly demonstrated using SCA7 mice.
Mutation of the CTCF site downstream of the CAG repeats (CTCFI site) resulted in increased
somatic and germline instability in SCA7 transgenic mice (see Figure 9. CTCF and TNR instability
model.) (Libby et al., 2008). Interestingly, methylation of CTCFI site had a similar effect.
Additionally, CTCF was necessary for expression of an antisense transcript of ataxin-7, which

appears to regulate sense transcription (Sopher et al., 2011), suggesting that CTCF might

63



indirectly regulate TNR instability by regulation of sense and antisense transcription. Two
functional CTCF binding sites flanking the CTG repeats that are methylation-sensitive have been
identified at the DM1 locus (Cho et al., 2005; Filippova et al., 2001). In control human cell lines,
CTCF binding at the DM1 locus reduced expression of an antisense transcript and H3K9
methylation, whereas in cells from congenital DM1 patients, CTCF binding at the DM1 locus is
lost and this is accompanied with spreading of heterochromatin and increased expression of
antisense transcript (Cho et al., 2005). Additionally, methylation of CTCF sites at the DM1 locus
has also been observed. Interestingly, methylation of DM1 CTCF sites is specific to the
expanded allele and is tissue-selective (Lopez Castel et al., 2011). However, there was no clear
correlation between somatic CTG instability and CTCF site methylation and more globally
methylation of the regions flanking CTG repeats in tissues from DM1 mice (Lopez Castel et al.,
2011). Furthermore, it was shown that CTCF sites at the DM1 locus demarcate replication
origins and CTCF sites reduced replication progression (Cleary et al.,, 2010). Moreover, using
different tissues from DM1 mice, it was shown that replication progression was dependent on
methylation state at the DM1 locus, suggesting a replication-dependent effect of CTCF on CTG
instability (Cleary et al., 2010). Finally, depletion of CTCF led to heterochromatinization of the
mutant FXN locus, increased antisense transcript expression and silencing of FXN in FRDA cells
(De Biase et al., 2009). However, the role of CTCF in GAA instability has not yet been
investigated. In conclusion, CTCF sites flanking TNR loci might regulate TNR instability through
various mechanisms, including regulation of sense/antisense transcription and replication
progression. Furthermore, methylation of CTCF sites or, more globally, regions flanking TNR loci
appears to be key in modulating TNR instability. This role of DNA methylation in TNR ins tability
is further supported by the study by Dion et al., showing that haploinsufficiency of the DNA
methyltransferase Dnmt1 leads to decreased DNA and histone methylation, and to increased

intergenerational CAG repeat instability in SCA 1 mice (Dion et al., 2008).
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Figure 9. CTCF and TNR instability model. Binding of CTCF in its site protects CAG repeats form

expansion. Once repeats expand, they alter the chromatin environment and DNA structure

around them leading to instability. Loss of CTCF binding in its site following its mutation or CpG

methylation leads to repeat instability, further suggesting that chromatin environment and

repeats structures affect repeat instability.
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3 Thesis outline

The goal of this thesis was to investigate the implication of different factors in the

tissue-selectivity of somatic CAG/CTG instability to improve the understanding of TNR instability

and TNR diseases. Several physiological cellular mechanisms, including DNA repair, have been

involved in triplet repeat instability. | focused my interest on the role of oxidant lesions and BER

in the tissue-selectivity of somatic CAG/CTG instability. For this purpose, | used both in vitro and

in vivo approaches.

1)

2)

We first analyzed the role of oxidant lesions and the implication of BER in the tissue
selectivity of somatic CAG/CTG instability, by using HD transgenic mice. Specifically, we
compared the levels of oxidant lesions and BER in HD mouse striatum and cerebellum,
i.e. in two tissues showing opposite levels of repeat instability (CAG/CTG instability is
high in the striatum versus low in the cerebellum). We observed that the level of oxidant
lesions was increased at repeats both in the striatum and in the cerebellum of HD mice,
and therefore did not correlate with the level of somatic instability. We also showed
that oxidant lesions within hairpin structures were refractory to repair by BER. In
addition, we found that BER protein levels and activities were reduced in the striatum of
HD mice when compared to the cerebellum. In particular, FEN1 and Ligl, two enzymes
involved in LP-BER, were lower in the striatum than in the cerebellum of HD mice. Thus,
BER proteins and activities correlated to some extent with the tissue selectivity of

CAG/CTG instability in HD mice.

We assessed the stoichiometry of major BER proteins at a molar level in the striatum
and in the cerebellum of HD mice. By using fully reconstituted BER assays and various
oligonucleotide substrates, we then assessed the role of BER stoichiometry on the
efficiency and mode of repair. We found that nucleotide sequence, protein

stoichiometry and lesion positioning influenced repair. In particular, our data showed
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that a mixture of BER proteins reflecting the stoichiometry found in the mouse striatum
resulted in a less efficient repair, in comparison to a protein mixture reflecting the
stoichiometry seen in the cerebellum. In addition, our results suggested that CAG/CTG-
containing substrates are preferentially repaired through LP-BER, and lesion position

within repeats modulates the requirement for LP-BER.

Taken together, those results suggest that BER stoichiometry contributes to the tissue

selectivity of somatic CAG/CTG instability in HD.
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Il) Results

69



Chapter 1: Stoichiometry of Base Excision Repair Proteins Correlates
with Increased Somatic CAG Instability in Striatum over Cerebellum in
Huntington’s Disease Transgenic Mice

Goula AV, Berquist BR, Wilson DM 3rd, Wheeler VC, Trottier Y, Merienne K.
PLoS Genet. 2009 Dec;5(12):e1000749. Epub 2009 Dec 4
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Introduction:

Huntington’s disease is one of the most common repeat associated neurodegenerative
disorders. This dominant inherited disease is caused by abnormal expansion of CAG repeats in
the first exon of the coding sequence of Huntingtin (HTT). The mutation confers a toxic gain of
function to the resulting protein relative to the abnormal repeats length. The expansion is
unstable in the germline and in somatic tissues. Somatic instability is thought to contribute to
disease progression as the higher instability level and thus the longer and more toxic
expansions are present in the striatum, i.e. the tissue that preferentially degenerates. Thus
understanding the factors that participate in the repeat instability process is essential to
identify disease modifiers.

Several mechanisms have been implicated in the repeat instability process (see § I.
Introduction). Recently the idea of the toxic instability has been supported by the observation
that in HD mice deficient for Msh2 or Msh3, two MMR genes, somatic instability was reduced
and the pathology was delayed (Dragileva et al., 2009; Wheeler et al., 2003). Somatic instability
was also inhibited in HD mice deficient for OGG1, a BER initiating glycosylase (Kovtun et al.,
2007). Taking into consideration that oxidant damage was reported to increase with age in HD
mouse brain but that OGG1 was not age related, it has been hypothesized that the
accumulation of oxidant damage with age could lead to the age-dependent increase of somatic
CAG instability in HD. In addition, involvement of BER in CAG repeat instability was supported
by in vitro and yeast studies showing that Polf promotes and FEN1 prevents repeat expansion,
respectively (Freudenreich et al., 1998; Kovtun et al., 2007).

BER is involved in the elimination of oxidant DNA damage (Imam et al., 2006). It is
composed of several highly coordinated steps as previously presented (see § 2.2.2.1.1. in the
Introduction part). In addition, few studies indicate that BER is regulated in tissues -specific and
age-dependent manners (Imam et al., 2006), raising the possibility that BER activity may
underlie the tissue-selectivity or age-dependency of CAG instability. In this study we have
addressed the role of oxidant DNA damage and BER mechanism in the tissue-selectivity and

age-dependence of CAG/CTG repeat associated instability in HD.
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Results:

To address those questions we used R6/1 and R6/2 HD transgenic mouse models
(Mangiarini et al., 1997) that recapitulate major features of the human pathology, including the
somatic CAG instability seen in patients. Those mouse models contain the first exon of human
HTT including =125 or =160 CAG repeats respectively, and show a reduced life span associated
with motor and cognitive impairments (Mangiarini et al., 1996b). In the study we tested two
tissues showing opposite levels of CAG/CTG instability: the striatum, the tissue that
preferentially degenerates in HD and shows high instability levels, and the disease spared
cerebellum, which shows limited instability levels.

To examine whether accumulation of DNA damage in the aging brain contributes to the
somatic CAG instability (Kovtun et al., 2007), we quantified the global genome AP site level in
the striatum and cerebellum of R6/1 and R6/2 mice, by using an ELISA-based detection system.
Apuric/Apyrimidic (AP) sites, intermediates generated during BER, increased with age, and was
higher in the cerebellum compared to the striatum, in both wild-type (WT) and HD mice.
Therefore, the global level of AP sites did not correlate with the tissue-specific instability
pattern. In order to specify if oxidative DNA damage accumulates at CAG repeats, we measured
the oxidant damage level at CAG repeats in the striatum and cerebellum of R6/1 mice. To this
purpose, the tissular DNA was digested by the bacterial glycosylase Fpg and then submitted to
qguantitative PCR. Noteworthy, DNA damage level was tissue- and age-independent, but it
abnormally accumulated at CAG repeats. In order to examine whether the spontaneously
formed CAG hairpin structures (Owen et al.,, 2005) participates in the oxidant damage
accumulation at CAG repeats, we used an in vitro assay to test whether hairpin structures
would impair the access of BER enzymes. We found that 8-oxoG and AP lesions were refractory
to incision by purified OGG1 and APE1, respectively, suggesting that oxidant damage
accumulates at CAG repeats due to structural hindrance.

In order to test whether BER could play a role in the somatic CAG repeats instability, we
measured main BER enzyme expression and activity. Western Blot analyses revealed that the

protein levels of APE1 and FEN1 were increased in the cerebellum compared to the striatum in
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both R6/1 and WT mice. In addition, we measured main BER enzymes activities in R6/1 and WT
mice at different ages. Specifically modified oligonucleotidic substrates for each activity -OGG1,
APE1, DNA Polymerase, and FEN1- were incubated with striatum or cerebellum extracts.
Globally BER protein activities were increased in the cerebellum compared to the striatum for
all ages, except that OGG1 activity which was similar between the different conditions.
Strikingly, FEN1 -a LP-BER protein- activity was 5- to 10-fold increased in the cerebellum
compared to the striatum. In addition, relative activities of FEN1/PolB were lower in the
striatum versus the cerebellum, suggesting that coordination between DNA synthesis and 5-flap
removal might be reduced in the striatum. Furthermore, chromatin immunoprecipitation
experiments showed enrichment of Polf at the CAG repeats in the striatum but not in the
cerebellum of R6 mice. In vitro repair assay showed that a FEN1/PolB ratio reflecting the
situation in the striatum is more prone to multi-nucleotide DNA synthesis than a FEN1/PolB

ratio reflecting the situation in the cerebellum.

Conclusions:

Our data suggest that the stable secondary structures formed by CAG sequences result
in accumulation of oxidant DNA damage at CAG repeats. We propose that some DNA lesions at
repeats become accessible to BER enzymes, due to the dynamic nature of the secondary
structures, and the lesions are preferentially processed through LP-BER. Moreover, we propose
a model where the inefficient cooperation between FEN1 and Polf in the striatum contributes
to somatic CAG instability. In contrast, in the cerebellum the efficient cooperation between
PolpB and FEN1 would protect from CAG instability. Thus, the tissue-specific BER stoichiometry

would contribute to the tissue-selective somatic CAG instability in HD mice.
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Global DNA damage does not comelate with
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‘Figure &, Analysis of BER mANA, pratein, snd activity levels in striatum and cerebellum of #0/1 mice. (4] feal tome guantastve FT-POR
anafyus of tatal RNA ektiactad from ssratum left panel) snd cerebellum (rght paned) of BT mice and inermate controly (T at 43 weeks of age
using grimers specific for Ogg !, Apel, Fan], oc Aol Bvor ban, sem. %, p 063 (Student's téest), 3 ta & mice of pach genotype were wed @ Left
panel. Western Blatting analysis of whole cefl proten extracts fram 40 weekold W0/1 o WT stitata ar cevebella. Zod extratts were prepared by

pooing tisaes from 4 antmals, Night panel. Guantficaton of wettem bioting data. **, p<001 (ANOVA follwrd by Mewrman seuls trst for poctboc
compatiiony). (€] LeM panels Activity analyses Lang » 2esry Sor ench tevind snyoatc activity [ee Matesiah and Methods! Spedic lsbejed
tubstzaies wese incubmted with tnatsl or cecebefler extracts prepaied fram ha/1 mice snd control Intermates, ot hoth 8 and 3¢ weeks of sge
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Figure S1.
Quantitative PCR amplification of CAG repeat locus from R6/1 mice. (A) Schematic

representation of the HD transgene and the region surrounding exon 1 at the Hdh locus.
Location of the primers used to amplify the CAG-expanded fragment and the Hdh control
region is denoted by arrows. (B) Analysis of the GC content of the PCR fragment containing CAG
expansions and of the PCR fragment located at the Hdh locus using DNA strider software. Both
fragments are similar in size and GC content (around 70%). (C) Real time quantitative PCR
amplification of CAG expansion from R6/1 striatum and cerebellum. Top left. Fusion profiles
showing that primers 31329 and 33934 allow for amplification of a product specific to R6/1
mice. Bottom. Representative analysis of PCR amplification of CAG expansion from the striatum
of R6/1 showing PCR is relative to the quantity of DNA doubling at each cycle (slope close to -
3,3). Top right. Histogram showing that the relative DNA concentration calculated by the Light
Cycler software is proportional to the initial quantity of DNA and similar between striatum and

cerebellum.

Figure S2.

Oligonucleotide substrates used to assess BER activities from mouse tissues. (A) Table showing
the modified oligonucleotides used to assess the different steps involved in BER.
Oligonucleotides containing an 8-oxodG and a tetrahydrofuran modification (THF) are used to
assess glycosylase and AP-endonuclease activities, respectively. The gap-filling activity was
assessed with two adjacent olionucleotides producing a 1-nucleotide gap. 5'-flap excision
activity was evaluated using an oligonucleotide with a 10 nt flap. The enzymes that mainly carry
out the corresponding reactions, i.e. 0GG1, APE1, POLB and FEN1, respectively, are shown on
the left of the table. Due to functional redundancy other enzymes may contribute to the

reactions. (B) Sequences of the oligonucleotides described above.

Figure S3.

Stoichiometry of BER proteins is different in striatum and cerebellum of R6/1 mice. (A) Table

showing the relative protein levels and activities of the designated BER proteins including
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OGG1, APE1, FEN1 and POLP, in the striatum and cerebellum of R6/1 and control (WT) mice at
40 weeks of age. (B) Steady state levels of FEN1 and POLP in the striatum and cerebellum of
R6/1 mice were evaluated by western blotting using purified recombinant proteins
corresponding to human FEN1 (42 kDa) and human POLP (39 kDa), respectively. Top. 100 pg of
whole cell extract (WCE) from the cerebellum of an R6/1 mouse were run on an SDS-
polyacrylamide gel together with 15 ng and 150 ng recombinant FEN1 (left) or 15 ng and 150 ng
recombinant POLB (right) and detected with either a-FEN1 or a-POLB antibodies. Band
intensities were quantified and expressed as relative fold changes, which allowed calculation of
FEN1:POLB molar ratio. Bottom. WCE extracts from the striatum and cerebellum of two
different 40 week-old R6/1 mice (numbered 1 and 2) were run on a gel and analyzed with a-
FEN1 (rabbit), a-POLB (mouse) and a-B-Tubulin (mouse). a-B-Tubulin was used to control
sample loading. The same membrane was sequentially probed. Band intensities were quantified
and the FEN1/POLB molar ratio was estimated in the striatum and cerebellum of R6/1 mice.
One representative set of detection with a-FEN1 and a-POL antibodies is shown. The extracts
were loaded on gels and the antibody signal quantified 3 times independently. The mean and
sem of the FEN1:POLB molar ratios obtained after quantification of the 3 experiments are

reported in the table.

Figure S4.

Sonication of striatum and cerebellum extracts from R6 mice generates DNA fragments
between 100 and 1,000 bp. DNA from striatum and cerebellum of R6/1 mice at 6 and 37 weeks
of age was sonicated and analyzed by running aliquots on ethidium bromide stained agarose

gels. DNA is sonicated to fragments below 1,000 bp.
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Chapter 2: Nucleotide sequence, DNA damage position and protein
stoichiometry influence base excision repair outcome at CAG/CTG

repeats
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Introduction:

In the previous chapter, we proposed that the tissue-specific stoichiometry of BER
proteins contributes to the tissue-selective instability of CAG/CTG repeats in HD (Goula et al.,
2009). Briefly, our data showed that in wild-type and HD transgenic mice, BER protein levels
and associated activities are lower in the striatum relative to the cerebellum. In particular, FEN1
protein and corresponding activity were decreased in the striatum when compared to the
cerebellum, resulting in a lower FEN1:PolB ratio. We hypothesized that oxidant lesions at
CAG/CTG repeats are preferentially processed via LP-BER, and due to impaired coordination
between DNA synthesis and 5-flap removal, the striatum would be more prone to somatic
instability. Accordingly, in vitro reconstituted repair assays suggest that the impairment of the
steps mediated by Pol3 and FEN1 during LP-BER results in CAG expansion (Liu et al., 2009).

Ligl is the DNA ligase involved in sealing the repaired DNA during LP-BER, while Liglll is
implicated in SN-BER (Cappelli et al., 1997; Sleeth et al., 2004). Coordination of the steps
mediated by FEN1 and Ligl is essential to insure proper repair, and requires PCNA, a common
interactor for both proteins (Gary et al., 1999; Klungland and Lindahl, 1997; Levin et al., 2000;
Wu et al., 1996). Interestingly, CAG/CTG instability was modulated by the levels of Ligl and its
interaction with PCNA in yeast and in a mammalian cell model (Lopez Castel et al., 2009;
Subramanian et al., 2005). However, somatic CAG/CTG instability was not changed in DM1 mice
expressing a mutated version of Ligl that results in low residual activity (Tome et al., 2011).
Thus, the role of Ligl in CAG/CTG instability may be complex.

Repair outcome at CAG/CTG repeats has been previously investigated by incubating cell
extracts with circular substrates containing CAG/CTG repeats and a nick located at various
positions with respect to the CAG/CTG stretch (Hou et al., 2009; Panigrahi et al., 2005). Though
the precise enzymes involved in repair at CAG/CTG repeats still need to be elucidated, these
studies indicate that repair outcome is influenced by the location of the nick, suggesting the the
position of a lesion within a CAG/CTG repeat stretch may be critical with respect to repair.

Here, we investigate the hypothesis that repair outcome at CAG/CTG repeats may be

influenced by the stoichiometry of BER proteins, including Ligl and Lig3, and lesion position
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within the repeats. To this end, we first determined the stoichiometry of main BER proteins in
the striatum and in the cerebellum of HD transgenic mice. Second, we used a fully reconstituted
repair assay, based on CAG/CTG-containing and control substrates containing an abasic site
lesion, to evaluate repair outcomes at BER protein stoichiometries reflecting the situation in the
striatum or in the cerebellum. In addition, we evaluated the effect of repositioning the DNA

lesion within the CAG/CTG stretch.

Results:

To address those questions we first determined by Western Blot the main BER proteins -
APE1, PolB, FEN1, Ligl, Liglll, XRCC1 and PCNA- molar ratio in the cerebellum and striatum of
wild-type (WT) and R6/1 HD transgenic mouse model which recapitulates major features of the
human pathology (Mangiarini et al., 1997). BER Proteins, in particular the LP-BER proteins Ligl
and FEN1, were increased in the cerebellum compared to the striatum in both HD and WT mice.

In order to examine whether the tissue-specific BER protein stoichiometry could lead to
differential DNA repair on repeat substrates, we used in vitro reconstitution repair assay. To
this purpose, we generated CAG/CTG- or control-substrates with an AP site lesion, which
represent an obligatory intermediate during repair via BER. The AP-substrates were then
incubated with BER protein cocktails reflecting the stoichiometry of the striatum or cerebellum.
We used radioincorporation assays to assess repair outcomes over time. Our results show that
repair efficiency, is influenced by the stoichiometry of BER proteins, the sequence of the
substrate and the position of the lesion. More specifically, our data show that the production of
full-length repaired products is reduced and the production of intermediate products is
increased when using the striatal BER stoichiometry compared to the cerebellar BER
stoichiometry, indicating that the striatal BER stoichiometry leads to poor repair efficiency.
Moreover, our data show that the level of intermediate repair products resulting from the
incorporation of multiple nucleotides by PolB was increased for the CAG/CTG-substrates

relative to the control substrates, indicating that LP-BER is preferentially used to process the

99



CAG/CTG substrates. Moreover, the data indicate that the level of Ligl is essential in triggering
efficient repair of CAG/CTG substrates. Finally, our data show that relocating the AP site lesion
within the CAG/CTG-substrates influenced repair efficiency. Lesions on the CAG strand were
repaired more efficiently than lesions on the CTG strand, and repositioning the lesion from the
5’ to the 3’ region of the repeat stretch led to more efficient repair and fewer intermediate

products.

Conclusion:

We show that repair is dependent on BER protein stoichiometry, and on the DNA
sequence surrounding the lesion. We propose a model where the cerebellar BER stoichiometry
leads to more efficient repair than the striatal BER stoichiometry. CAG/CTG substrates are less
efficiently repaired than random sequence substrates, suggesting that the CAG/CTG repeat
tract impedes the repair. Globally CAG/CTG substrates are preferentially repaired through LP-
BER. However, moving the lesion from the 5 to the 3’ region of the CAG/CTG repeat
progressively shifts the repair pathway from LP- to SN-BER. The less efficient repair of 5’ located
lesions on the CAG/CTG repeats could result from the higher propensity for downstream
CAG/CTG repeats to adopt secondary structures, thereby impeding the repair. Similarly, the less
efficient repair of lesion on the CTG strand relative to the CAG strand could result from the
increased propensity for CTG sequences compared to CAG sequences to form stable hairpin
structures (Hou et al., 2009; Mitas et al., 1995; Panigrahi et al., 2005). Together, our data are
consistent with a model where repair via BER at CAG/CTG repeats is inhibited by DNA structural
impediments, which may ultimately lead to repeat instability. We propose that the tissue-
specific stoichiometry of BER proteins may exacerbate (as in the striatum) or compensate (as in

the cerebellum) the intrinsic inefficiency of repair at CAG/CTG repeats.

100



Publication 2

(Submitted)

101



Nucleotide sequence, DNA damage location and protein stoichiometry influence base excision repair
outcome at disease-associated CAG/CTG repeats

Agathi-Vasiliki Goula Y Christopher E. Pearson 23 Julie Della Maria®, Alan E. Tomkinson *, David M.
Wilson Il °, Karine Merienne **

1 Department of Neurogenetics and Translational Medicine, Institute of Genetics and Molecular and
Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, lllkirch, France, 2 Genetics and Genome
Biology, The Hospital for Sick Children, TMDT Building 101 College St., 15th Floor, Room 15-312 East

Tower, Toronto, ON, M5G 1L7 3 Department of Molecular Genetics, University of Toronto, Toronto, ON,

Canada 4 Department of Radiation Oncology and the Marlene and Stewart Greenebaum Cancer Cent

er,

University of Maryland School of Medicine, Baltimore, Maryland, United States of America 5 National

Institute on Aging (NIA)/ National Institutes of Health (NIH), Baltimore, Maryland, United States of
America

* corresponding author:
Email: merienne @igbmc.fr;
Phone/Fax: +33 3 88 65 34 06/+33 3 8865 32 46

Keywords: Trinudeotide repeats, instability, Huntington’s disease, Base Excision repair

102



ABSTRACT

Expansion of CAG/CTG repeats is the underlying cause of at least fourteen genetic disorders, including
Huntington’s disease (HD) and a series of spinocerebellar ataxias. The mutational process is ongoing,
with an increase in repeat size enhancing the toxicity of the expansion in spedcific tissues. In many repeat
diseases the repeats exhibit high instability in the striatum, whereas instability is minimal in the
cerebellum. Towards understanding human genetic diseases, we explore the hypothesis that base
exdsion repair (BER) protein stoichiometry contributes to the tissue-selective instability of CAG/CTG
repeats by using a reconstituted repair assay. These experiments spedcifically employed oligonucleotide
substrates with an abasic site and BER protein stoichiometries that mimic the levels present in HD
mouse striatum or cerebellum. The efficiency of BER at CAG/CTG repeats and at a control DNA sequence
was markedly reduced under the striatal stoichiometry, likely due to the lower level of APE1, FEN1 and
LIG1. Furthermore, lesions located on the CTG strand were poorly repaired in comparison to the CAG
strand. Also, lesions located towards the 5’ end of the repeat tract were poorly repaired accumulating
incompletely repaired intermediates within the repeat tract, compared to lesions at the central or 3’ end
which progressed to full length products. Lesions at CAG/CTG repeats were processed by long patch-
BER, particularly when 5'-located, suggesting that susceptibility to hairpin formation via strand
displacement contributes to pathway selection. Together, our results suggest that BER stoichiometry,
nucleotide sequence and DNA damage position modulate repair outcome, contributing to CAG/CTG

repeat instability.
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INTRODUCTION

Trinucleotide repeat (TNR) expansions are responsible for more than fifteen neurological,
neuromuscular and neurodegenerative genetic disorders (Lopez Castel et al., 2010; Tome et al., 2011).
This family of disorders indudes CAG/CTG repeat-associated diseases, such as Huntington’s disease (HD)
and nine other polyglutamine (polyQ) disorders, as well as myotonic dystrophy type 1 (DM1). The TNR
tracts need to reach a threshold length of 30 to 50 units to become genetically unstable and trigger
pathogenesis. At this size, the length of the mutant allele continuously changes, in both germline and
somatic tissues, most often incurring expansions. However, all tissues do not undergo repeat instability
to an equal degree, and this tissue selectivity varies between diseases (Lopez Castel et al., 2010; Lopez
Castel et al., 2009). For instance, in HD and other polyQ disorders, both the striatum and the cortex
exhibit increased CAG/CTG instability and the largest degree of expansion, while the same repeats
remain stable and shorter inlength in the cerebellum (Chonget al., 1995a; Hashida et al., 2001; Kennedy
et al., 2003; Lopes-Cendes et al., 1996; Shelbourne et al., 2007; Telenius et al., 1994). In DM1,
continuous expansion of the mutated allele is observed in the heart, skeletal muscle and cortex,
whereas TNRexpansionis limited in the cerebellum (Anvret et al., 1993; Ishii et al., 1996; Lopez Castel et
al., 2011; Thornton et al., 1994; Wong et al., 1995). In DM1 and HD, instability is most prevalent in
affected tissues, presumably accelerating disease progression (Groh et al., 2011; Groh et al., 2002;
Shelbourne et al., 2007; Swami et al.,, 2009). It is therefore important to delineate the molecular
mechanisms of tissue-specific TNR instability to better understand the pathogenesis of the different

disorders.

The mechanisms underlying the tissue selectivity of TNR instability remain unclear. Gene-
spedific cis-elements and tissue-spedfic epigenetic modifications have been implicated (Cleary et al,,

2010). In addition, tissue-specific trans-factors may contribute to the process. For instance, MSH2 and
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MSH3, which particpate in the mismatch repair (MMR) pathway, have been implicated in CAG/CTG
instability. Notably, mouse models for DM1 or HD that are defident in Msh2 or Msh3 exhibit reduced
CAG/CTG instability (Dragileva et al., 2009; Manley et al., 1999; Savouret et al., 2004; Tome et al., 2009;
van den Broek et al., 2002; Wheeler et al., 2003). Since CAG/CTG repeats have a high propensity to form
stable secondary DNA structures such as hairpins in vitro (Gacy et al., 1995; Pearson and Sinden, 1996),
it has been hypothesized that the aberrant processing of these structures by MMR promotes instability.
Interestingly, recent studies showed that downregulation of MMR genes upon differentiation of DM1-
derived human embryonic stem cells correlates with decreased CAG/CTG instability (Seriola et al., 2011),

suggesting that the contribution of MMR to CAG/CTG instability is regulated in a tissue-specific manner.

Somatic CAG/CTG instability is reduced in HD mice deficient for the DNA glycosylase Oggl,
indicating that base excision repair (BER) also contributes to CAG/CTG instability (Kovtun et al., 2007). In
yeast, the flap-endonudease (FEN1) and DNA ligase | (LIG1), two proteins involved in long-patch BER
(LP-BER), modulate the instability of CAG/CTG repeats (Freudenreich et al., 1998; Subramanian et al.,
2005). Human cells and DM1 transgenic mice also revealed a role for UG1 in CAG/CTG instability (Lopez
Castel et al., 2009; Tome et al., 2011). In classic BER, removal of an oxidative base lesion by a DNA
glycosylase results in the formation of an abasic (AP) site, which is then cleaved by an AP endonuclease
(APE1 in mammals) (Fortini and Dogliotti, 2007, Robertson et al., 2009). This DNA strand break is
subsequently processed by either single-nudeotide BER (SN-BER) or LP-BER. In SN-BER, POLP
incorporates a single nucleotide and excises the remaining 5’-abasic fragment, prior to ligation by DNA
ligase Il a (LIG3a) in complex with x-ray cross-complementing 1 (XRCC1) protein. In LP-BER, FEN1
removes the 5'-flap structure generated during the multi-nucleotide synthesis step mediated by POLf3 or

areplicative DNA polymerase prior to ligation by LIG1.

105



We previously found that in wild-type and HD transgenic mice, BER proteins and associated
enzymatic activities are reduced in the striatum in comparison to the cerebellum, though to different
levels (Goula et al., 2009). In particular, FEN1 protein is greatly decreased in the striatum, leading to a
lower FEN1:POLP ratio compared to the cerebellum. We therefore proposed that due to impaired
coordination between DNA synthesis and 5 -flap removal in the striatum, LP-BER at CAG/CTG repeats
would contribute to the high level of TNR instability seen in the striatum of HD animals. This hypothesis
is consistent with a previous study, which used in vitro repair assays with oligonucleotide substrates
containing a tetrahydrofuran (THF) abasic site analog that can only be processed by LP-BER, showing
that disruption of POLP and FEN1 coordination results in CAG repeat expansion (Liu et al., 2009). Two
distinct models could explain these results. In one model, both SN- and LP-BER are competent to process
DNA damage at CAG/CTG repeats, but BER stoichiometry promotes CAG/CTG instability by influencing
BER subpathway selection (SN- versus LP-BER). The second model proposes that only LP-BER would be
competent to process DNA damage at CAG/CTG repeats, and that the relative stoichiometry of LP-BER

proteins defines the risk of CAG/CTG instability by modulating repair outcome.

Repair outcomes at nicked CAG/CTG substrates with slipped-out repeats have been reported
using mammalian cell extracts (Hou et al., 2009; Hou et al., 2011; Panigrahi et al., 2005; Panigrahi et al.,
2010). In these assays, repair outcome and efficiencies clearly depended upon nick location and slip-out
sequence (CAG versus CTG). Interestingly, repair efficiency was significantly increased when the slip-out
was located on the CAG strand in comparison to the CTG strand. Furthermore, the nick location (in the
slipped- versus continuous-strand or 5" versus 3’ of the slip-out) dramatically affected repair outcome.
Whether the position of an oxidative DNA lesion within a CAG/CTG repeat sequence also influences
repair is unknown. In all reports examining BER processing of trinudeotide repeats to date, the DNA
lesion has been placed in the CAG strand at the 5’ end (the first repeat unit) (Kovtun et al., 2007; Liu et
al., 2009) or within a CAG hairpin (Jarem et al., 2009; Jarem et al., 2011). Here we use a reconstituted
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repair assay that employs oligonucdleotide substrates harboring an abasic lesion positioned upstream (5'-
oriented), downstream (3’-oriented), or centrally located within the CAG or CTG strand. Repair assays
were carried out with BER protein mixtures that reiterate the stoichiometry in the striatum or
cerebellum of HD mice. Our data demonstrate that nucleotide sequence, DNA damage location and the
stoichiometry of BER factors influence repair at disease-assodated CAG/CTG repeats. In addition, our
studies support a model in which LP-BER is required to process DNA damage at CAG/CTG repeats, and

BER protein stoichiometry modulates repair efficacy.

MATERIALS AND METHODS

Materials

The human recombinant proteins LIG1, LIG3/XRCC1, PCNA, APE1, POLB and FEN1 were purified as
previously described (Chen et al., 2006; Della-Maria et al., 2011; Erzberger et al., 1998; Lee and Wilson,
1999; Levin et al., 1997; Nguyen et al., 2000). Uracil-DNA glycosylase (UNG) from E.coli was a generous
gift from the late Dale Mosbaugh (Oregon State University, USA). Primary rabbit and mouse antibodies
were purchased from MBL (mouse a-LIG1, K 0190-3), BD transduction Labs (mouse a-LIG3, 611876),
Abcam (rabbit a-APE1, ab92744), Sigma (mouse a-PCNA, P 8825) and Chemicon (mouse a—f-tubulin).
The rabbit a-XRCC1 was a kind gift from P.J. McKinnon (St. Jude Children’s Research Hospital, USA). DNA
oligonudeotides were purchased from Eurogentec. The radionuclectides, [y->*P] ATP (7000uCi/mmol),

[a-**P]-dCTP and [a-*P]-dGTP (3000pCi/mmol), were from Perkin Elmer.

Mice

Hemizygous R6/1 HD transgenic mice from the Jackson Laboratory were maintained on a mixed
CBAXC57BL/6 genetic background, and were genotyped as described (Mangiarini et al., 1996a). The
experiments were approved by the ethical committee C.R.E.M.E.A.S (Comite Regional d’Ethique en

Matiere d'Experimentation Animale de Strasbourg).
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Western blotting

Whole cell extracts from mouse cerebellum and striatum of R6/1 mice were prepared as previously
described (Goula et al., 2009). For western blot analysis, rabbit and mouse antibodies against mouse
endogenous and human recombinant BER proteins (see above) were used at 1:500 (a-LIG1), 1:1000 (a-
LIG3, a-XRCC1, a-PCNA), or 1: 100 000 (a-APE1) dilutions, and were detected with appropriate a-rabbit
or a-mouse peroxidase-conjugated secondary antibodies (Jackson immunoResearch Laboratories) and
the ECL chemiluminescence kit (Pierce or Millipore). Signals were imaged on radiographic films,

captured with GeneSnap and quantified with GeneTool softwares on Syngene Chemigenus XE machine.

Preparation of AP-substrates

To create the AP-DNA duplex substrates, the target oligonudeotide strand harbored a uracil (U)
modification that replaced a cytosine or a guanine residue, and this strand was hybridized with the
complementary oligonudeotide at a molar ratio of 1:1 (see Table 1). We note that the sequences of the
CAG/CTG substrates and the control substrates were based upon the sequences described by Liu et al.
(Liu et al., 2009) and Petermann et al. (Petermann et al., 2003), respectively. Subsequently, the optimal
conditions for complete removal of uracil from the various DNA substrates by uracil-DNA glycosylase
(UNG) were determined (Fig. S2). In brief, 0.5 pmol of double strand substrate was incubated with 2.9
units of UNG in 75 mM KCl, 25 mM MgCl2, 3.125 mM HEPES—KOH, pH 7.7, 1% glycerol, and 0.25 mM
EDTA for one hour at 37°C, and the reaction was stored on ice for 10 min until further needed. For 5’ [y-
*’pl-labeled experiments, U-containing substrates were 5-radiolabeled using [y-PJATP and T4
polynudeotide kinase (New England Biolabs) for 40 min at 37°C, prior to annealing with the template

strand.

Reconstitution repair assays
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The AP-DNA substrates were incubated with a mixture of BER proteins as described throughout. The
repair reactions were performed by incubating 0.5 pmol of AP-DNA substrate with 0.1 nmol of POLp, 0.5
nmol of APE1, 0.75 nmol of FEN1, 0.1 nmol of PCNA, 0.05 nmol of UG1, and 0.75 nmol each of UG3 and
XRCC1 (striatal stoichiometry), or 0.1 nmol of POLB, 1.5 nmol of APE1, 0.6 nmol of FEN1, 0.2 nmol of
PCNA, 0.2 nmol of LIG1, and 0.2 nmol each of UG3 and XRCC1 (cerebellar stoichiometry). The reactions
were carried out at 37°C for the indicated period of time in 75 mM KCl, 25 mM MgCl2, 3.125 mM
HEPES—KOH, pH 7.7, 1% glycerol, 0.25 mM EDTA, as previously described (Goula et al., 2009). For
radioincorporation repair assays, the reaction buffer was supplemented with 20 uM of dNTPs and 125
nM of [a-**P]-dCTP or [a->*P]-dGTP, depending on the substituted base (a cytosine or guanine). For 5’ [y-
*?p]-labeled experiments, the reaction buffer was supplemented with 20 uM dNTPs only. The reactions
were stopped by addition of stop buffer (98% formamide, 20 mM EDTA, bromophenol blue and xylene
cyanol) and heating at 95 °C for 5 min. The reaction products were resolved by 15% polyacrylamide urea
denaturing gel electrophoresis, imaged on a Typhoon phosphoimager, and quantified with the

ImageQuant TL software.

RESULTS

LIG1 and FEN1 protein levels are increased in the cerebellum compared to the striatum

To determine the potential role of BER protein stoichiometry in the tissue-selective instability of
CAG/CTG repeats in HD, the levels of key BER proteins, APE1, LIG1, LIG3, XRCC1, and PCNA, were
determined in the cerebellum and striatum of HD transgenic mice by Western blot analysis (Fig. 1a). -

tubulin was used as a loading control (Fig. 1a). The molar levels of POL, the main BER polymerase in the
brain (Rao et al., 2001; Wei and Englander, 2008), and FEN1 were determined previously ((Goula et al.,

2009) and data not shown). The amount of each BER protein (see above) was measured relative to a
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known quantity of the corresponding purified recombinant protein, thereby permitting determination of
the molar ratio of BER proteins in mouse striatum and cerebellum (Fig. 1b). BER protein levels were
globally higher in the cerebellum in comparison to the striatum of HD mice (Fig. 1), with wild-type and
HD mice exhibiting similar tissue-specific protein ratios (data not shown). LIG1, FEN1, and APE1, which
showed the greatest difference in expression between tissues, were 5-fold, 4-fold and 3-fold more
elevated in the cerebellum relative to the striatum (Fig. 1B and (Goula et al., 2009)). XRCC1 and PCNA
were increased by ~2-fold in the cerebellum, while POLP and LIG3 levels were similar between the two

tissues (Fig. 1and (Goulaet al., 2009)). Thus, the concentration of several key BER proteins was different

between the striatum and cerebellum.

Tissue-specific BER stoichiometry affects repair of AP site-containing CAG repeat substrates

Tissue-specific differences in BER protein stoichiometries could lead to different DNA repair
outcomes on CAG repeat substrates. To test this hypothesis, we used a CAG-containing
oligonucleotide duplex (D1Dlc) and, as a control, a random sequence oligonucleotide duplex
(U16G16), which were treated with the monofunctional DNA glycosylase UNG to excise a
strategically positioned uracil residue and generate an AP site (Table 1; see Materials and
Methods). We introduced a natural AP site, as opposed to the synthetic abasic site analog THF,
to allow for processing by either SN-BER or LP-BER. These AP-DNAs were then incubated
with a mixture of recombinant BER proteins, which included APEI, POLB, FEN1, PCNA, the
XRCCI1/LIG3a complex, and LIG1, at either the cerebellum- or striatum-specific stoichiometry.

Repair was monitored by radionucleotide incorporation over time.

Repair of the CAG (D1DIc) and the random sequence (U16G16) substrates yielded full-
length repair products, as well as BER intermediate products that involved incorporation of one

or several (up to +9nt) nucleotides (Fig. 2a and 2b). The production of full-length repair product,
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an indication of complete repair efficiency, was quantified over time in the presence or absence
of ATP (Fig. 2a and 2b, right panels). Since a significant fraction of the protein molecules in the
purified preparations of LIG1 and LIG3 were pre-adenylated, full-length repair products were
detected in a somewhat time-dependent manner in the absence of ATP. Supplementation with
ATP, which enables the DNA ligases to catalyze more than one ligation event, substantially
increased repair efficiency over time under both tissue-specific BER stoichiometries, indicating

that ligation is a major determinant of repair progression.

Interestingly, in the absence of ATP, the production of full-length repair product was
lowest under the striatal BER protein ratios, and was inversely correlated with the level of
intermediate products (Fig. 2a and 2b). A similar effect was observed for both DIDIc and
U16G16, indicating that the striatal stoichiometry results in less efficient repair irrespective of
the DNA substrate. In addition, repair of the CAG substrate (D1Dlc) under the striatal or
cerebellar stoichiometry involved multi-nucleotide synthesis as revealed by the presence of >2nt
intermediate products, indicating that the AP lesion was preferentially processed by LP-BER
(Fig. 2a). In contrast, repair of the AP lesion in the random sequence (U16G16) led
predominantly to synthesis of +1nt intermediate products, indicative of SN-BER processing (Fig.
2b). Furthermore, during repair of the CAG DI1DIc substrate, both the amount of +n (+>1)
products and the number of nucleotides incorporated (up to +9nt) was greatest under the striatal
conditions; though the level of >3nt remained low, and the relative intensities of these
intermediates mildly increased over time, suggesting stalled repair progression (Fig. 2a). In
contrast, under the cerebellar BER protein ratio, the intensity of the +Int intermediate product
was progressively converted to +2, +3, +4, +5nt products over time and ultimately to full-length

repair product, indicative of more efficient repair. Moreover, repair of 5’-labeled CAG and
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control DNA substrates agreed with the radioincorporation experiments, indicating that more
intermediate products and fewer full-length repair products were generated with the CAG
substrate under the striatal BER protein stoichiometry (Sup. Fig. 1). Taken together, the results
suggest that repair efficiency of an AP lesion is sensitive to the stoichiometry of BER proteins,
while the DNA sequence influences BER subpathway selection, where CAG repeats follow a

LP-BER and non-repetitive sequences follow a SN-BER path.

Position of the AP site within CAG- or CTG-substrates influences repair outcome

The CAG substrate was processed primarily by LP-BER (see above), suggesting that the
propensity for forming hairpin structures influences subpathway choice. The stability of the
hairpin structures formed at CAG/CTG repeats is greater on the CTG strand than on the CAG
strand and increases with repeat length (Gacy et al, 1995; Hou et al, 2009; Panigrahi et al,
2005; Pearson and Sinden, 1996). Therefore, we reasoned that changing the location of the lesion
between repeat strands might influence repair outcome. Similarly the ability to form a hairpin
during repair may be influenced by the polarized location of the lesion. To test these hypotheses,
we synthesized a series of DNA substrates designed to harbor an AP site that (i) replaces a
cytosine (D1D1c, M1MIc) or a guanine (M2M2¢c, M5M5c¢) near the 5° end of a CTG or CAG
repeat sequence (5’-oriented), (ii) is embedded within the middle of the repeat stretch (M3M2c,
M6M5c), or (iii) is located towards the 3” end of the repeats (3’-oriented: M4M2c, M7M5c)
(Table 1 and Fig. 3a). Two AP site-containing random sequence substrates were used as controls

(U16G16, U14G14).

All DNA substrates tested yielded intermediate and full-length repair products following

incubation with cerebellar or striatal BER protein stoichiometries (Fig. 3a). However, the repair
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efficiency and the intermediate product pattern were different depending on the substrate
sequence, the position of the lesion, and the BER protein ratio. The cerebellar protein
stoichiometry led to more efficient repair for all substrates compared to the striatal conditions,
with the ratio of full-length repair products to intermediate products higher in the cerebellar
conditions (Fig. 3b). This was consistent with the results of Fig. 2. Placing the AP site within the
3’ portion of the repeat tract led to more efficient repair and shorter intermediate products,
indicative of preferential SN-BER, in comparison to when the lesion was placed towards the 5’
end, which leads to an accumulation of longer +n products (Fig. 3a and 3b). The efficiency and
pattern of repair were comparable between the 3’-oriented substrates and the control substrates
(Fig. 3a and 3b). This polar position effect was seen with both the CAG and CTG strand and
under both tissue-specific stoichiometries, suggesting more efficient repair when the lesion is 3°-
oriented than 5’-oriented, likely due to the decreased propensity of the 3” lesions to allow the
formation of a stable hairpin structure. Finally, although the CAG- and CTG-substrates showed a
similar repair pattern when the damage was located in the same position (i.e. 5°, middle, or 3°),
substrates with lesions in the CAG strand exhibited higher repair efficiency than lesions in the
CTG strand [compare D1DIc, D2D2¢c, M2M2¢c, M3M2c and M4M2c (CAG substrates) with
MI1Mlc, M5M5c, M6M5c and M7M5c (CTG substrates), Fig. 3b]. Taken together, our results
show that both the strand (CAG versus CTG) and the location of the lesion within the repeat tract
affect repair outcome, supporting the view that the propensity to form a hairpin structure

influences BER subpathway selection and repair efficiency.

LIG1 contributes to the differential repair efficiency of cerebellar and striatal BER stoichiometries
A key difference between the BER protein stoichiometry in the mouse striatum and cerebellum is the

lower levels of LIG1 in the striatum, while LIG3 is similarin the two tissues (Fig. 1). In particular, UG1 is
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5-fold lower in the striatum relative to the cerebellum. This suggested that LIG1 levels may contribute to
the differential repair between the striatal and cerebellar BER protein ratios. To examine this
hypothesis, we incubated the AP site-containing CAG substrate (D1D1C) with a BER protein cocktail
consisting of various ligase protein combinations (Fig 4a). AP-DNA repair was then assessed over time.
Repair under the strict cerebellar (cb, lane 1 throughout) or striatal (st, lane 3 throughout) conditions
were consistent with the results seen above (Fig. 2 and Fig. 3). Interestingly, repair efficiency was
highest at the cerebellar ligase stoichiometry, regardless of the other BER protein concentrations (cb,
lanes 1and 4). The presence of intermediate products was generally more pronounced under conditions
mimicking the striatal situation forligases (st, lanes 2 and 3). Most strikingly, reducing the ligase levels to
that of the striatum, where all other BER proteins were at the cerebellar ratios led to a markedly
increased intensity and patch-length for the intermediate products (Fig. 4a, lane 2 throughout). Similar
results were obtained using the U16G16 control substrate, except that the difference in repair efficdency
for the various BER protein cocktails was not as pronounced when changing the ligase concentration
(Fig. 4b). The enhanced stalling of repair progression with the reduced ligase levels of the striatum

confirmed the suspicion that limited ligase activity in the absence of ATP, may limit repair progression

(Fig. 2).

The LIG1:LIG3 ratio and the total amount of DNA ligase are both increased in the cerebellum
environment in comparison to the striatum (Fig. 1). LIG1:LIG3 ratio is 4 in the cerebellum and 1 in the
striatum, and the total ligase amount is 2-fold higher in the cerebellum than the striatum. To clarify
whether the total amount of ligase protein or the relative ratio of the two ligases determines repair
efficacy, we incubated the AP site-containing CAG-substrate (D1D1C) with different LIG1:LIG3 molar
ratios, while maintaining the other BER proteins at either the cerebellar or striatum stoichiometry (Fig.

4c). Repair efficiency was influenced mainly by the LIG1 levels, whereas the amount of LIG3 had a lesser
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effect on repair outcome. These results indicate that the lower LG1 level primarily contributes to the

reduced repair efficiency seen with the striatal protein stoichiometry.

DISCUSSION

Several studies support a role for BER in disease-assodated CAG/CTG instability; yet the underlying
mechanisms remain elusive. It has been hypothesized that LP-BER is spedcifically involved in TNR
instability. However, it is undear whether LP-BER is necessary for processing of a lesion at CAG/CTG
repeats and contributes to the tissue selectivity of TNR instability. The results herein demonstrate that
tissue-specific BER stoichiometry affects DNA repair efficiency, while nucleotide sequence (e.g. CAG
versus CTG repeats) and DNA damage location along the repeat tract (5’ versus 3’) influence LP-BER
choice. In a reconstituted system, repair of AP substrates was less efficient when the BER protein
stoichiometry reflected that of HD mouse striatum, the tissue showing the highest CAG/CTG instability,
as compared to the stoichiometry of the cerebellum, a tissue exhibiting minimal TNR instability. This
reduced repair was observed irrespective of the substrate (e.g. CAG/CTG or control substrate); however,
repair of the CAG/CTG substrates primarily involved LP-BER, while control substrates were
predominantly processed by SN-BER. Furthermore, repair of CAG or CTG substrates containing a 5'-
located lesion was less efficient than 3’-located lesions and involved mainly LP-BER, presumably due to
the increased propensity to form a hairpin structure. Finally, repair was less efficdent when the lesion
was located on the CTG strand relative to the CAG strand, likely due to the increased stability of CTG
hairpins. We suggest that inefficient BER progression at CAG/CTG repeats, resulting from both the
tissue-specific BER protein stoichiometry and the position of the lesion within the repeat tract,

contributes to TNR instability.

BER is central to the maintenance of genomic stability. The biochemistry of BER, induding the

nature, kinetics and coordination of the different enzymes, has been extensively studied (Wilson et al.,
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2010). However, how BER is regulated at a cell- or tissue-spedific level throughout life and how this
impacts on disease remains largely unknown. Studies have shown that the pattern of expression of BER
genes is regulated throughout development and post-natal life in a tissue-specific manner (Wilson and
McNeill, 2007). Furthermore, tissue- and age-dependent variations of BER protein levels and activities
have been reported (Intano et al., 2003; Karahalil et al., 2002; Szczesny et al., 2010; Wilson and McNeill,
2007). For example, the levels of different DNA glycosylases, induding OGG1, were assessed in different
mouse tissues, and revealed variations between tissues (Karahalil et al., 2002). In addition, the
proportional abundance of other BER proteins, such as APE1, POLf3, XRCC1, LIG1 and LIG3, was found to
differ between the mouse liver and brain (Intano et al., 2003). BER activity was also impaired in
terminally differentiated cells (Narciso et al., 2007), and was significantly lower in skeletal muscle when
compared to liver or kidney (Szczesny et al., 2010). We determined the molar ratio of several major BER
proteins, including APE1, POLB, XRCC1, LIG1, LIG3 and PCNA, in mouse striatum and cerebellum, and
found a significant difference between brain regions, consistent with the idea that BER activity is highly

tissue-specific.

Several BER proteins have previously been implicated in regulating the instability of CAG/CTG
repeats. For instance, the DNA glycosylase OGG1, an enzyme that initiates BER, is necessary to increase
somaticinstability of CAG/CTG repeats in HD mice (Kovtun et al., 2007), although excision of an 8-oxoG
lesion within a CAG hairpin is rate-limiting (Goula et al., 2009; Jarem et al., 2009; Jarem et al., 2011). In
addition, yeast studies support a role for FEN1 and LIG1 in the instability of CAG/CTG tracts
(Freudenreich et al., 1998; Lopez Castel et al., 2009; Subramanian et al., 2005), and LUG1 is implicated in
human cell and transgenic mouse studies (Lopez Castel et al., 2009). Furthermore, FEN1 cleaves 5’ flap-
bearing structures formed by CTG repeats less efficiently than unstructured flaps (Vallur and Maizels,
2010) and is inhibited by the secondary structures formed at these repeats in a length-dependent
manner (Spiro et al., 1999). Lastly, reconstitution experiments indicate that coordination between POLf

116



and FEN1 modulates CAG/CTG repeat expansion during LP-BER (Goula et al., 2009; Liu et al., 2009).
These results suggest that lesions at CAG/CTG repeats are poorly processed by BER, likely due to
structural impediments, and optimal coordination of the BER enzymatic steps is essential to insure
correct repair and prevent TNR instability. The results herein support this view, showing that repair
outcome at CAG/CTG repeats is dependent upon the stoichiometry of BER proteins, which dictates
coordination of repair, and the location of the lesion, which influences secondary structure formation.
Spedifically, repair of CAG/CTG substrates was inefficient when using the BER protein stoichiometry
reflecting the situation in the striatum, in comparison with the cerebellar stoichiometry (Fig. 2 and 3).
The low repair efficiency under the striatal BER stoichiometries correlated with reduced APE1, FEN1 and
LIG1 relative to POLP, as compared to the ratio in the cerebellum, suggesting that poor coordination of
DNA synthesis by POLP with the upstream and/or downstream BER enzymatic steps led to inefficient
repair. In accordance, decreasing the level of DNA ligase, and in particular of LIG1, under the cerebellar
stoichiometry for other BER proteins led to less effident repair of CAG/CTG substrates and a
concomitant accumulation of stalled repair intermediates (Fig. 4), consistent with previous studies
showing that LIG1 controls repair patch length (Levin et al., 2000; Lopez Castel et al., 2009; Pascucci et
al., 1999). In HD and other CAG/CTG repeat-assodated diseases, somatic instability is elevated in the
striatum and minimal in the cerebellum, suggesting that CAG/CTG instability correlates with inefficdent

BER progression.

FEN1 and LIG1 have been implicated in CAG/CTG instability, suggesting that LP-BER s specifically
required for processing of oxidative DNA damage at CAG/CTG repeats (Freudenreich et al., 1998; Goula
et al., 2009; Liu et al., 2009; Lopez Castel et al., 2009; Subramanian et al., 2005). Our data indicate that
repair of CAG/CTG substrates is strongly dependent upon LIG1 and not LIG3 (Fig. 4). In addition, our
results support the view that an AP lesion located in a CAG/CTG tract is preferentially processed by LP-
BER, as revealed by the formation of >2nt intermediate products, whereas a lesion in a random DNA
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sequence is predominantly repaired via SN-BER (Fig. 2). LP-BER was executed on CAG/CTG substrates
under both the striatal and cerebellar BER protein stoichiometries, despite the fact that the levels of
FEN1 and LIG1 varied greatly (relative to POLp) between the two situations. These results indicate that
selection of LP-BER at CAG/CTG repeats is strongly dependent upon the DNA sequence and that BER
stoichiometry plays a minor role. Furthermore, a 5'—located AP site resulted in the production of >2nt
intermediate products, whereas +1nt intermediate products predominated when the lesion was
positioned in the 3’-location (Fig. 3). This finding suggests that the involvement of LP-BER at CAG/CTG
repeats increases when the AP site is located 5" within the CAG or CTG repeat tract, presumably due to
the increased propensity to form a hairpin structure via strand displacement toward the 3’ end
(Hartenstine et al., 2002). In addition, the production of longer +n intermediates was associated with a
decrease in repair efficiency, as less full-length repair product was observed with lesions located at the
5 end of the repeat tract (Fig. 3). Together, these results indicate that LP-BER operates more frequently
when processing a lesion within a repetitive DNA sequence prone to forming a structural impediment,

such as a hairpin.

SN-BER plays a prominent role in cells (Sobol et al., 1996), yet the factors contributing to LP-BER
selection in vivo remain elusive. Several studies have provided evidence that LP-BER is functional in
vertebrate cells, induding brain cells where it is catalyzed by POL[} (Asagoshi et al., 2010a; Asagoshi et
al., 2010b; Wei and Englander, 2008). It has been reported that reduction or oxidation of AP sites, as
well as ATP cellular concentration control BER subpathway selection (Klungland and Lindahl, 1997,
Petermann et al., 2003). We show herein that the DNA sequence that surrounds the lesion is critical for
LP-BER selection. Together, our results indicate that BER outcome at CAG/CTG repeats is influenced by
both the propensity to form stable secondary structures (determining pathway selection) and protein

stoichiometry (modulating repair efficacy). We propose that tissue-specific stoichiometry of BER
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enzymes may exacerbate (as in the striatum) or compensate for (as in the cerebellum) the intrinsic

difficulty in repairing a lesion at CAG/CTG repeats, thereby modulating the risk of CAG/CTG instability.
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FIGURE LEGENDS

Fig. 1. BER protein stoichiometry in the cerebellum and striatum of HD mice. (a) Steady state levels of
XRCC1, LIG1, LIG3, APE1 and PCNA proteins in the striatum and cerebellum of HD mice were determined
by Westem blot analysis, using purified human recombinant proteins as the reference. 100 pg of whole
cell extracts prepared from the striatum or the cerebellum of the same HD mice were run on an SDS-
polyacrylamide gel (3 mice were used per gel) with 10 ng of recombinant XRCC1, LUG1, LIG3, APE1 or
PCNA and detected with a-XRCC1, a-LIG1, a-LIG3, a-APE1 and o-PCNA antibodies. a—fB-tubulin
antibody was used as a loading control. Representative images are shown. Band intensities were
quantified relative to corresponding recombinant protein. The levels of FEN1 and POL in HD mouse
striatum (St) and cerebellum (Cb) were previously determined (Goula et al., 2009), thereby allowing
determination of the XRCC1:LIG1:LIG3:APE1:PCNA:FEN1:POL molar ratios in the two tissues. (b) The
stoichiometry of XRCC1:LIG1:LIG3:APE1:PCNA:FEN1:POLP in the striatum and cerebellum of HD mice.
The level of POLP, which is similar in the two tissues of HD mice (Goula et al., 2009), was set as 1, and

the molar ratio of the other BER proteins was calculated relative to POLp.

Table 1. Sequence of oligonudeotide substrates. The name, size and sequence of the target
oligonudeotide are shown, as well as the location of the AP site within the sequences (designated as U,

which is the uradl residue excised by UNG treatment). The complementary (template) oligonudeotides

used for double-stranded DNA preparation are also listed.

Fig. 2. Repair of DNA substrates is modulated by BER stoichiometry. (a) Left panel. Radioincorporation
experiment showing the time course of repair of the CAG-substrate D1D1C under striatal (st) and
cerebellar (cb) repair conditions, with or without 1 mM ATP supplementation. A representative
polyacrylamide denaturing gel of the repair reaction is shown. The full-length repaired products (FL) are

indicated with bold arrows (™), and +1, +2 and +3nt intermediate products are shown. Control
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reactions include the 5'-labeled U-containing oligonudeotide substrate alone (lane 4), or treated with
the cerebellar BER protein ratio in absence of UNG (lane 3), with the striatal BER protein ratioin absence
of UNG (lane 2), or with UNG and APE1 only (lane 1). Right panel. Graph representing repair efficiencies
of the CAG D1DI1C susbstrate. Relative repair efficdencies correspond to the ratios: (full-length repair
product at a specific time point and BER stoichiometry) + (full-length repair product at 40 min). Black
bars: repair efficiency for the cerebellar stoichiometry, gray bars: repair efficiency for the striatal
stoichiometry. (b) Left panel. Radioincorporation experiment showing the time course of repair of the
control U16G16 substrate under striatal (st) and cerebellar (cb) repair conditions, with or without 1 mM
ATP supplementation. The full-length repaired products (FL) are indicated with bold arrows (=) and
+1nt intermediate products are shown. Right panel. Graph representing repair efficiencies of the control

U16G16 susbstrate.

Fig. 3. Lesion position within the CAG/CTG repeat stretch modulates repair. (a) Radioincorporation
experiment showing repair of CAG or CTG substrates with an AP site located at various positions within
the repeat sequence. The scheme above represents the substrates before BER. The CAG and CTG
strands are shown in blue and red, respectively. The dark square represents the AP lesion, and the C or
G letters indicate that the AP lesion replaces a cytosine or a guanine, respectively. Control substrates are
denoted CT1 and CT2. Reactions were performed under striatal (st) or cerebellar (cb) BER protein
stoichiometries for 40 min without ATP supplementation. Bold arrows (™) indicate the full-length
repaired product; asterisks (*) indicate the intermediate products; the nature of the modified base is
indicated. Bottom. Schematic representation of the different substrates during BER. The CAG and CTG
strands are shown in blue and red, respectively. The dark circles represent DNA synthesis by POLJ and
the arrows show the directionality of synthesis; Long CAG or CTG tracts form more stable hairpins than
shorter tracts; CTG tracts form more stable hairpins than CAG tracts. (b) Top panel. Graph representing
the relative levels of intermediate products (black bars) and full-length repaired (grey bars) products
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under the striatal BER stoichiometry. For a given substrate, the level of intermediate products
correspond to the sum of all the intermediate products (i.e. +1, +2 and +3 nt products, when detected).
The level of the full-length repaired products corresponding to M4M2C substrate under the striatal BER
stoichiometry was arbitrarily set to 1. The levels of the full-length and intermediate products for all
substrates were calculated relative to M4M2C full-length product. Middle panel. Graph representing the
relative levels of intermediate (+1, +2, +3 nt; black bars) and full-length repaired (grey bars) products
under the cerebellar BER stoichiometry. The level of the full-length repaired products measured for
MAM2C substrate under the cerebellar stoichiometry was arbitrarily set to 1. Bottom panel. Graph
representing repair index for all the substrates. The repair index corresponds to the ratio: (full-length
repair product) + (sum of all the intermediate products). Black bars: repair index for the cerebellar

stoichiometry, grey bars: repair index for the striatal stoichiometry.

Fig. 4. LIG1 concentration is critical in modulating repair of CAG substrates. (a, b) Radioincorporation
experiments showing the time course of repair of CAG or control substrates when changing the
stoichiometries of LIG1 and LIG3. The substrates were incubated with a mixture of BER proteins
reflecting the stoichiometry in the cerebellum of HD mice, except that the concentrations of LIG1 and
LIG3 were that measured in the striatum (lanes 2), or, conversely, with a mixture of BER proteins
reflecting the stoichiometry in the striatum, except that the concentrations of LIG1 and LIG3 were that
found in the cerebellum (lanes 4). As controls, the substrates were also incubated with mixtures of BER
proteins reflecting the levels in the cerebellum (lanes 1) and striatum (lanes 3). (¢) Radioincorporation
experiment showing repair of the CAG substrate D1D1C when removing either LIG1 or LIG3 from the
reaction. The substrates were incubated with a mix of BER proteins according to the stoichiometryin the
striatum or cerebellum, except that the LIG1:LIG3 molar ratio was varied as follows: 2:0; 4:0; 0:2 and 0:4.

As controls, the striatal ratio (0.5:1.5) and the cerebellar ratio (2:2) were induded. Full-length (FL) repair
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products are indicated with bold arrows (=). The experiments were performed without ATP

supplementation.

Supplementary fig. 1. Reconstitution repair assay using 5-labeled CAG substrate. Time course of
repair of the CAG substrate D1D1C under cerebellar or striatal stoichiometries using 5’ -radiolabeled
oligonudeotide substrate. The full-length substrates and repair products are indicated with bold arrows
(=). For control reactions, the substrate was incubated alone (lane 4), or with BER proteins but without

UNG (lane 2 and 3), or with UNG and APE1 only (lane 1).

Supplementary fig. 2: Removal of the uracil by UNG. For optimization of UNG treatment, 5’ [y->°P]-
labeled U-substrates (U16G16, D1D1C and D2D2C) were incubated with various amounts of UNG and 1
ng of human recombinant APE1 protein. The endonudeolytic cleavage product was then monitored on a
polyacrylamide urea denaturing gel. Complete removal of uracil from the various DNA substrates was
achieved using 22,9 units of UNG (corresponding to lane 4 for each substrate). Arrows show the full-

length substrate; arrowheads show the incision product.
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Table 1

nt number Sequence 53"
Target
5* COARTCATCTAGCATCCATAUNGC AGCAGCAGCAGCAGCABCAGENGEACCAGCAGEAGCAG
D 100 CAGCAGCAGC AGUAGCAGTACGTAGACTTACTCATTOR 3¢
. % ¢ CGAGTCATCTAGCATC CGTAUT G TUC T GO T GCTEC OO T aCTSCTEC IO GG TEO TG
M 100 | oTeCTOCTEOTGOTGCTGTACGTAGACTTACTCATTGE 3¢
5 ' COAGTCATCTAGCATCCATACAUCAGCAGCAGCABCAGEABCAGCAGCAGEAGCAGCAGEAG
M2 100 CACCAGCAGCAGCAGCAGTACGTAGACTTACTCATTOE 3¢
, 4 ' CGAGTCATCTAGCATCCGTACAGE AGCAGCAGCAGCAGCAGCAGCAUCAGCAGCAGCAGCAG
M3 100 | CAGCAGCAGCAGCAGCAGTACGTAGACTTACTCATTGE 3°
, 5 ' COARTCATCTAGCATCCATACAGC AGCAGCAGEAGC AGCABCAGCAGCAGCACCAGCAGEAG
M4 100 CAGCAGCAGCAGCAGCAUTACGTAGACT TACTCATTGE 3
. , 5 CGAGTCATCTAGCATCCATACTUC MOCT GOTCTGEDOC TG CTOCTOO NGO COTOC TEOTG
M5 100 CIGOTOCTACTOOTOCTOTACGTAGACTTACTCATTGE 3!
5 m&mwcmcmmmm CTGCTGCTOCTUCTGCTGCTRCTLOTE
M&: 100 CTOCTOCTUC POC TGO T TACG TAGACTTACTCATTGE 3
‘ 5 CGAGTCAT CTAGCATE CGTAC T L TGO CC TGO GO T GO eI GG CTCCTROT G
M7 100 CTOOTUCTRETOCY OCTUTACGTAGACTTACTCATTGE 31
Ui 3 $* CGTGACCTAATGCUCCTTTAAGTC TGAAGGOTG 3°
16 33 | 5+COTOACCTAATOCGCUTTTAAGTCTGAAGCETG 3
Template
Die/M2e 100 5 CCAATGAGTAAG TCTACG TACT GO TG TOL TG T GU TG TEL TGO T GO TGO TR 1B TGOT
GCTEC T TGO TOC TEC TGTACCOATEC TAGATGALTCG 3
M1e/MSe 100 5 GCARTGAGTAAATC TRCGTACAGCAGCAGCAGCAGCAGCAGCAGCAGOAGCAGTAGCAGEA
G16 33 % ' CAGCCTTCAGACTTABAGGCGCATTAGATCACE 3

*The modified base is in green; U, deaxyuridine, CAG and CTG repeats are shawn in blue and red, respectively.
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Figure 2
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Figure 3
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Figure 4
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1. Update on BER in the tissue-specific instability of TNR

Our work allowed gaining insights into the potential role of BER in triplet repeat instability.
We first showed that lesions do accumulate at CAG/CTG repeats, suggesting a higher
propensity of those sequences to recruit repair proteins. The findings by Kovtun showed that
deficiency of the DNA glycosylase Oggl in HD R6/1 mice reduced somatic CAG instability
(Kovtun et al., 2007). The accumulation of oxidant lesions in the ageing brain that they
observed led them to support the “toxic oxidation cycle” model. However, our data show that
DNA damage levels at CAG/CTG repeats are independent of mouse age, suggesting that age-
dependent increase of DNA damage is not responsible for age-dependent increase of somatic
CAG instability (Goula et al., 2009). As CAG/CTG repeats form hairpins in vitro (Owen et al.,
2005), we examined the outcome of DNA lesions located at CAG/CTG hairpins, and observed
that their accessibility to BER proteins is decreased, which might result in lesion accumulation
at CAG/CTG repeats (Goula et al., 2009). Assessment of main BER activities from protein
extracts prepared from the striatum and cerebellum of R6/1 mice revealed globally higher
activities in the cerebellum compared to the striatum. In addition, we found that the
stoichiometry of BER proteins was different in the striatum and in the cerebellum of R6/1 mice
(Goula et al., 2009). While the levels of OGG1 protein and activity were similar in the two
tissues, suggesting similar initiation of repair, the subsequent repair proteins and/or activities
were different in the two tissues. In particular, the levels of FEN1, a LP-BER enzyme, was = five-
fold higher in the cerebellum compared to the striatum, resulting in higher FEN1/PolB in the
cerebellum and more efficient processing of the lesion (Goula et al., 2009). The importance of
FEN:PolB stoichiometry in modulating CAG repeat length is also supported by the results by Liu
(Liu et al., 2009). We investigated further the hypothesis that processing of a lesion by LP-BER
would be more efficient under the cerebellar BER protein stoichiometry as compared to the
striatal BER protein stoichiometry (Goula et al. submitted), thereby increasing the proba bility of
CAG/CTG instability. Using a reconstitution repair assay and various CAG/CTG substrates
containing an AP lesion at located in different positions within the substrate, we show that the

AP lesion is preferentially processed via LP-BER, particularly when the substrate was prone to
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hairpin formation during BER (i.e. when the lesion was located 5’ to the repeat tract or on the
CTG strand). Moreover, repair was more efficient when using the cerebellar BER protein
stoichiometry, as compared to the striatal BER protein stoichiometry, suggesting faster
processing of the lesion in the cerebellum as opposed to stalling of the repair reaction in the
striatum. Those results suggest that the tissue-specific stoichiometry of BER proteins might
predispose or limit the propensity of trinucleotide repeats to instability.

Together, we propose that CAG/CTG repeats form secondary structures that lead to
accumulation of DNA lesions. We suggest that some lesions might become more accessible, for
instance during transcription, allowing their processing by BER. Our results support that
processing of a lesion by BER at CAG/CTG repeats is less efficient when using the striatal BER
protein stoichiometry as compared to the cerebellar BER protein stoichiometry. We suggest
that inefficient processing of oxidative lesions in the striatum contributes to tissue-selective

CAG instability in HD.

2. What is the nature of oxidative lesions at CAG repeats?

An increase of the amount of some oxidant lesions, such as 8-oxodG and 5-OH-uracil, in
ageing mouse brain has been reported (Kovtun et al., 2007). The finding that in R6/1 mice
deficiency of the DNA glycosylase OGG1, which mainly targets 8-oxodG lesions, led to limitation
of repeat instability, supported the “toxic oxidation cycle” model. However, deficiency of other
DNA glycosylases in R6/1 mice such as AAG and NTH1 did not alter repeat instability, suggesting
that TNR instability is not affected to the same extent by the different oxidative lesions, and
that 8-OxodG play an important role in repeat instability in HD. Whether additional DNA
glycosylases targeting other specific lesions, including Neill and Neil2, contribute to TNR
instability remains to be investigated. Alternatively, functional redundancy between DNA
glycosylases may also mask the effect of deficiency of a specific glycosylase and might explain
why inactivation of AAG or NTH1 in R6/1 had no effect on instability. Thus, it could be of

interest to inactivate several DNA glycosylases simultaneously in R6/1 mice. In addition, it
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would also be interesting to screen different tissues for several DNA glycosylase activities
relative to tissue-specific repeat instability levels, in order to correlate instability levels with
specific glycosylase requirement. Another open question is the level of oxidant lesions present
at CAG/CTG repeats. Kovtun et al., (Nature 2007), did not specifically examine the content of
oxidant lesions at CAG/CTG repeats but measured globally the level of lesions in total ageing
brains. However, when we compared the amount of lesions at the CAG/CTG repeats in the
cerebellum versus the striatum, we found that the levels of lesions at repeats were increased,
but were not tissue- or age-dependent, suggesting that the tissue-specificity of repeat
instability is not dependent on the number of lesions at CAG/CTG repeats. Finally, it would be
interesting to investigate whether the involvement of lesions and DNA glycosylases in repeat
instability in the HD mice is shared by other CAG/CTG polyQ or DM1 models, or by other

trinucleotide repeat sequences such as those causing FRDA or FXS.

3. What mechanism(s) lead(s) to accumulation of oxidative lesions at CAG repeats?

Accumulation of lesions was age- and tissue-independent, though significantly higher at
CAG repeats compared to control sequence in R6/1 tissues (Goula et al., 2009). CAG/CTG
repeats were shown to form stable secondary structures in vitro, in a repeat length-dependent
manner (Figueroa et al., 2011; Gacy et al., 1995; Pearson and Sinden, 1996; Pearson et al.,
1998b) Repeat hairpins can be efficiently removed or, alternatively, contribute to the
accumulation of DNA damages (Hou et al., 2009; Zhang et al., 2011). We showed that lesions
located at loops of hairpins are refractory to repair by BER initiating enzymes, including OGG1
and APE1 (Goula et al., 2009). Additional studies show that hairpins can promote damage and
delay repair (Jarem et al., 2009; Jarem et al., 2011), likely due to a higher exposure of DNA
bases to oxidized or mutagenic agents or to intrinsic characteristics of hairpin structures.
Interestingly, triplet repeat pre-mutation sizes were reported to adopt a non-B conformation,
which is thermodynamically stable enough to participate to the instability process, by a

potential accumulation of DNA damage at those structures (Avila Figueroa and Delaney, 2010;
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Figueroa et al., 2011; Jarem and Delaney, 2011; Volker et al., 2002). Altogether those results
suggest that lesions accumulate at stable CAG/CTG secondary structures, and ageing may not
contribute substantially to this process.

Transcription requires an accessible chromatin structure and could therefore play a role in
TNR instability, by promoting DNA damage accumulation. Interestingly, knock-down of Csb in
human cells led to stabilization of CAG/CTG instability (Lin and Wilson, 2007). In a similar
manner, R6/1 mice deficient for Csb showed reduction of intergenerational instability and
decrease in somatic instability in the brain (Kovtun et al., 2011). Those results suggest an
implication of TC-NER in repeat instability. Indeed since CSB is not only a TC-NER factor but is
also participating in processing of oxidant lesions, it might suggest that BER could contribute to
transcription-dependent CAG instability (Thorslund et al., 2005). However, the fact that double
deficiency of Csb and Ogg1 in R6/1 mice led to exacerbation of instability rather suggests that

those two factors do not lead to repeat instability by acting on the same pathway.

4. Does BER, and more particularly LP-BER directly contribute to CAG/CTG instability?

How could BER modulate CAG/CTG instability in disease? It has been suggested that the
contribution of BER to CAG/CTG instability may be direct. In an in vitro repair assay, expansion
products were generated with CAG-substrates (similar to the substrates used in our
experiments, see § Publication 2) using cell extracts supplemented or not with BER proteins,
such as APE1, Polf and FEN1 (Liu et al.,, 2009). This experimental setting revealed that the
amount of expansion was dependent upon the presence of BER proteins. However, in our
repair assay, where protein ratios were reconstituted to reflect the stoichiometries observed in
mouse striatum or cerebellum, we did not detect expansion products, suggesting that BER on
its own is not sufficient to induce CAG/CTG instability. Furthermore, the level of somatic
CAG/CTG instability was not changed in DM1 or HD mice haploinsufficient for Fenl, or in DM1
mice expressing a mutated version of Ligl with <5% residual ligase activity (Spiro and

McMurray, 2003; Tome et al., 2011; van den Broek et al., 2006). As complete inactivation of
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Fenl and Lig1 is embryonic lethal (Bentley et al., 1996; Kucherlapati et al., 2002; Larsen et al.,
2003; Petrini et al., 1995), thus precluding the use of such null mice, the significance of the
results with the mutant animals above is not yet clear, but could suggest that BER does not
directly contribute to CAG/CTG instability or is not an obligatory pathway. Accordingly, somatic
instability was only moderately reduced in HD mice deficient for Ogg1, in contrast to the severe
reduction seen in HD and DM1 mice deficient for Msh2 or Msh3 (Dragileva et al., 2009; Foiry et
al., 2006; Kovtun et al., 2007; Manley et al., 1999; Savouret et al., 2004; van den Broek et al.,
2002). Whether BER contribution to CAG/CTG instability is dependent upon MMR is an

intriguing possibility that would remain to be explored.
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o’ Implication des lésions oxydantes et du
mécanisme de réparation par excision de base
dans la sélectivité tissulaire de l'instabilité
somatique des répétitions CAG dans la maladie de
Huntington

Résumé

La maladie de Huntington (MH) est la plus courante parmi les maladies neurodégénératives a répétitions
trinucléotidiques. La MH est une maladie progressive et fatale, causée par I'expansion anormale des
répétitions CAG du géne de la Huntingtine. La longueur de I'expansion est instable et proportionnelle a la
gravité de la maladie. L’instabilité affecte difféeremment les tissus, dont le cerveau, ou le striatum ayant une
forte instabilité dégénére, alors que le cervelet ayant une instabilité limitée est épargné par la maladie. Nous
avons étudié le role des Iésions oxydatives et du mécanisme de réparation par excision de base (BER) dans
la sélectivité tissulaire de l'instabilité dans le striatum et le cervelet des souris R6/1. Nous avons observé un
niveau de lésions oxydantes similaire dans les deux tissus, suggérant qu’il ne corréle pas avec l'instabilité
tissu-spécifique. Les lésions situées a des structures en épingle a cheveux étaient réfractaires a réparer. De
plus, les niveaux et les activités des principales protéines BER étaient globalement diminués dans le striatum,
en particulier FEN1 et LIG1 deux protéines de LP-BER. En outre, I'efficacité de réparation dépendait de la
stoechiométrie de BER, la position de la lésion et la séquence d’ADN. En particulier, des cocktails protéiques
aux stoechiométries BER du striatum réparaient moins efficacement par rapport a ceux du cervelet et les
substrats contenant des CAG/CTG étaient préférentiellement réparés par LP-BER, la position de la Iésion
modulant son utilisation. Nos résultats suggérent une faible coopération entre les activités BER, associée a la
spécificité tissulaire de l'instabilité somatique CAG/CTG dans la MH.

Keywords : Maladie de Huntington, instabilité somatique, sélectivité tissulaire, Iésions oxydantes, BER.

Summary

Huntington’s disease (HD) is the most common among the neurodegenerative disorders associated to
trinucleotide repeats expansion. HD is a progressive and fatal disease caused by the abnormal expansion of
CAG repeats in the Huntingtin gene. The expansion length is unstable and proportional to the disease
severity. The instability affects differently several tissues, among which the brain, where the striatum that
shows a high instability degenerates, whereas the cerebellum that shows limited instability is spared from the
disease. We addressed the role of oxidative lesions and Base Excision Repair (BER) in the tissue-selectivity
of the somatic instability in striatum and cerebellum of R6/1 mouse model. Interestingly, we observed a similar
level of oxidative lesions at both tissues, thus not correlating with the tissue-specific instability. We showed
that lesions located at hairpin structures were refractory to repair. Additionally, levels and activities of main
BER proteins were globally decreased in striatum relative to cerebellum, especially Fen1 and Lig1 two LP-
BER proteins. Moreover we found that repair outcome is dependent upon BER stoichiometries, lesion location
and sequence. In particular we showed that reconstituted striatal BER stoichiometries result in less efficient
repair relative to the cerebellar ones and that CAG/CTG-containing substrates are preferentially repaired
through LP-BER, the lesion position within the repeats modulating the requirement for LP-BER. Our results
suggest a poor cooperation between BER activities that could underlie tissue-specificity of somatic CAG/CTG
instability in HD.

Keywords : Huntington’s disease, somatic instability, tissue-specificity, oxidative lesions, BER.




